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Abstract: We proposed a new method of chemical reaction spectrum (CRS) in terms of 

chemical characterization, and established a method to fulfill it by combining with 3D 

chemical printing technology and 2D sampling. The CRS can provide a graphical data set for 

pure or mixed substances, which can comprehensively describe the reaction characteristics of 

the research object. Compared with common characterization methods (NMR, UV/vis, IR, 

Raman, GC or LC), it is more capable of revealing chemical behaviors enough, and is much 

lower in cost. It is expected to be an important data acquisition approach for the application of 

artificial intelligence in the field of chemistry in the future. 
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    There are numerous natural or synthetic chemicals, being as pure substances or mixtures. 

The scientific aim of exploring them mainly involves the following two aspects. One is the 

exploration of the intrinsic characteristics, such as composition analysis, spectral 

characteristics, etc. (hereinafter referred to as the first type of work, I-work). The other is the 

behaviors on the chemical reactions with many other reactants (the second type of work, 
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II-work). The chemical science is aimed at exploring the interaction between substances at the 

levels not lower than molecular or atom, so the knowledge obtained from the latter type of 

work is closer to the core purpose of chemical research.  

  Due to the workload, for most new substances or new mixture systems, scientists actually 

have no energy to provide a large amount of information in II-work. Consequently, we often 

have to provide some information related to these substances via some methods derived from 

physical means, such as NMR, UV/vis, IR, Raman, GC or LC, etc[1]. Due to the lack of a 

large amount of information of the real chemical reactions, researchers don't have enough 

knowledge to predict accurately the behaviors in most complex reaction processes. 

    In recent years, artificial intelligence technology (AI) has developed rapidly, and it has 

shown excellent performance in many fields[2-5]. It may also lead to a new round of 

scientific revolution in the natural sciences. The results of research in the field of chemistry in 

the past several years are also appearing in considerable numbers[6-9]. We have found a 

feature that most of the research work uses the data of the composition and structural 

properties to carry out deep prediction and analysis of chemical reaction characteristics, 

showing extremely high efficiency.  

  However, in this research model, the existing standardized data is limited in fact. The 

available data resources are easily exhausted and do not support the explosive growth of this 

big data research method. Some work began to focus on using the information of II-work. 

Lately, Science journal reported that some researchers even processed the large number of 

failed or negative data accumulated in the history of the laboratories to find complex features 

with the aid of machine learning (ML). The results show that the real reaction data has a 

startling performance in prediction. In fact, it is clear that such reaction data has been 

accumulated by conventional experiments for many years, and the number is still too small to 

used in further play. This also hint from another aspect that if the experiment data of II-work 
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can be increased in a large amount, AI will play an important role in chemical research. After 

all, the complexity of chemical phenomena, an essential barrier on the road of the chemical 

research in the past or next decades, is very consistent with the superiority of AI. It is 

foreseeable that after a decade of development, chemical research will enter a new era. 

    In traditional research, in order to obtain information on a certain type of chemical reaction 

R1 of the researched object, S, the researcher to construct a reaction system to realize the 

interaction between S and other reactants, C, and then monitor the results, E. As follow, 

  R�:		S+ C�
����.
�⎯⎯� E�  (1) 

  More types of chemical reaction information are obtained by changing the reactant C 

involved.  

  R�:		S+ C�
����.
�⎯⎯� E�  (2) 

  Akin, 

  R�:		S+ C�
����.
�⎯⎯� E�  (3) 

  ... 

  R�:		S+ C�
����.
�⎯⎯� E�   (4) 

  ... 

  R�:		S+ C�
����.
�⎯⎯� E�  (5) 

    When n is larger, the reaction features of S becomes clearer. This is a repetitive work. 

Commercial high-throughput facilities and experimental methods allow researchers to quickly 

conduct hundreds of reactions simultaneously[10-12]. But the exorbitant price and tedious 

operation destined a rare appearance in most laboratories.  

    We tried to modify the operating modes of the reactions R1, R2, ..., Rn, and arranged the 

reactants Ci in a convenient spatial distribution (as shown in Fig. 1). Under optimal conditions, 

each point has its own specific composition.  
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Fig. 1. Schematic of a two-dimensional distribution of the reactants combinations. 

 

  When the number of Ci reaches 105 or even 106, it will give S a huge information of 

reaction behaviors. On considering the major categories of Ci reactions and the application of 

ordinary chemists, it is better to establish several standard groups for the typical Ci on behalf 

of a wide range of reaction relationships. But how to conveniently realize the structure in Fig. 

1, and complete the detection of Ei accordingly is still very creative job. 

  Below, we present a means to realize the idea, which took full advantage of 3D chemical 

printing[13, 14], and chemical imaging detection[15]. 

