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Abstract The field of materials science has seen an ex-

plosion in the amount of accessible high quality data.

With this sudden surge of data, the application of ma-

chine learning (ML) onto materials data has led to great

results. Particular success has been found in training

models based on chemical formulae. Such models have

traditionally focused on learning from density functional

theory (DFT) or experimental data. Though some re-

searchers have explored the use of DFT calculated prop-

erties as features for learning, this has not gained much

traction since the machine learning predictions would

be limited by the DFT computation time and accuracy.

In this work, we explore the use of a stacked ensemble

learning system that combines machine learning from

DFT calculations to improve learning on experimental

data. This is accomplished by handling the DFT and

experimental data separately, training distinct models
for each. The DFT models are used to generate a “pre-

dicted DFT” value for the formulae in the experimental

data. A meta-learner—trained using predictions gener-

ated by the experimental models combined with pre-

dictions from the DFT models—is shown to improve

root-mean-squared-error by over 9% in the test data,

when compared to a baseline model that only learns

from the training data.
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1 Introduction

The discovery of new materials is critical for achiev-

ing the grand engineering goals of the future [1–3]. De-

spite the importance of materials discovery, revolution-

ary discoveries are a rarity and often serendipitous in

nature. The resources needed for the synthesis and char-

acterization of new materials frequently limits the ma-

terials discovery process [2]. Because of the often pro-

hibitive costs of synthesis, researchers in the field of

materials science and engineering routinely use first-

principles calculations such as density functional the-

ory (DFT) to aid in the materials discovery process [1,

2,4,5]. These computational techniques are used to esti-

mate materials properties and effectively suggest unex-

pected candidates [6–9], providing insight to promising
synthesis actions. Despite the success of first-principles

approaches, these physics-based calculations can take

days or weeks and consequently are not well suited for

exhaustively screening chemical composition space [10,

11]. Moreover, these approaches require crystal struc-

ture to be known prior to calculations which precludes

unknown structures from most screening methods.

The Materials Genome Initiative in 2011 is evidence

that the current rate of discovery will not address the

technological and scientific needs we face. The opportu-

nity for machine learning (ML) to help accelerate mate-

rials discovery has already been made evident by com-

panies and research programs including: Citrine Infor-

matics [12], the Materials Project (MP) [1], the AFLOW

distributed materials property repository (AFLOW) [13],

as well as many individual research groups. These or-

ganizations have made considerable progress towards

providing simple access to computational data, machine

learning techniques, and experimental materials infor-

mation.
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A simple approach for using such data relies on cre-

ating a composition-based feature vector (CBFV) [14,

15]. Models using this approach have successfully pre-

dicted materials properties on both experimental and

first-principles data [15–20].

Successful machine learning has also taken advan-

tage of DFT data as features. In particular, the work

of Lee et al. [21], and Seko et al. [22] have shown that

DFT can effectively be used to improve predictions on

calculated band gap ( G◦W◦) and experimental melting

temperatures, respectively. Despite their successes, few

other researchers have adopted the use of DFT-based

features as screening time is a primary advantage of

a machine learning approach. These works are great

example of combining composition and physics-based

features together, however they are still costly in terms

of time due to the direct use of DFT calculations.

In this work, we evaluate whether first-principles-

based features can be incorporated into a machine learn-

ing approach without the computational limits associ-

ated with first-principles calculations. This is done by

using deep learning networks to learn trends in the DFT

data. These trends are then transferred to an ensemble

model to aid in learning on experimental data. An ex-

cellent property to test this hypothesis on is band gap,

as both DFT calculated [5, 13], and experimental [23]

band gap are readily available. Recently, Zhou et al. [23]

showed that band gap can be predicted with good ac-

curacy using machine learning and a general CBFV.

However, this work was based only on experimental val-

ues and ignored the more than 40,000 DFT computed

band gap values accessible through AFLOW and the

MP. While it is well known that DFT computed band

gaps are not perfect, it is also known that they system-

atically underestimate the correct value and therefore

this large data set should be a useful source of knowl-

edge.

A commonly cited challenge in materials informat-

ics is the lack of data. Even as data repositories come

online, it has been observed that they are extremely

heterogeneous in nature. Therefore, developing a model

which relies on multiple distinct data sets will inher-

ently face challenges of mismatched data and missing

features. Moreover, some data sets have the size and

characteristics best suited for a certain type of algo-

rithm: take neural networks as an example, which per-

form best with data on the order of 104. Previous ap-

proaches have tried to pick the one algorithm and the

one data set that gives the best predictive model. How-

ever, there is the possibility that disparate data sets can

be trained with individual algorithms and later unified

to capture information that would otherwise be unavail-

able. In much the same way, the political environment

relies on a poll of polls in order to overcome the biases

and shortcomings associated with any individual poll.

