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Abstract: 

 Polarizabilities and London dispersion forces are important to many chemical processes. Leading 

terms in these forces are often modeled using polarizabilities and Cn (n=6, 8, 9, 10 …) dispersion 

coefficients. Force fields for classical atomistic simulations can be constructed using atom-in-material 

dispersion coefficients and polarizabilities. This article addresses the key question of how to efficiently 

assign these parameters to constituent atoms in a material so that properties of the whole material are 

better reproduced. We develop a new set of scaling laws and computational algorithms (called MCLF) to 

do this in an accurate and computationally efficient manner across diverse material types. We introduce a 

conduction limit upper bound and m-scaling to describe the different behaviors of surface and buried 

atoms. We validate MCLF by comparing results to high-level benchmarks for isolated neutral and charged 

atoms, diverse diatomic molecules, various polyatomic molecules (e.g., polyacenes, fullerenes, and small 

organic and inorganic molecules), and dense solids (including metallic, covalent, and ionic). MCLF 

provides the non-directionally screened polarizabilities required to construct force fields, the directionally-

screened static polarizability tensor components and eigenvalues, and environmentally screened C6 

coefficients. Overall, MCLF has improved accuracy and lower computational cost than the TS-SCS 

method. For TS-SCS, we compared charge partitioning methods and show DDEC6 partitioning yields 

more accurate results than Hirshfeld partitioning. MCLF also gives approximations for C8, C9, and C10 

dispersion coefficients and Quantum Drude Oscillator parameters. For sufficiently large systems, our 

method’s required computational time and memory scale linearly with increasing system size. This is a 

huge improvement over the cubic computational time of direct matrix inversion. As demonstrations, we 

study an ice crystal containing >250,000 atoms in the unit cell and the HIV reverse transcriptase enzyme 

complexed with an inhibiter molecule. This method should find widespread applications to parameterize 

classical force fields and DFT+dispersion methods. 
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1. Introduction 

When combined with large-scale density functional theory calculations, the DDEC method has 

been shown to be suitable for assigning atom-centered point charges for flexible molecular mechanics 

force-field design.1-6 The assignment of C6 coefficients and atomic polarizabilities is another active area 

of research in force field design.3, 7-10 Polarization effects are especially important for simulating materials 

containing ions.11-18 When considered alongside the importance of accurate theoretical methods to study 

van der Waals interactions at the nanoscale,19 it is clear that a crucial feature of new methods to compute 

these important quantities is the ability to scale to large system sizes in reasonable computational time. 

In this article, we develop new scaling laws and an associated method to compute polarizabilities 

and dispersion coefficients for atoms-in-materials (AIMs). These new scaling laws and computational 

method give good results for isolated atoms, diatomic molecules, polyatomic molecules, nanostructured 

materials, solids, and other materials. This new method is abbreviated MCLF according to the authors’ 

last name initials (where the C is both for Chen and Cole). We performed tests on isolated neutral and 

charged atoms, small molecules, fullerenes, polyatomic molecules, solids, and a large biomolecule with 

MCLF. The results were compared with experimental data, high level CCSD calculations, time-dependent 

DFT (TD-DFT) calculations, or published force-field parameters. 

As discussed in several recent reviews and perspectives, the dispersion interaction is a long-range, 

non-local interaction caused by fluctuating multipoles between atoms in materials.20-24 It is especially 

important in (i) condensed phases including liquids, supercritical fluids, solids, and colloids, (ii) 

nanostructure binding such as the graphene layers forming graphite, and (iii) the formation of noble gas 

dimers. The dispersion interaction is closely related to AIM polarizabilities. The dispersion energy can be 

described by an expansion series. The leading term is inversely proportional to R6, where R is the distance 

between two atoms. The coefficient of this term is called the C6 dispersion coefficient, and this term 

quantifies fluctuating dipole-dipole interactions between two atoms. The intermolecular C6 coefficient is 

given by the sum of all interatomic contributions 
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where M1 and M2 refer to the first and the second molecules. Higher-order terms represent different 

interactions.25 For example, the eighth-order (C8) term describes the fluctuating dipole-quadrupole 

interaction between two atoms. The ninth-order (C9) term describes the fluctuating dipole-dipole-dipole 

interaction between three atoms. The tenth-order (C10) term describes the fluctuating quadrupole-

quadrupole and dipole-octupole interaction between two atoms.  