  We use the chemical printing method to complete the construction of the physical structure 

of C chemicals[15]. First, a print template as shown in Fig. 2A is designed, and each template 

channel corresponds to a chemical (or a certain mixture) with a 2D distribution. As a 

preliminary attempt, we selected 8 typical compounds (citric acid, potash, ferric sulfate, 

copper nitrate, aluminium chloride, bromcresol green, sodium diethyldithiocarbamatre, 

potassium thiocyanate, bromothymol blue) and prepared their solutions (100mg/5ml as 

working concentration) as printing inks. Using jet printing technology, we build a super Ci 

array, referring to 3×108 ratios of the eight substances. Especially, the last 3 chromogenic 

compounds play not only roles of the reactants, but also a role in visualizing the reaction 

results. On the other hand, in the field of analytical chemistry, the synthesis of numerous color 

(or fluorescence) indicators have accumulated lots of knowledge and products. They are 
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contributing a treasure trove of creating many novel MCRP detectors. The right part of Fig. 

2C is a prepared Ci array on a plate, called in our lab as "million-level combination reactions 

test paper", or MCRP. The right part of Fig. 2B is a 32-MCRPs batched-plate. 

 
Fig. 2. Preparation technology and method of MCRP. (A) A printing template used to distribute 
the various reactants. (B) schematic diagram of the distribution of reactants using a modified 
ink-jet printer. (C) another printing template designed to constructing multidimensional 
reactant distribution and a sample of the prepared MCRP. 
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    For a analyst to be tested, we completed the reaction of the sample and MCRP in a mode of 

quantitative spraying[15]. As shown in Fig. 3A, an ultrasonic nebulizer evenly distributed a 

certain amount of liquid sample on a MCRP, and the microscopic droplets are in state of 

independence to some extent (schematic in Fig. 3A). The device costs about $10, and if the 

camera system is converted into a cellphone camera, it will cost less than $5. After capturing 

images and deducting the background, we immediately obtained a complex image derived 

from the reaction results (Fig. 3B), which we call a chemical reaction spectrum (CRS). This 

image consisted of the same number of 1 million data points as the MCRP. Each data point 

has a known ratio of all reactants.  

 

 

Fig. 3. The way to quantitatively interact the analyte with MCRP. (A) An ultrasonic atomizing 
device is used to realize quantitative two-dimensional sample addition, and a CCD camera 
device is used to obtain CRS images. (B) Some captured images after reaction, and the 
corresponding data of the CRS image obtained through background deduction. In order, blank 
MCRP, the CRS of nickel chloride, 1:2 mixture of manganese chloride and nickel chloride, 
disodium hydrogen phosphate, boric acid, and urine.  

 

    It can be seen from the selected ink types and their combination that in the above case, 

numerous chemical reactions and their quantitative fluctuation are included, providing a 

wealth of reaction information of the sample, S. In addition, the above case was an initial trial 

for our idea. Later, researchers can screen some more representative inks and increase the ink 

species to optimize the performance of CRS.  
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    We give some discussion below. For all chemical reactions of a particular substance, 

researchers should not look at each reaction in isolation. In fact, a specific reaction and other 

reactions are inextricably linked. From a perspective of functions in algebra, we can even map 

a specific reaction with a limited number of other reaction processes. And this mapping 

process or algorithm actually needs to depend on the development of artificial intelligence 

and machine learning (ML). Nowadays, many ML applications of chemistry have shown that 

after getting a large amount of reaction information, researchers can give a very good 

prediction of other reactions to the object of study. 

    Let's talk about it, why on a MCRP, there are more than 1 million reactions. First, consider 

on the combination of substances. The printing templates (Fig. 2A and 2C) guarantee the ink 

mixture at all ratios. It is assumed that the amount range of each ink is divided into ten levels (, 

in an actual template and printing process, the levels are near 100). Then 8 inks will give out 

810 (~ 1 billion) ratios. Considering printing resolution and size, the different ratios of 

reactants are about 1 million. In the incipient case of the above work，the types of chemical 

reactions involved at least precipitation/dissolution, complexation, ion exchange, 

oxidation/reduction, adsorption/desorption and their combination at different levels. At a later 

stage, the researcher could do a lot of research to establish a more appropriate ink 

composition to adapt to a wider range of chemical phenomena, even biochemical reactions, 

organic reactions, etc. The external form of these higher order combinations is extremely 

complex. Obviously, we can improve the CRS to discover nearly whole chemical behaviors of 

any concerned substance by only selecting inks and reacting conditions. The fabrication of 

MCRPs can also be done on a large scale by means of screen printing, etc. This is also the 

work to be carried out later. We expect a dozen standard MCRPs confirmed after adequate test, 

and each of them is worthy of any of familiar analysis methods, such as IR, UV/vis, HPLC. 
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    Such a method of obtaining large data of chemical reactions of a substance is called 

"chemical reaction spectrum", CRS. In our lab, CRS, as image data, is often used for deep 

neural network learning, so we also call it chemical neural network, ChemNN. After the 

standardization of the MCRP preparation, the CRS is almost equipment-free, low-cost and 

convenient for the application to individual users. It can cover almost any small laboratory or 

even student operations in middle schools. Such a chemical experiment with trace reagents 

and big data is a typical green method in the future chemistry. 

  In particular, we would like to mention that this technique can be used not only for pure 

substances, but also for most mixtures including urine, saliva, fluids, wastewater, etc. These 

applications have the potential to build bridges between some engineering technologies and 

AI. 
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