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Abstract. By integrating organic synthesis, secondary organic aerosol synthesis and collection, 

DFT calculations, and vibrational sum frequency generation spectroscopy, we identify close 

spectral matches between the surface vibrational spectra of β-caryophyllene-derived secondary 

organic material and those of β-caryophyllene aldehyde and β-caryophyllonic acid at various 

interfaces. Combined with the record high surface tension depression described previously for 
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these same oxidation products, we discuss possibilities for an intrinsically chemical origin for 

cloud activation by terpene-derived surfactants. Although the present study does not 

unequivocally identify the synthesized and analyzed oxidation products on the β-caryophyllene-

derived SOM surfaces, these two compounds appear to be the most surface active out of the 

series, and have also been foci of previous β-caryophyllene field and laboratory studies. An 

orientation analysis by phase-resolved SFG spectroscopy reveals a “pincer-like” configuration of 

the β-caryophyllene oxidation products, albeit on a model quartz surface, that somewhat 

resembles the orientation of inverse double-tailed surfactants at the surfaces biological systems. 

The structural information suggests that the less polar moiety of a surface-localized oxidation 

product, such as those studied here, may be the first site-of-contact for a gas-phase molecule 

approaching an SOA particle containing surface-active β-caryophyllene oxidation products. 

 

1. Introduction. The atmospheric oxidation of biogenic volatile organic compounds (BVOCs) 

results in the production of naturally produced secondary organic aerosol (SOA) particles,1-15 a 

principal, yet elusive, class of airborne particulate matter that impacts the Earth’s radiative 

budget.16-19 Given that the particle surface is the first point of contact for surrounding species, 

interfacial phenomena likely influence key SOA processes.20-23 Therefore, chemical information 

regarding the aerosol gas/particle interface is of interest for understanding particle growth,24-27 

heterogeneous chemistry,28 optical properties,29-30 and cloud activation.24, 31-43 Surface-active 

terpene oxidation products have now been observed at the gas/particle interface for the specific 

cases of deposited isoprene (C5)- and α-pinene (C10)-derived secondary organic material 

(SOM).22, 24, 29, 37, 42, 44  
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Here, we report a spectroscopic and structural study on the comparatively more complex 

species derived from sesquiterpene oxidation,5 specifically that of β-caryophyllene, the most 

abundant sesquiterpene BVOC emitted into the atmosphere.45-51 We are motivated by the fact 

that reaction products produced from β-caryophyllene ozonolysis have been foci in recent field52-

55 and laboratory47, 56-58 studies examining atmospheric oxidation of sesquiterpenes. Recently, we 

synthesized several β-caryophyllene oxidation products for use in Yee et al. as tracer standards 

to identify several of these species in the gas and particle phases within SOM collected in the 

Central Amazon region using semi-volatile thermal desorption aerosol gas chromatography (SV-

TAG).55 Additionally, we recently reported record cloud activation potentials for these β-

caryophyllene oxidation products (Figure 1) from measurements of surface tension that exceed 

those of SDS59 more than eight times at equivalent concentrations.5 In this present work, we take 

the first steps toward elucidating the interfacial structure and orientation of these molecules 

benchmarked to the surface of an SOA model synthesized from the ozonolysis of β-

caryophyllene. 

Probing the interfacial molecular composition of SOM remains challenging, as few 

techniques are appropriate for nondestructive interfacial analysis while also providing chemical 

bond specificity. These include mass spectrometry configured to ablate external vs. internal 

portions of particles60 and X-ray based methods60 under ultrahigh vacuum conditions, as well as 

scanning probes61 and Raman and infrared spectroscopy under ambient conditions.62-67 In these 

cases, the relative signal contribution from the particle surface vs. the particle bulk is small.68 An 

additional challenge in the analysis of aerosol particles is that concrete elucidation of proposed 

oxidation products within SOM mixtures remains indeterminate without the chemical synthesis 