Methods for computing polarizabilities and dispersion coefficients can be divided into two broad 

classes: (A) quantum chemistry methods that explicitly compute the system response to an electric field 

(e.g., time-dependent DFT (TD-DFT), CCSD perturbation response theory, etc.) and (B) AIM models. 

Class A methods can be highly accurate for computing polarizabilities and dispersion coefficients of a 

whole molecule, but they do not provide AIM properties. Therefore, class A methods cannot be regarded 

as more accurate versions of class B methods. Parameterizing a molecular mechanics force-field requires 

an AIM (i.e., class B) model. Our goal here is not merely to develop a computationally cheaper method 

than TD-DFT or CCSD perturbation response theory to compute accurate system polarizabilities and 

dispersion coefficients, but rather to exceed the capabilities of both of those methods by providing accurate 

AIM properties for force-field parameterization. 
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 There are several existing frameworks for calculating AIM polarizabilities and/or dispersion 

coefficients. Applequist26 introduced a formalism that represents the molecular polarizability tensor in 

terms of AIM polarizabilities via the dipole interaction tensor. Thole27 refined this formalism by replacing 

atomic point dipoles with shape functions to avoid infinite interaction energies between adjacent atoms. 

Applequist’s and Thole’s methods use empirical atomic polarizability fitting to reproduce observed 

polarizabilities of small molecules.26, 27 Mayer et al. added charge-charge and dipole-charge interaction 

terms to calculate more accurate polarizabilities of conducting materials.28, 29 Grimme et al. presented the 

D3 geometry-based method to calculate C6, C8, and C9 dispersion coefficients and dispersion energies, 

but this method does not yield polarizabilities.9 The exchange-dipole model (XDM) is an orbital-

dependent approach that yields AIM dipole, quadrupole, and octupole polarizabilities and C6, C8, and C10 

dispersion coefficients.30-34 Several density-dependent XDM variants have been formulated.35, 36 In 2009, 

Tkatchenko and Scheffler introduced the TS method for isotropic AIM polarizabilities and C6 

coefficients.10 Both the XDM  and TS methods yielded isotropic AIM polarizabilities rather than 

molecular dipole tensors.30-33, 35, 36 In both the XDM and TS methods, the AIM unscreened polarizability 

is scaled as 
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where “ref” refers to the reference value for an isolated neutral atom of the same chemical element, “AIM” 

refers to the partitioned atom-in-material value, and <r3> refers to the r-cubed radial moment. Both the 

XDM and TS methods originally used Hirshfeld37 partitioning to compute the 
3 AIMr   values.10, 31 

 In 2012, Tkatchenko et al. introduced self-consistent screening (TS-SCS) via the dipole interaction 

tensor to yield the molecular polarizability tensor and screened C6 coefficients.38 The TS-SCS dipole 

interaction tensor used a quantum harmonic oscillator (QHO) model similar to that used by Mayer but 

extended over imaginary frequencies and omitting charge-dipole and charge-charge terms.28, 29, 38  That 

same article also introduced a multibody dispersion (MBD38) energy model based on a coupled fluctuating 

dipole model (CFDM39). The TS-SCS screened static polarizability and characteristic frequency for each 

atom are fed into the CFDM model to obtain the MBD energy.38 The TS-SCS approach has advantages 

of yielding a molecular polarizability tensor and AIM screened polarizabilities and AIM screened C6 

coefficients using only the system’s electron density distribution as input.38 

The TS-SCS method has several key limitations and flaws. Two key assumptions of the TS-SCS 

method are: (i) for a specific chemical element, the unscreened atomic polarizability is proportional to the 

atom’s <r3> moment, and (ii) for a specific chemical element, the unscreened C6 coefficient is proportional 

to the atom’s polarizability squared.10, 38 However, in their work these hypotheses were not directly 

tested.10, 38 Later, Gould tested these two assumptions and found them inaccurate for describing isolated 

neutral atoms placed in a confinement potential.40 Hirshfeld partitioning was used in the TS-SCS 

method10, 38 to compute the 3 AIMr  . Because Hirshfeld partitioning uses isolated neutral atoms as 

references,37 the Hirshfeld method typically severely underestimates NAC magnitudes.41-44 The TS-SCS 

method assumes a constant unscreened polarizability-to-<r3> ratio and constant characteristic frequency 