We hypothesis that a model constructed of different al-

gorithms trained on different data sets will yield a more

accurate prediction.

2 Methodology

2.1 Data Acquisition and Feature Development

The idea of integrating DFT-learned predictions with

experimental data via model ensembling was tested us-

ing band gap. We base our approach on the work of

Zhou et al. who recently predicted band gap by way of

support vector regression (SVR) trained on experimen-

tal compounds only. They provided band gap data for

both metal and non-metal entries, as well as optimized

model parameters, which we adapted for use when gen-

erating and testing our models.

Using the experimental data for non-metals only

and removing duplicates, there were a total of 2,483

unique entries. This set of compounds is referred to as

the “Experimental Database”. The experimental database

was then randomly split into a training set of 1,986

(75%) and testing set of 497 (25%), which was with-

held until all models were optimized to ensure proper

validation of model performance. DFT band gaps were

obtained from the AFLOW and MP databases. The

MP data were retrieved using Citrine’s online platform

Citrination [12]; AFLOW data was readily available at

AFLOW.org. In total, 44,568 unique band gap predic-

tions were accessed: 30,784 from the materials project

and 13,784 band gap predictions from AFLOW project.

The aggregated DFT data contained a few compounds

which already matched those listed in the experimen-

tal data. These were systematically removed in order to

ensure that the model made a bias-free prediction on

experimental compounds. The resulting data sizes are

shown in Figure 1.

After retrieving the necessary data, chemical com-

positions were vectorized into features based off of el-

emental properties. The CBFV employed in this work

uses the weighted average, the sum, the variance, and

the biggest range of the elemental properties. When

features cannot be generated due to missing elemen-

tal properties the missing value is replaced with the

mean value for the property across all compositions

[14]. When learning with non-tree-based algorithms, the

CBFV’s undergo scaling and normalization using Scikit-

learn’s StandardScalar and Normalizer functions [24].
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Fig. 1 DFT data is combined and used for learning with a
neural network. The experimental data is separated into a
training set and a test set.

2.2 Ensemble Models

Model ensembling works by combining the predictions

of multiple model types. For this work we employed

stacked ensembling. Stacked ensembling is a technique

that uses two layers of machine learning. The first layer

contains multiple models which generate predictions on

the data. The second layer then uses the first layer’s pre-

dictions as features for a meta-learner which generates

predictions on the true value.

We created three separate stacked ensembles which

we compared against a baseline (see “Schemes” in Fig-

ure 2) to investigate whether the supposed wealth of

information captured in the DFT data has an impact

on our ability to learn from the experimental band gap

data.

1. Models trained on experimental data using three

dissimilar learning methods: support vector regres-

sion (SVR), gradient boosting regression (GBR),

and random forest regression (RFR).

2. Addition of DFT prediction to the three experimental-

trained models.

3. Addition of DFT to SVR only.

4. Baseline: A single non-ensemble model trained off

experimental data using an SVR algorithm (repro-

ducing Zhou et al.)

Scheme 1: Cross-validated predictions from the three

experimental models were used as features for the meta-

learner (Layer 2). This allowed us to optimize param-

Fig. 2 The three ensemble schemes and the baseline are
shown above. Each model sends interim-predictions to the
meta-learner which then generates the final prediction

eters for the meta-learner before predicting on the test

set. Once optimized, the first layer models were re-

trained on the full experimental training data. These

models then generated predictions for compositions in

the test set, which the meta-learner used to generate

final predictions.

Scheme 2: The same experimental models were uti-

lized, but the first layer also incorporated a DFT model

trained on the aggregated DFT data. After retraining,

first layer predictions were again used by the meta-

learner to generate predictions on the test data.

Scheme 3: In order to explicitly examine the role

of DFT-based predictions, we included a scheme which

learns off of SVR and DFT predictions alone. By ex-

cluding GBR and RFR, we are able to make a compar-

ison which illustrates the role of DFT-base predictions

by itself. Using the same approach as schemes 1 and 2,

the DFT model was ensembled with the first-layer SVR

which had the best cross-validation scores.