of molecular standards that otherwise may be difficult to isolate in sufficient amounts or separate 
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from the complex mixtures in field or laboratory collected material.15, 21, 23, 31, 52-53, 58, 69-73 While 

mass spectrometry has long remained the widespread method of choice employed in the aerosol 

science community,23, 74-81 surface-selective vibrational spectroscopy22, 62, 82-85 offers the prospect 

of complementing such studies by selectively probing SOM interfacial chemistry under ambient 

conditions, nondestructively, and with capabilities for observing constituents present on the 

surfaces of SOM as well as obtaining molecular orientation information. Previous work in this 

area reported on the observation of organic molecules at the interface of aerosol particles 

deposited on or in contact with solid substrates,22-23, 25, 44, 82, 86-89 and more recently suspended in 

air.29, 90 Now, we combine vibrational sum frequency generation (SFG) spectroscopy, density 

functional theory (DFT) calculations, and organic synthesis to probe the surface composition of 

β-caryophyllene-derived SOM and to obtain detailed structural and orientational information of 

individual molecular constituents on the particle surfaces. By comparing the spectra from the 

synthesized reference compounds with those observed from the β-caryophyllene-derived SOM in 

both the C–H and C=O stretching frequency regions, we identify β-caryophyllene aldehyde (1), 

along with β-caryophyllonic acid (3), as the most likely surface-localized species. These same 

species were also found to exhibit the highest and second highest surface activities (and thus 

estimated cloud activation potentials), respectively, of the oxidation products we previously 

studied by dynamic surface tension measurements.5, 21  

2. Experimental and Computational Methods.  

2.1. Synthesis of Molecular Standards of Putative β-Caryophyllene-Derived Oxidation 

Products. The synthesis of all compounds studied here are described in our previous work.31 In 

summary, aldehyde and monoacid oxidation products 1–4 are prepared from ozonolysis of β-

caryophyllene under varied reaction times and ozone generator voltage, followed by either 
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oxidative or reductive work-up conditions to access the desired product carbonyl functionality. 

Diacid oxidation products 5 and 6 can be synthesized from β-caryophyllonic acid (3) as follows: 

Iodolactonization of monoacid 3 simultaneously protects the carboxylic acid and alkene 

moieties, silyl enol ether formation and a subsequent ozonolysis convert the methyl ketone to a 

carboxylic acid, and iodolactone removal reveals the desired acid product, β-caryophyllinic acid 

(5). β-Nocaryophyllinic acid (6) can be accessed through a final ozonolysis of β-caryophyllinic 

acid (5) with oxidative work-up conditions. 

2.2 Collection of Synthetic Secondary Organic Material (SOM) Derived from β-

Caryophyllene. A comprehensive description of the Harvard flow tube reactor used in this work 

can be found in our previously published work.25, 91 Briefly, β-caryophyllene was introduced into 

the flow tube as a solution of β-caryophyllene (≥98.5%, Sigma-Aldrich Inc.) diluted in 1-butanol 

(1:625 v/v)25, 92-93 at selected injection rates that altered the gas-phase concentration in the range 

of 300–500 ppb, which subsequently changed the organic particle mass loading in the flow tube. 

1-Butanol was used as an OH scavenger to ensure that ozonolysis products were generated. 

Excess ozone (53 ppm) was passed through the reactor with a flow rate of 4 SLPM to ensure β-

caryophyllene was fully reacted. Aerosol particle samples were nucleated in the absence of seed 

particles and collected on Teflon filters (PTFE-47 membrane, pore size 0.45 µm, Z269425, 

Sigma-Aldrich Inc.) for 7–10 hr, or until saturated, for subsequent SFG analysis. From the flow 

rate, collection time, collection efficiency, and particle mass concentration (obtained from a 

scanning mobility particle sizer), the mass of the particles collected on the filters was estimated 

in the range of 5–14 mg (see Table S6 for more details on SOM collection). All filter samples 

were sealed using Teflon tape and parafilm, stored in a –20 °C freezer, and warmed to room 

temperature before breaking the sealant for SFG measurements. No spectral changes were 
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observed over the course of approximately 1.5 years, suggesting the high stability of the SOM 

once formed, at least as detected by SFG spectroscopy. 