(wp) for all charge states of a chemical element,38 but these assumptions are not realistic. Due to these 

assumptions, the TS and TS-SCS methods are inaccurate for systems with charged atoms.45-48 Bucko et 

al. showed the TS and TS-SCS methods severely overestimate polarizabilities for dense solids.48 The TS-

SCS method has also not been optimized to work with conducting materials, and we show in Section 6 
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below the TS and TS-SCS methods sometimes predict erroneous polarizabilities even greater than for a 

perfect conductor. As discussed in Sections 4 and 6 below, the TS-SCS method also overestimates 

directional alignment of fluctuating dipoles at large interatomic distances. We also show the TS-SCS 

method sometimes gives asymmetric AIM polarizability tensors and unphysically negative AIM 

polarizabilities. Finally, the TS-SCS method is computationally expensive with required computational 

time scaling approximately cubically with increasing number of atoms in the unit cell. 

 Several research groups developed improvements to the TS-SCS method. Ambrosetti et al. 

introduced range separation to avoid double counting the long-range interactions in TS-SCS followed by 

MBD (aka MBD@rsSCS).49 MBD@rsSCS improves the accuracy of describing directional alignments 

of fluctuating dipoles at large interatomic distances.49 Bucko et al. used Iterative Hirshfeld (IH42) 

partitioning in place of Hirshfeld partitioning to compute 3 AIMr  .46, 48 While this was an improvement, 

it did not address several problems mentioned above. For example, the TS-SCS(IH) method still 

unrealistically assumed the unscreened polarizability-to-<r3> ratio is the same for various charge states of 

a chemical element.46, 48  This assumption was removed in the subsequent Fractionally Ionic (FI) method.45 

However, the FI approach requires separate reference polarizabilities and C6 dispersion coefficients for 

all charge states of a chemical element.45 This is extremely problematic, because some anions that exist 

in condensed materials (e.g., O-2) have unbound electrons in isolation.50 Although methods to compute 

charge-compensated reference ion densities have been developed,44, 46, 50-55 those methods do not presently 

extend to computing charge-compensated polarizabilities and C6 coefficients of ions. Thus, several 

problems with the TS-SCS approach have not been satisfactorily resolved in the prior literature. 

 In Gould et al.’s  FI method, reference free atom polarizabilities were computed for various whole 

numbers of electrons and interpolated to find fractionally charged free atom reference polarizabilities.45 

This yields different polarizability-to-<r3> ratios for different charge states of the same chemical 

element.45 Due to the instability of highly charged anions, the -1 states of halogens were the only anions 

that Gould et al. computed self-consistently.45 For other anions, Gould et al. resorted to using DFT orbitals 

from the neutral atoms to build non-self-consistent anions for polarizability and C6 calculations,56 but this 

severely underestimates the diffuseness of anions (i.e., underestimates their polarizabilities and C6 

coefficients). For example, O- is more diffuse with a larger polarizability and C6 than F-, but Gould et al.56 

assigned the absurdly low =5.40 (C6=19.1) to O- compared to =15.0 (C6=73.5) for F-. This makes the 

FI method problematic for materials containing highly charged anions. Because FI was not included in 

VASP version 6b that we currently have access to, we did not perform FI calculations for comparison in 

this work. 

In this article, we develop a new approach that resolves these issues. Our method uses DDEC652, 

57-59 partitioning to provide accurate NACs, atomic volumes, and radial moments as inputs. Our method 

has new scaling laws for the unscreened atomic polarizabilities, characteristic frequency (wp), and C6 

dispersion coefficients. The different scaling behaviors of surface and buried atoms are included via m-

scaling. Our approach accurately handles the variability in polarizability-to-<r3> moment ratio for charged 

surface atoms while only requiring reference atomic polarizabilities, reference C6 coefficients, and 

reference radial moments for isolated neutral atoms. It uses a new self-consistent screening procedure to 

compute screened polarizability tensors and C6 coefficients. Our approach separates non-directional 

screening from directional screening of the dipole interaction tensor. This allows a conduction limit upper 