2.3 DFT-based Model

The DFT data was modeled with a Sequential Neural

Network. The python implementation of Keras (2.2.2)

was used with a Tensor Flow (1.10.0) back-end run-

ning CUDA (9.2) on the Ubuntu 18.04.1 LTS operating

system using an Intel 8600K CPU and NVIDIA GTX

1080 Ti graphics card. The network structure was ob-

tained through optimization of dropout rate and node

count using a genetic algorithm followed by trial and er-

ror optimization using the AFLOW DFT data (Figure
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3). Each node in the network used a ReLU activation

function, and dropout was implemented between layers

to prevent over-fitting. The model used for DFT pre-

dictions was built using the aggregate DFT data after

applying scaling and normalization to the CBFV.

Fig. 3 The network structure used is generally effective for
learning problems using a CBFV

3 Results and Discussion

3.1 Analysis of First Layer Models

3.1.1 Experimental-based Machine Learning Models

It is well known in the machine learning community

that many learning algorithms provide unique advan-

tages and disadvantages within different data sets. For

example SVRs capture non-linearity but lack scalabil-

ity, where as faster learners, such as a Linear or Ran-

dom Forest Regression, may have difficulty capturing

the same complexity in the data. The ability to cap-

ture and express different patterns in data is the heart

of ensembling; the combined outputs from each model

can contribute to the overall learning process to better

represent the data as a whole.

Parameters for the RFR and GBR were selected

with the help of a grid search, which iterates over a

selection of predetermined parameter values to find the

optimal set. For the SVR we used the model parameters

found by Zhou and coworkers. Five-fold cross-validation

predictions were used during optimization and when

comparing model performance. Table 1 shows the co-

efficient of determination R2, root-mean-square error

(RMSE), and mean absolute percentage error (MAPE)

for the first layer models. Cross-validation performance

indicated that the SVR was the best individual learn-

ing method for this data. This aligns with the work of

Zhou et al., and justified the use of SVR performance as

a baseline when evaluating the ensemble performance.

Table 1 Cross-validation Metrics for Experimental Models

First Layer Model R2 RMSE MAPE
SVR 0.808 0.627 eV 37.6
GBR 0.782 0.669 eV 43.0
RFR 0.772 0.688 eV 44.6

3.1.2 DFT-trained Neural Network

Figure 4 shows the deep-network cross-validation per-

formance. Overlaid on top of this data are neural net-

work predictions of compounds which were removed

from training because they coincided with experimental

data. The neural network-based predictions of the ex-

perimental compounds are a necessary part of the first

layer in both schemes 2 and 3.

Fig. 4 Performance was estimated using cross-validation on
the combined DFT data set. Predictions of the DFT band gap
value for the compounds that were removed due to overlap
with the experimental data are quite accurate.

At first glance there is significantly more error in

the cross-validated data compared to the data points
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associated with the experimental compounds. One pos-

sible reason for this is that the DFT data includes band

gap predictions for many exotic hypothetical structures,

whereas the experimental data only contains “real” com-

pounds with a stable crystal structure.

It is possible to compare the accuracy of DFT calcu-

lations vs neural network predictions for the 763 com-

pounds where we have experimental data. In either of

these cases, a residual can be determined by subtracting

the DFT or neural network prediction from the exper-

imental value. An initial comparison of the residuals

(Figure 5) might suggest that the neural network is

slightly more accurate than the DFT predictions. This

could technically be possible due to the difference in

distribution between the training data and the experi-

mental data from which the residuals were calculated.

However, it is more likely due to chance, as a Student’s

t-test shows that there is no statistically significant dif-

ference in the mean of the absolute error for the two

residuals (p-value = 0.50).

Fig. 5 The calculated residual indicates that the error asso-
ciated with predicted DFT values is effectively indistinguish-
able from the calculated DFT values.

The similarity in neural network predictions and

DFT calculations is a welcome finding for those seek-

ing to use machine learning on stacked ensembles that

are built on heterogeneous data sets. The ability to ex-

tract knowledge from distinct but related data, and use

that information as features while learning, represents

an important step beyond previous approaches. Until

the time comes that a unified data infrastructure exists,

future work will continue to rely on individual reposi-

tories of data. With this approach, we can capture the

knowledge in these different data sets without perform-

ing computationally expensive calculations.

3.2 Analysis of Ensemble Schemes

With an understanding of the performance of the first

layer models (refer to Table 1), we are now able to

evaluate how these compare both to the baseline (SVR

model) as well as the stacked ensembles defined as Schemes

1, 2, and 3.

The most straight forward ensembling is built on

the original data using the outputs from various ma-

chine learning algorithms; this is common practice and

is routinely used to improve model performance. This

first approach was used for the stacked ensemble from

Scheme 1 which provides improvement in band gap pre-

dictions with a 5.1% reduction in RMSE from the base-

line SVR (see Table 2 for performance of all schemes).