2.3. Vibrational Sum Frequency Generation. 

2.3.1. Sample Configurations and SFG Experimental Setup. The synthesized standards, along 

with β-caryophyllene (≥98.5%, Sigma-Aldrich Inc.), were measured in both the condensed and 

vapor phases in contact with solid fused silica or calcium fluoride substrates at laboratory 

ambient temperature and relative humidity in near total internal reflection geometry, though we 

expect the condensed phase spectra to more accurately reflect the phase states of the compounds 

present in the collected particle-phase SOM.23 Vapor phase spectra were taken by exposing an 

optical window with the equilibrium vapor pressure of the compound being measured, and 

condensed phase spectra were obtained by measuring a window containing a spin-coated sample. 

Samples were prepared for measurement by spin-coating the compound, dissolved in a 

deuterated solvent (CDCl3 and/or CD3OD), at 3000 rpm onto an optical window. Synthetic SOM 

was analyzed by pressing an optical window against a Teflon filter containing the collected 

material. Spectra were measured with ssp and ppp polarization combinations. The ssp 

polarization combination probes the components of the vibrational transition dipole moments 

that are oriented perpendicular to the solid substrate,23 whereas the ppp polarization combination 

needed for detailed orientational analysis94 probes off-diagonal elements of the second-order 

susceptibility tensor. 

The standard (Northwestern University, 10–15 cm-1)82, 95-96 and high (Pacific 

Northwestern National Laboratory, 0.6 cm-1)83, 97-99 spectral resolution broadband SFG laser 

systems used herein for obtaining C–H spectra have been detailed in previous work. For the 

standard resolution SFG laser system, vapor phase spectra of the synthesized compounds were 
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taken by adding 1–2 drops of viscous liquid compound to the bottom of a fused silica window, 

which was then sealed with a Viton O-ring to a home-built Teflon cell and placed on a sample 

stage. The vapor was allowed to equilibrate for ~10–45 minutes before spectral acquisition. The 

visible and IR beams were aligned above the sample droplet to probe the vapor/solid (as opposed 

to liquid/solid) interface. Windows containing spin-coated sample were sealed with a Viton O-

ring to the Teflon cell and clamped onto the sample stage prior to measuring condensed phase 

compound spectra. All optical windows were plasma cleaned for 10–15 minutes prior to sample 

exposure. The spectra reported here are an average of 4–7 individual spectra each taken for 2 

minutes each. Spectra were referenced to the ppp-polarized nonresonant SFG response of gold 

deposited on fused silica to account for the incident IR energy distribution, and frequencies were 

calibrated using a polystyrene film.23, 91, 100-101 For the high resolution SFG system, vapor phase 

compound spectra were acquired by placing 1–2 drops of liquid sample at the edge of a shallow 

Teflon beaker that was then capped with a fused silica optical window. The vapor was allowed to 

equilibrate for ~10–45 minutes before spectral data acquisition. For spectra of spin-coated 

compounds, samples were prepared using the same procedure as stated above. All fused silica 

windows were placed in an ozone cleaner (Novascan Technologies) for ~10 minutes, and plasma 

cleaned (PDC-001-HP, Harrick Plasma) for ~15 minutes before depositing sample. The spectra 

reported are an average of 2–3 individual acquisitions each recorded for 5–10 minutes. The data 

points in the high-resolution SFG spectra were binned by 5 points, or by 1.73 cm-1, in Igor Pro 

Version 6.11 (WaveMetrics, Lake Oswego, OR, USA). SFG intensities were normalized to the 

ppp-polarized nonresonant SFG profile of clean z-cut α-quartz, and frequencies were calibrated 

to a polystyrene film. 
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SFG spectra collected in the C=O region were measured using a TOPAS (TOPAS-C, 