bound to be applied between non-directional and directional screening to ensure buried atoms do not have 
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a screened polarizability above the conduction limit. Our method yields three different types of dipole 

polarizabilities: (a) induced static polarizabilities corresponding to a uniform applied external electric 

field, (b) isotropic screened polarizabilities suitable as input into polarizable force-fields, and (c) 

fluctuating polarizabilities that are used to compute C6 dispersion coefficients via the Casimir-Polder 

integral. When computing C6 dispersion coefficients, we use multi-body screening to taper off the dipole 

directional alignment at large interatomic distances. To achieve a linearly scaling computational cost with 

increasing system size, the self-consistent screening is applied incrementally using an algorithm that 

avoids large matrix inversion. Richardson extrapolation provides high numeric precision. Through 

Quantum Drude Oscillator (QDO) parameterization, our method also yields higher-order polarizabilities 

(e.g., quadrupolar, octupolar, etc.) and higher-order dispersion coefficients (e.g., C8, C9, C10, etc.) for 

AIMs. Other important improvements include: improved damping radii, proportional partitioning of off-

diagonal polarizability components to avoid negative AIM polarizabilities, iterative update of the spherical 

Gaussian dipole width, and AIM polarizabilities are symmetric tensors. 

Our method was designed to satisfy the following criteria: 

1) The method should require only the system’s electron and spin density distributions as 

input; 

2) The method should work for materials with 0, 1, 2, or 3 periodic boundary conditions; 

3) The method should give accurate results for charged atoms in materials while only 

requiring reference polarizabilities and reference C6 coefficients for neutral free atoms; 

4) The method should give accurate results for diverse materials types: isolated atoms; small 

and large molecules; nanostructured materials; ionic, covalent, and metallic solids; etc.; 

5) The method should give accurate results for both surface and buried atoms; 

6) The method should yield both static polarizability tensors and polarizabilities suitable for 

constructing molecular mechanics force-fields; 

7) The method should accurately describe both short- and long-range ordering of dipole 

polarizabilities and C6 coefficients; 

8) The method should have less than approximately 10% average error on C6 coefficients and 

dipole polarizabilities for the benchmark sets studied here; 

9) The method should include estimates for higher-order AIM polarizabilities (e.g., 

quadrupolar, octupolar, etc.) and dispersion coefficients (e.g., C8, C9, C10, etc.); 

10) The method should have low computational cost for both small and large systems.  

 There are two main applications for this MCLF method. First, the polarizabilities and dispersion 

coefficients can be used to partially parameterize molecular mechanics force-fields. In addition to 

polarizabilities and C6 dispersion coefficients, those force-fields would also need to include net atomic 

charges (NACs), flexibility parameters (e.g., bond, angle, and torsion terms), exchange-repulsion 

parameters, (optionally) charge penetration parameters, and optionally other parameters. Second, the 

dispersion coefficients can be used to partially parameterize DFT+dispersion methods.21 In addition to the 

C6 dispersion coefficients, an accurate DFT+dispersion method should also include higher-order 

dispersion (e.g., C8, C9, and/or C10 terms) or multi-body dispersion (MBD) combined with an accurate 

damping function.20, 21 (Partially analogous to the rsSCS@MBD method,49 range separation would be 

required to avoid double counting dispersion interactions when combining a MCLF variant with a MBD 
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Hamiltonian.) Because density functional theory (DFT) and molecular mechanics are widely used in 

computational chemistry, our new method can have widespread applications. 

 The remainder of this article is organized as follows. Section 2 contains the background 

information. Section 3 contains the new isolated atom scaling law developed for MCLF. Section 4 

describes the theory of the MCLF method. Section 5 describes the computational algorithm and timing 

results. Section 6 contains calculation results of C6 coefficients and polarizabilities and comparisons to 

benchmark data. Section 7 is the conclusions. 

2. Background Information 

2.1 Benchmarking Methods 

Experimental data and high-level quantum chemistry calculations were used as references in this 

work. Section 3.1 below describes reference polarizabilities and dispersion coefficients (C6, C8, and C10) 

for the isolated atoms. For diatomic molecules in Section 6.1, we computed static polarizability tensors 

using CCSD calculations combined with the “polar” keyword in Gaussian0960. As explained in Section 

6.2 below, we set the reference static polarizability for dense solids to the lesser of the Clausius-Mossotti 

relation value and the conduction limit upper bound based on the experimental crystal structure geometry 

and dielectric constant. 