Note, this is more powerful than a poll-of-polls ap-

proach in that this is not an averaging of predictions

(3.3% reduction in RMSE), but rather each model is

treated as an independent feature and therefore the

meta-learner can capture the non-linear improvements

associated with each method.

Table 2 Performance on Test Data

R2 RMSE MAPE
Baseline 0.857 0.606 eV 0.471
Scheme 1 0.872 0.575 eV 46.9

Improvement to baseline 1.6% 5.1% 0.3%
Scheme 2 0.883 0.548 eV 46.0

Improvement to baseline 3.0% 9.5% 2.5%
Scheme 3 0.880 0.556 eV 47.2

Improvement to baseline 2.7% 8.3% 0.3%
Poll of polls 0.867 0.586 eV 50.0

Improvement to baseline 1.1% 3.3% -6.1%

The ideal scenario for learning band gap would in-

clude DFT computed band gap as an additional feature

to scheme 1; however, computation time is a major

problem when relying on DFT as a feature. To over-

come this barrier, a neural network was used to gener-

ate high quality predictions after learning from the vast

amount of existing DFT values. The use of this neural

network, in proxy for actual DFT calculations, com-

bined with the experimental models leads to Scheme 2.

Analysis of Scheme 2 shows 9.5% improvement over the

baseline. Notably, this is better than the 5.1% improve-

ment Scheme 1 offers over the baseline (Figure 6). This

demonstrates an ability to extract knowledge from the

independent DFT database.
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It might be surprising that we can combine DFT

data in this way. A more obvious approach would be

to simply treat the DFT and experimental values as

indistinguishable in a combined data set. A domain ex-

pert is unlikely to advise this approach, as adding the

DFT data would only water down the high quality ex-

perimental data. Rather than treating them as indis-

tinguishable, we keep them separate in heterogeneous

data sets using a stacked ensemble to learn from both

distinct data sets, then build a meta-learner which effi-

ciently captures knowledge from each.

Scheme 3 resembles Scheme 2 in that it learns off

the DFT predictions and experimental data. However,

instead of incorporating multiple experimental models,

it only uses the SVR. Surprisingly, we observe an 8.3%

improvement in predictions. Which is only 1 percent

worse than Scheme 2. This suggests that there is an

overlap in the knowledge which is gained from includ-

ing the DFT model in addition to the ensembling of

multiple experimental models.

Fig. 6 Performance on the test set shows significant im-
provements when incorporating DFT-based predictions in the
learning process.

4 Conclusion

In this work we were able to build a machine learning-

based band gap prediction model that is better than

any single prediction model. The stacked ensemble uti-

lized neural network predicted DFT values rather than

the time intensive DFT calculations. Three different

schemes were used to probe the added value associated

with each first layer model. The most accurate ensem-

ble included the experimental and DFT models, with

resulting RMSE of 0.55 eV which constitutes a 9.5%

improvement over the baseline. This effectively took ad-

vantage of the 2,483 experimental as well as the 44,568

DFT compounds.

The findings from this work suggest that researchers

could benefit by departing from the traditional approaches

that are being used in materials informatics. Specifi-

cally, we find the following:

1. Learning on a single data set can be improved by

considering an ensemble approach. Resembling a poll-

of-polls, multiple algorithms are used to inform learn-

ing but can do so in a non-linear fashion. An addi-

tional benefit from considering multiple algorithms

is that it provides a first measure of variability in

predictions as a function of algorithm selection.

2. Distinct heterogeneous data sets do not need to be

unified prior to learning. In fact, unifying data by

excluding entries with significant missing features

is harmful in that you end up excluding a great

deal of information. Instead, it is possible to model

data from distinct sources and use the models in

a stacked ensemble. This has important implica-

tions in materials science. Relative to some other

fields, such as computer science, materials science is

plagued by mismatched, non-standardized, hetero-

geneous and widely distributed data sets. A tech-

nique such as one described in this work, which al-

lows learning without unification is a powerful new

idea. By retaining heterogeneous data, we do not

throw out the baby with the bath water.

3. Enormous effort and computational resources are

being used to generate materials structure and prop-

erties from first-principles calculations. Forward think-

ing paradigms such as the Materials Genome Ini-

tiative have cited the necessity of experimental and

computational research going hand in hand to mini-

mize the cost and risk of new materials development.

However, despite the effort going into DFT this is

not sufficient to bridge the knowledge gap. The ma-

chine learning approach described here allows us

to generate high quality predictions by extracting

knowledge from DFT—leveraging the wealth of in-

formation stored within these first principle calcu-

lations even when the data lack parity.
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