Light Conversion) tunable optical parametric amplifier set-up that has been described in detail 

previously.102 A schematic of the SFG setup is provided in the Supporting Information (Figure 

S1). Sample preparation and data collection for obtaining condensed phase C=O spectra were 

carried out under the same protocol as described above for the standard resolution SFG laser 

system used for obtaining C–H spectra. All C=O spectra were measured using calcium fluoride 

optical windows. Spectra were recorded using an automated Python script to measure the IR 

center wavelengths (5500–6300 nm with 695 nm as the spectrograph center wavelength) that 

cover the frequency range of interest (~1590–1820 cm-1). Spectra were normalized to the 

incident IR energy profile by recording a ppp-polarized nonresonant spectrum from a gold film 

deposited on calcium fluoride, and frequencies were calibrated to a polystyrene film measured in 

the C–H region.103 We also note that large nonlinear bulk responses from β-nocaryophyllinic 

acid (6) were observed upon slow crystallization of the sample (see Figure S4.1), which is 

consistent with our earlier reports on molecular chirality in field-collected and synthetic 

atmospheric aerosol particles.104-106 

2.3.2. Phase-Resolved Spectra on Quartz. We employ a recently established83, 107-109 internal 

heterodyne method to obtain phase-resolved SFG spectra of, and thus structural information on, 

the β-caryophyllene oxidation products spin-coated on z-cut α-quartz. Phase-resolved SFG 

responses are obtained directly, and without the need of an additional external local oscillator as 

seen in conventional heterodyne SFG setups.110-112 Briefly, when measuring an SFG spectrum of 

a sample deposited onto z-cut α-quartz, the resulting SFG response contains contributions from 

(a) the bulk quartz and (b) the molecules adsorbed on the quartz. The nonlinear susceptibility 
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contribution from the adsorbed layer contains both real and imaginary components. The intensity 

of the SFG spectrum, I, that is directly measured is given by eqn. 1: 

   𝐼 ∝ 𝜒!,!""
! !

= 𝜒!,!"
! + 𝑖𝜒!,!"

! + 𝑖𝜒!"#$%&
! !

  (1). 

Here, 𝜒!,!""
(!)  is the effective nonlinear susceptibility from the surface, 𝜒!,!"

(!)  is the real part of the 

nonlinear susceptibility from the adlayer, 𝜒!,!"
(!)  is the imaginary component of the nonlinear 

susceptibility, and 𝜒!"#$%&
(!)  is the nonlinear response from the quartz bulk. The  𝜒!"#$%&

(!)  term is 

assumed to be off-resonance, therefore remaining a constant throughout the experiment, and 

𝜒!,!""
(!)  is assumed to contribute much less than 𝜒!"#$%&

(!) . Therefore, Eq. 1 can be reduced down to 

following expressions, Eq. 2 and Eq. 3. 

I=
!
χQuartz
(2) 2

+ 2 !χQuartz
(2) ⋅

!
χS,Im
(2) +

!
χS
(2) 2   (2) 

≈
!
χQuartz
(2) 2

+ 2 !χQuartz
(2) ⋅

!
χS,Im
(2)   (3) 

Thus, as long as the azimuthal angle (φ) of the quartz substrate is known, the sign of 𝜒!,!"
(!)  is 

readily obtained directly. 

A brief experimental description for phase-resolved measurements using quartz follows. 

Synthetic standards 1–4 were selected as representatives within our available molecular suite for 

phase-resolved measurements, and all samples were spin-coated onto z-cut α-quartz (right-

handed, size 12.7 x 12.7 x 5 mm, Conex System Technology) analogous to what is described in 

section 2.3.1.  The incident visible and IR beams were focused onto the top side of the quartz 

piece. Spectra reported herein are an average of 5 individual spectra each acquired for 5 minutes. 

ssp-Polarized spectra of the quartz were obtained at azimuthal angles of φ = 0° and φ = 180°. The 
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individual spectra were normalized to the spectrum of clean α-quartz at the same azimuthal 

angle.  