For the small molecules in Section 6.3, reference static polarizabilities were obtained from 

published experiments. Experimental isotropic polarizabilities were extracted from dielectric constant or 

refractive index measurements having approximately 0.5% or less error.61 Refractive index can be 

measured by passing a light ray through a gas-phase sample.62 The polarizability ( )   of the sample at 

frequency  can then be calculated using 
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where η is the refractive index, μ is the dipole moment magnitude, T is absolute temperature,    is the 

volume per molecule, and kB is Boltzmann’s constant.61 Static or low-frequency dielectric constants   

were obtained by measuring the ratio of the capacitance of a set of electrodes with the sample material in-

between to the capacitance of the same electrodes with a vacuum in-between.63 The polarizability of a 

gas-phase sample can then be calculated using the Clausius-Mossotti relation:64  
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 Reference C6 coefficients for the atom/molecule pairs (Section 6.4) were taken from the 

experimentally extracted dipole oscillator strength distribution (DOSD) data of Meath and co-workers65, 

66 as tabulated in the supporting information of Bucko et al.46 

 Time-dependent DFT (TD-DFT) and time-dependent Hartree-Fock (TD-HF) can be used to 

compute benchmark polarizabilities and dispersion coefficients. The Casimir-Polder integral is used to 

calculate C6 coefficients from polarizabilities at imaginary frequencies (imfreqs).67  For polyacenes 

(Section 6.5), reference C6 coefficients and isotropic static polarizabilities are from the TD-DFT 

calculations of Marques et al.68 For selected polyacenes, static polarizability tensor components were 

available as reference from Jiemchooroj et al.’s TD-DFT calculations.69 Jiemchooroj et al. found their 

TD-DFT results were similar to TD-HF, experimental (where available), and CCSD (where available) 

results. For fullerenes (Section 6.5), the reference C6 coefficients and isotropic static polarizabilities are 
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from the TD-HF calculations of Marques et al.68 Marques et al. also obtained similar results using TD-

DFT.68 

2.2 Notation 

 A system may have either 0, 1, 2, or 3 periodic boundary conditions. In periodic materials, the 

term ‘image’ refers to a translated image of the reference unit cell. Each image is designated by translation 

integers  1 2 3L ,L ,L  that quantify the unit cell translation along the lattice vectors. The reference unit cell 

is the image designated by    1 2 3L ,L ,L 0,0,0 . L   along a periodic direction. L 0  along a 

non-periodic direction. Similar to the notation previously used in the bond order article,58 a capital letter 

(A, B, …) designates an atom in the reference unit cell and a lowercase letter (a, b, …) designates an 

image atom. For example, b=(B,L1,L2,L3) denotes a translated image of atom B.  

 Let 
BR  represent the nuclear position of atom B in the reference unit cell. Then, the nuclear 

position of a translated image is 

  (1) (2) (3)

b B 1 2 3R R L v L v L v     (5) 

where (1)v , (2)v , and (3)v  are the lattice vectors. The distance between the nuclear position of atom A and 

the translated image of atom B is 

  
AB,L

Ab b Ad r R R    (6) 

Cartesian components ( = x, y, z) of the vector from atom A’s nuclear position to image b’s nuclear 

position are represented by 

  
AB,L

b Ar R R    (7) 

 A stockholder partitioning method assigns a set of atomic electron densities   A Ar  in 

proportion to atomic weighting factors   A Aw r    

         A A A Ar r w r W r   (8) 

so that all sum to the total electron density 

     A A

A,L

r r    (9) 

     A A

A,L

W r w r  (10) 

where summation over A, L means summation over all atoms in the material. The number of electrons NA 

and net atomic charge (qA) assigned to atom A are 

    3

A A A A A AN r d r q     (11) 

where A  is the atomic number for atom A. As discussed in Section 2.4 below, different ways of defining 

  A Aw r  produce different stockholder methods. 

  Ar  is the vector from the image of atom A’s nuclear position to the spatial position r : 

  (1) (2) (3)

A 1 2 3 Ar r L v L v L v R      (12) 

The length of this vector is represented by 

  
A Ar r  (13) 
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The AIM radial moment of order    is 

        3

A A A A Ar r r d r
 
   (14) 

<r2>, <r3>, and <r4> are short-hand for  
2

Ar ,  
3

Ar , and  
4

Ar , respectively.  