2.4. Computational Methods. Density functional theory (DFT) calculations were employed to 

aid in spectral interpretation. Similar to our previous work,113-115 geometries for a number of 

different conformers of each oxidation product were optimized by using B3LYP116-118/6-

311G(d,p)119 via the Gaussian ’09 software package located at Yale University.120 Upon 

optimization, the harmonic and anharmonic frequencies were calculated in addition to the dipole 

and polarizability derivatives with respect to each normal mode. We identified Fermi resonances 

through a previously described procedure114, 121-122 that employs a multi-mode Fermi resonance 

Hamiltonian with a frequency cutoff of 10 cm-1. According to this model, if an overtone or 

combination band is within 10 cm-1 of a fundamental vibrational mode, the modes couple and 

result in a shift in frequencies and intensities dependent on the coupling constant. Additional 

frequency cutoffs were tested, however, a 10 cm-1 cutoff appeared to result in the closest spectral 

matches across all of the oxidation products. 

3. Results and Discussion. 

3.1. Comparison of SFG Spectra of β-Caryophyllene-Derived SOM and Oxidation 

Products: C–H Stretches. First, we compare the polarization-resolved SFG spectra we recorded 

in the C-H stretching region for the β-caryophyllene oxidation products and the β-caryophyllene-

derived SOM surfaces in contact with fused silica (Figure 2). The ssp-polarized SFG spectrum of 

β-caryophyllene-derived SOM contains two distinct peaks around 2943 cm-1 and 2860 cm-1. 

Comparison to the ssp-polarized spectra of the oxidation products reveals that all compound 

spectra also display these two peaks at approximately 2940 ± 5 cm-1 and 2860 ± 5 cm-1. An 

additional peak centered between 2902 and 2912 cm-1, which is not present in the SOM 
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spectrum, is observed in the spectra of β-caryophyllene, β-nocaryophyllone aldehyde (2), β-

nocaryophyllonic acid (4), and both diacid compounds 5 and 6. The spectra of β-

nocaryophyllone aldehyde (2) and β-nocaryophyllinic acid (6) also contain a 2963 cm-1 peak not 

observed in the other spectra. In contrast to the other compounds, the ssp-polarized SFG spectra 

of β-caryophyllene aldehyde (1) and β-caryophyllonic acid (3) contain only two prominent peaks 

near 2943 cm-1 and 2860 cm-1, though β-caryophyllonic acid (3) shows a small peak around 2902 

cm-1. The ppp-polarized SFG spectrum of β-caryophyllene-derived SOM contains one distinct 

peak centered at 2947 cm-1, while the ppp-polarized SFG spectra of compounds 2 and 6 contain 

an additional prominent peak around 2964 cm-1. The ppp-polarized spectra of compounds 1, 3, 4, 

and 5 as well as β-caryophyllene, however, also contain one identifiable peak, though the spectra 

of β-caryophyllene and compound 4 contain a possible shoulder near 2920 cm-1. As in the ppp-

polarized SFG spectrum of β-caryophyllene-derived SOM, one prominent peak centered at 2947 

cm-1 is observed in the ppp-polarized SFG spectra of compounds 1 and 3.  

The ssp- and ppp-polarized SFG spectra in the C-H stretching region show a best match 

for β-caryophyllene aldehyde (1), as it most closely resembles the ssp- and ppp-polarized SFG 

spectra of the β-caryophyllene-derived SOM. β-Caryophyllonic acid (3) is an additional close 

spectral match. As discussed earlier, we recently found that β-caryophyllene aldehyde (1) 

exhibits the highest surface activity in aqueous droplets within the synthesized suite of β-

caryophyllene oxidation products, with β-caryophyllonic acid (3) as the second most surface 

active compound in the series.31 While surface-specific measurements of aqueous media are not 

directly comparable to those in organic SOM, it may be speculated, based on our SFG results, 

that compounds 1 and 3 exhibit a higher propensity to populate the surface of SOM than the 

other compounds studied. 
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3.2. Comparison of SFG Spectra of β-Caryophyllene-Derived SOM and Oxidation 

Products: Carbonyl Stretches. Applying our spectral analysis in the C=O stretching region, 

albeit on calcium fluoride (given its transparency in this infrared region), we find (Figure 3) the 

following: The SFG spectrum of the β-caryophyllene-derived SOM is remarkably simple, as it 

contains only one broad peak centered at ~1730 cm-1. Few spectral differences are observed in 

the oxidation product spectra compared to that of the β-caryophyllene-derived SOM, with the 

exception of a slight mismatch between the spectral shape and center peak frequency in the SOM 

and compound 4 spectra in the C=O region. Additionally, the SFG spectrum of diacid compound 

6 contains a possible shoulder around 1690 cm-1, which is in contrast to the other spectra. These 

spectral differences suggest that compounds 4 and 6 may not populate the surface of β-

caryophyllene-derived SOM, lending further support to our conclusions from the interfacial 

tension measurements and the ssp- and ppp-polarized SFG spectra we collected in the C-H 

stretching region (vide supra).  

The SFG spectra of compounds 1, 2, 3, and 5 all contain a broad peak centered near 1730 

cm-1, which matches closely to the SFG spectrum of β-caryophyllene-derived SOM. The absence 

of prominent spectral differences in the C=O region suggests the insensitivity of this region for 

identifying carbonyl groups on secondary organic material derived from β-caryophyllene with 

chemical specify. Yet, this same insensitivity offers the opportunity to test generically for the 

presence of carbonyl groups at the interface by SFG spectroscopy. While the C=O data alone 

cannot help to distinguish which oxidation products may populate the surface of the SOM, the 

C–H spectra reveal more notable spectral variances in the oxidation products compared to the 

SOM.  
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A thorough analysis of spectral assignments in the C=O region that is based on 

comparison to carbonyl standards is forthcoming. β-Caryophyllene was also measured as a 

control and showed no C=O signal by SFG, as expected. We note that the oxidation products 

gave negligible signal in the ppp polarization combination in the C=O region. Taken together, 

then, the C–H and C=O data together reveal that the spectrum of β-caryophyllene aldehyde (1), 

as well as that of β-caryophyllonic acid (3), spectrally resemble the β-caryophyllene-derived 

SOM surface to a largest degree out of the suite of compounds studied herein. 

3.3. Analysis of Phase-Resolved Spectra and Intensity Spectra Using DFT Calculations. 

Accounting for Fermi resonances as determined by our DFT calculations, we obtain similar 

mode assignments for the dominant peaks in the experimental SFG spectra of the compounds 

studied here (Table 1). These assignments resemble those of α-pinene, a molecule that has some 

similar structural motifs (germinal methyl groups on a four-membered ring) to the compounds 

studied here.122-123 Specifically, by SFG and DFT, it was found that a majority of the peak 

intensity in the SFG spectrum of α-pinene was due to contributions of the methylene group 

within the four-membered ring, which also exhibited the longest vibrational decoherence 

lifetimes.98 There are likely some lower intensity vibrational modes present in the spectrum, but 

this general assignment holds for the compounds studied here for the dominant peaks.  

The phase-resolved SFG spectra are rather similar across oxidation products 1–4, 

therefore we include a representative ssp-polarized phase-resolved SFG spectrum of β-

caryophyllene aldehyde (1) on α-quartz at an azimuthal angle of 0° in Figure 4A. The 

interference (difference) SFG spectrum shows a positive peak at 2950–2960 cm-1, a negative 

peak from 2910–2940 cm-1, and a small negative peak near 2850–2880 cm-1. Based on the 

vibrational mode assignments and the azimuthal angle of quartz, we identify the sign of 𝜒!,!"
(!) , 
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and therefore deduce the orientation of four-membered ring on β-caryophyllene aldehyde (1) 

(and by extension that of the other oxidation products) at the quartz surface (please see 

Supporting Information section S.5.4). Our analysis indicates that the negative interference peak 

indicates that the CH3 groups on the cyclobutane ring face away from the surface, just like its 

methylene group. 