 Post-stockholder methods require stockholder AIM properties as inputs (e.g.,   A Ar ,   Ar


)  and return properties such as bond orders, polarizabilities, dispersion coefficients, etc. A full method 

specification indicates both the post-stockholder method and the stockholder method. For example, TS(H) 

represents Tkatchenko-Scheffler unscreened scaling using Hirshfeld partitioning inputs.10 As a second 

example, Manz(DDEC6) and Manz(DDEC3) denote Manz bond orders computed using the DDEC6 and 

DDEC3 partitioning inputs, respectively.58 This notation recognizes that: (a) the same post-stockholder 

method may be combined with different stockholder partitioning methods (e.g., TS-SCS(H), TS-SCS(IH), 

TS-SCS(DDEC6)) and (b) the same stockholder partitioning method may be combined with different 

post-stockholder methods (e.g., TS-SCS(DDEC6) and MCLF(DDEC6)). Because all MCLF results in this 

article used DDEC6 partitioning, herein we use the less precise but shorter term ‘MCLF’ in place of the 

full ‘MCLF(DDEC6)’ designation.  

 Calculating dispersion coefficients involves integrating polarizabilities over imfreqs. This is 

inconvenient in two respects. First, it is easier to deal with real-valued variables rather than imaginary-

valued ones. Second, numeric integration from zero to infinite imaginary frequency is inconvenient, 

because infinity cannot be readily divided into finite intervals for numeric integration. Letting   represent 

an imaginary frequency magnitude, we used the following variable transformation to solve these two 

problems: 

 
Nimfreqs

u
1




,  
Nimfreqs

u 1
u

     (15) 

This conveniently transforms integration limits [0, )   into u = [Nimfreqs,0), which upon changing 

the integrand’s sign gives integration limits u = (0, Nimfreqs]. As shown in Section 5.2 below, this allows 

convenient Rhomberg integration using integration points u = 1, 2, … Nimfreqs. In this article,  u  

denotes the polarizability at the imaginary frequency whose magnitude equals  u . 

2.3 Details of the TS-SCS methodology 

 Figure 1 is a flow diagram of the TS-SCS method. The supporting information of Bucko et al.47 

gave the step-by-step calculation of the self-consistent screening process. Here, we follow the presentation 

of Bucko et al., except using the variable substitution of eqn (15). For atoms A and B, they define a many-

body polarizability matrix P, with its inverse Q having the form  

 AB AB

ABunscreened

A

1
Q      


  (16) 

where α, β designate Cartesian components. Square matrices P and Q have x, y, and z spatial indices for 

every atom to give a total of 3Natoms rows. The last term on the right-hand side is the dipole interaction 

tensor which has the form 
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  (17) 

where summation over L means summation over all periodic translation images (if any).  AB u  is the 

attenuation length for the pair of atoms A and B 

      2 2

AB A Bu u u      (18) 

The spherical Gaussian dipole width is obtained from 

  
 

1/3

A

A

u2
u

3

 
     

  (19) 

and the isotropic dynamical atomic polarizability is 

  
  

unscreened
unscreened

A 2
u

1 u / wp


 

 
  (20)  

 
Figure 1: Flow diagram for TS-SCS method 

In the TS and TS-SCS methods, 

 unscreened TS    (21) 

where TS  is calculated by eq. (2). AIM polarizability tensors are computed using the partial contraction 

    
Natoms

TS SCS AB

A

B 1

u P u





     (22) 

with the static polarizability tensor corresponding to u = Nimfreqs. The screened frequency-dependent 

isotropic polarizability is computed as one third of the trace of the three-by-three polarizability tensor 

obtained by partial contraction of P 
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       
N

TS SCS AB

A A

B 1

1
u trace u 3 P u

3





 

       (23) 

These are fed into the Casimir-Polder integral (eqn (74)) to compute AA

6C . 