In addition to an “up” versus “down” determination of the discussed stretches on the 

cyclobutane ring given by the phase-resolved SFG results, a hybrid experimental/DFT method 

previously published for simulating SFG spectra and carrying out conformational analysis114, 121 

was used to determine the molecular orientation that gives the best matched SFG spectrum 

(Figure 4B) to the high resolution C–H spectrum of compound 1 spin-coated on fused silica. 

With this information in mind, the probable orientation of β-caryophyllene aldehyde (1), and by 

extension, the remaining oxidation products studied, is given in Figure 4C. This orientation is 

reasonable for a somewhat amphiphilic molecule as it enables hydrogen bonding of the 

oxygenated groups to the Si–OH groups on the quartz surface. We were unable to obtain phase-

resolved spectra within the C=O stretching region; however, the negligible ppp-polarized signal 

intensities suggest that the C=O functional groups within the molecule are aligned nearly 

perpendicular to the surface, resulting in strong ssp-polarized signal intensities. Note that 

polarization intensity ratio analyses94 using the ssp- and ppp-polarized C–H spectra in Figure 2 

were unsuccessful due to minimal ppp signal for the isolated 2860 cm-1 CH3-symmetric (ring) 

stretch (see Figure S3.1 in the Supporting Information). Altogether, the orientation analysis of 

complex molecules on a model surface enabled here by phase-resolved SFG measurements 

opens the possibility to carry out such analyses on the surfaces of synthetic and field-derived 

SOM. 
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Atmospheric Implications and Conclusions. This work integrates organic synthesis, aerosol 

synthesis and collection, DFT calculations, and SFG spectroscopy to search for the presence of 

sesquiterpene-derived oxidation products, specifically those derived from β-caryophyllene, on 

the surfaces of synthetic β-caryophyllene-derived SOM. Polarization-resolved SFG spectra of β-

caryophyllene aldehyde (1), along with β-caryophyllonic acid (3), most closely match those of 

the β-caryophyllene-derived SOM, both in the C–H and the C=O stretching regions, but 

especially the former. These two compounds also appear to be the most surface active out of the 

series based on our previously reported dynamic surface tension measurements, as they lead to 

the largest depressions of interfacial tension in aqueous droplets.124 Although the present study 

cannot unequivocally identify the oxidation products on the β-caryophyllene-derived SOM 

surface, β-caryophyllene aldehyde (1) and β-caryophyllonic acid (3) have already been 

positively identified in several non-surface-specific ambient field SOM55, 58 and laboratory β-

caryophyllene ozonolysis56-57, 125 studies, though an unambiguous compositional analysis on the 

SOM examined herein is forthcoming. Nevertheless, our current and recent studies124 provide 

concrete lines of evidence supporting that SOM surfaces may be disproportionately populated by 

a minority subset of compounds that exhibit amphiphilic or surfactant-like properties.  

We caution that mismatches between the spectra of the other compounds and that of the 

SOM may be due to a lack of surface activity of these molecules and therefore a propensity to sit 

in the bulk of the particles. Although mismatches presumably could be due to surface oscillator 

orientation changes within the SOM, we do not expect diffusion that may cause molecular 

orientation changes within the β-caryophyllene-derived particles to be likely at the ambient 

laboratory relative humidity (RH) conditions (~40% RH) used in this study.126 Additionally, 

orientation analysis by phase-resolved SFG spectroscopy reveals a “pincer-like” configuration of 
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the β-caryophyllene oxidation products, albeit on a model quartz surface, that somewhat 

resembles the orientation of double-tailed surfactants at the surfaces biological systems. This 

configuration orients the cyclobutane moiety away from the surface, enabling hydrogen bonding 

of the terminal oxygenated functional groups to the quartz substrate. Though quartz serves as a 

distant model system for an actual aerosol particle surface, an analogous orientation at a particle 

surface may be promoted by the presence of water, inorganic salts, highly oxidized molecules, or 

any other plausible constituents that could induce polarity, charge density, or hydrogen bonding 

capabilities at the particle surface. Moreover, the “pincer-like” configuration adopted by the β-

caryophyllene oxidation products suggests that the less polar moiety of a surface-localized 

oxidation product, such as those studied here, may be the first site-of-contact for a gas-phase 

molecule approaching an aerosol particle. Yet, similar investigations of additional SOM 

constituents are needed in order to fully realize the implications of understanding interfacial 

structure and orientation on the heterogeneous chemistry leading to particle growth, cloud 

activation, and other aerosol processes in the atmosphere. 

The observed close spectral matches between β-caryophyllene-derived SOM surfaces and 

β-caryophyllene aldehyde (1) and β-caryophyllonic acid (3) presented herein, and the record 

high surface tension depression described previously5 for these same oxidation products open the 

possibility for revealing an intrinsically chemical origin for cloud activation. Indeed, the 

considerable surface activity points to a high likelihood that these molecules may occupy the 

surfaces of SOA particles formed from β-caryophyllene oxidation in the atmosphere. Taken 

together, the discussed interfacial tension and SFG results also suggest that the terpene-derived 

surfactant pool at SOA particle surfaces may be far less chemically complex than that present in 

the particle bulk. Such findings on the structure and orientation of terpene-derived oxidation 
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products and their corresponding SOM at interfaces may improve our understanding of the 

drivers of heterogeneous processes at SOM surfaces containing such species, and the influence 

they have on estimated cloud activation potentials.  

Supporting Information. Schematic of NU Solstice/TOPAS laser setup; IR and Raman spectra 

of synthesized oxidation products; supplementary C–H and C=O SFG spectra; Nonlinear bulk 

responses from β-nocaryophyllinic acid upon crystallization; Supplementary data for phase-

resolved SFG experiments; Details of SOM collection. 
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Table 1. General Vibrational Mode Assignment for Oxidation Products of β-Caryophyllene 

with Largest Signal Intensities as Calculated by Fermi Resonance-Corrected DFT 

Scaled Vibrational Frequency [cm-1] Vibrational Mode 

~2940 CH2-symmetric (ring) 

~2860 CH3-symmetric (ring) 
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Figure Captions. 

Figure 1. β-Caryophyllene-derived oxidation products synthesized and analyzed in this work. 

Figure 2. High-resolution ssp- and ppp-polarized SFG C–H spectra of synthetic β-

caryophyllene-derived SOM pressed against fused silica (black trace) compared to β-

caryophyllene and synthesized β-caryophyllene oxidation products (1–6) spin-coated onto fused 

silica. All maximum SFG intensities have been normalized to 1 and offset for clarity. 

Figure 3. Standard resolution ssp-polarized SFG C=O spectra of synthetic β-caryophyllene-

derived SOM on calcium fluoride (black trace) compared to β-caryophyllene and synthesized β-

caryophyllene oxidation products (1–6) spin-coated onto calcium fluoride. All maximum SFG 

intensities have been normalized to 1 and offset for clarity. 

Figure 4. A) Phase-resolved ssp-polarized SFG spectrum of β-caryophyllene aldehyde (1) on α-

quartz with quartz oriented at φ = 0°; B) Best matched SFG simulation (purple trace) overlaid to 

experimental high resolution spectrum (black trace) of compound 1 (spin-coated on fused silica); 

C) Proposed orientation of β-caryophyllene aldehyde (1) on the α-quartz surface based on phase-

resolved data and comparison of calculated vs. experimental SFG spectra (tilt and twist angles of 

the assigned Z-axis with respect to surface normal are 70° and 110°, respectively) 
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Figures.  
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Figure 3. 
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Figure 4. 
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