2.4 Electron Density Partitioning Methods 

 In Hirshfeld partitioning introduced in 1977, atoms are partitioned to resemble the neutral atom 

references.37 This makes the atoms tend to have lower charge than they should have.41 The iterative 

Hirshfeld partition (IH) keeps updating the reference with the charge state of the atom.42 However, this 

approach leads to the runaway charge problem in some cases.52 As shown in reference 48 and Section 6 

below, using TS or TS-SCS with Hirshfeld or IH partitioning overestimates polarizabilities for dense 

solids.  

 Manz and Sholl presented DDEC1 and 2 atomic population analysis methods in 2010.51 By 

simultaneously optimizing the atomic density distributions to be close to spherical average density and to 

resemble charge-compensated reference ion densities, this method can give chemically meaningful NACs 

and accurate electrostatic potential for some materials, but was later found to give runaway charges in 

other materials. In 2012, Manz and Sholl presented the DDEC3 method that partially fixes the runaway 

charge problem by increasing the optimization landscape curvature via using conditioned reference 

densities and imposing an exponential decay constraint on each atom’s electron density tail.44 

 Manz and Limas presented DDEC6 partitioning in 2016.52, 57 In this method, the runaway charge 

problem is fixed by stop updating the reference ion charge after certain iterative steps. Also, new 

constraints are added to the decay rate of the buried atom tails. The weighted spherical average improves 

the effect of spherical averaging during charge partitioning. Along with the guaranteed convergence in 

seven steps, this method is very accurate, cost efficient and chemically meaningful.52, 57, 59 In 2017, Manz 

published a new method for computing bond orders, which is based on DDEC6.58 

3. New isolated atom scaling laws 

3.1 Reference Data 

The reference polarizabilities (αCCSD) used in this work are our calculated polarizabilities using the 

CCSD method with def2QZVPPDD basis set. (The def2QZVPPDD basis set is defined in the ESI†). We 

tested two different methods: (a) using Gaussian0960 keyword ‘polar’ to compute the molecular static 

polarizability tensor using perturbation response theory and (b) using Gaussian09 keyword ‘field’ to 

manually apply a small constant external electric field E  in order to calculate the molecular static 

polarizability tensor as E   where   is the molecular dipole moment. However, many of the 

manual (i.e., keyword = ‘field’) calculations did not converge and the converged results were not as 

consistent with Gould and Bucko’s data70 as the perturbation response calculations. So we decided to use 

the perturbation response calculations (i.e., keyword = ‘polar’) for all elements except Y. For Y the 

keyword= ‘field’ polarizability was used, because the perturbation response calculation gave an 

unreasonably low polarizability  of 88.98 compared to αGould = 163 while the manually applied field 

polarizability of 158.81 was close to Gould’s value and followed the trend of neighboring elements: αSr, 

CCSD = 204.51 αZr, CCSD = 143.47. 

Figure 2 shows that our calculated polarizabilities are mostly consistent with Gould’s. We used 

CCSD  rather than Gould  as the reference free atom polarizability, because our radial moments come from 
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the same CCSD calculations as used to compute CCSD . For elements using a relativistic effective core 

potential (RECP) in the def2-QZVPPDD basis set, the radial moments of core electrons replaced by the 

RECP are added back in using a reference core density library; thus yielding effective all-electron radial 

moments. Since Gould and Bucko used the aufbau principle for electron configurations of transition metal 

atoms, their calculations do not necessarily correspond to the ground state spin multiplicity for transition 

metal atoms.70 

 CCSD in Gaussian09 does not have the capability of calculating C6 coefficients. Therefore, to 

maximize consistency between the free atom reference radial moments, polarizabilities, and C6 

coefficients, our reference C6 coefficients were calculated as 

 

1.5

ref Gould CCSD
6 6

Gould

C C
 

  
 

  (24) 

Where αGould and Gould

6C  are Gould and Bucko’s values using TD-DFT.56 This C6 rescaling makes ref

6C  

corresponding to CCSD , which corresponds to the computed radial moments. The 3/2 power occurs in eqn 

(24), because   and C6 for a free atom are approximately proportional to the free atom’s effective radius 

to the fourth and sixth powers, respectively (see Table S1 of ESI†).  

  

Figure 2: ln(αCCSD) vs ln(αGould) 

 

The reference α, C6, wp, r moments, and damping radii are listed in the ESI†. This dataset contains 

neutral elements 1–86 except the f-block elements (58–71). The reason for excluding the f-block and 

heavier elements is the def2QZVPPDD basis set we are using does not include these elements. The dataset 

also includes +1 cations of elements 3–7, 11–17, 19–57 and 72–86 and -1 anions of F, Cl, Br, I, and At. 

These ions were also self-consistently calculated by Gould and Bucko56 as well. Gould and Bucko 

included additional anions which were not computed self-consistently, and we omit these because self-

consistent polarizabilities are unavailable.70 The reference wp were calculated from the CCSD 

polarizability and the ref

6C  using71  



12 

 

 6

2

C4
wp

3



  (25) 

The reference C8 and C10 are from Porsev et al.72 and Tao et al.73 and are listed in the ESI†. This 

dataset contains H, Li, Na, K, Rb, Cs, He, Ne, Ar, Kr, Xe, Be, Mg and Ca. 

3.2 Deriving the New Scaling Laws 

 Johnson and Becke assumed that for a given chemical element, the polarizability of atoms in a 

material should be proportional to the <r3> moment of the atom-in-material.34 This assumption was 

subsequently adopted by Tkatchenko and Scheffler when formulating the TS method.10 Of course, this is 

not the same as assuming polarizabilities of isolated atoms across different chemical elements should be 

proportional to their <r3> moments. As pointed out by Gould, the isolated atom polarizabilities are not 

proportional to their <r3> moments.40 Figure 3 is a plot of ln(polarizability) versus ln(<r3>) for the isolated 

atoms. The plot shows a poor correlation with a R2 = 0.7706 value indicating that isolated atom 

polarizability is only weakly correlated to <r3> moment. This motivated us to develop a new polarizability 

scaling law that applies both to isolated atoms and to atoms-in-materials across different chemical 

elements. 

  

Figure 3: ln(αCCSD) versus ln(<r3>)  

 We tested seven models containing electron number and different combinations of the r moments. 

Table 1 lists the R2 values of the 7 models. The coefficients are obtained by least squares fitting of a linear 

combination of the log values of r moments and electron numbers to α, C6, or wp using a Matlab program 

we wrote. For example, cell (2, 2) in Table 1 is the R2 value of 0.6626 obtained by fitting log(<r>) and log 

of electron number to log(αCCSD). The results show that using only one r moment does not yield high R2 

value. Combinations of two or more r moments give higher R2 values, with the <r3> & <r4> model giving 

the best average performance. 

 Table 2 lists parameters for the <r3> & <r4> model. The proposed relations between α, wp, and C6 

and the parameters have the following form: 

 

4 3.3372
2.2833 0.2892

3 3.1657

r
e N

r

  
 

 
  (26) 
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1.6336 3 3.7003

0.3167 4 3.2228

e r
wp

N r

 


 
  (27) 

 
4 3.4516

3.2206 0.2618

6 3 2.6311

r
C e N

r

  


 
  (28) 

 Figure 4, Figure 5, and Figure 6 show strong correlation between the model predicted α, C6, and 

wp and the reference data with R2 values of 0.9549, 0.977, and 0.8494, respectively. 

Table 1: R2 values for  fitted parameters using CCSD r moments 

model αCCSD C6 wp 

N & <r> 0.6626 0.7619 0.3922 

N & <r2> 0.8021 0.8809 0.5489 

N & <r3> 0.8831 0.9414 0.6615 

N & <r4> 0.9242 0.9672 0.7317 

N, <r2> & <r3> 0.9457 0.973 0.8222 

N, <r2> & <r4> 0.9545 0.9772 0.8452 

N, <r3> & <r4> 0.9549 0.977 0.8494 

 

Table 2: Parameter coefficients for the new scaling law 

α C6 wp 

component coefficient component coefficient component coefficient 

constant -2.2833 constant -3.2206 constant 1.6336 

N 0.2892 N 0.2618 N -0.3167 

<r3> -3.1657 <r3> -2.6311 <r3> 3.7003 

<r4> 3.3372 <r4> 3.4516 <r4> -3.2228 

 

 

Figure 4: Model predicted ln(α) vs reference ln(α) 
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Figure 5: Model predicted ln(C6) vs reference ln(C6) 

 

Figure 6: Model predicted ln(wp) vs reference ln(wp) 

 To test the robustness and transferability of the different models, the following tests were 

performed as shown in Table 3. The “PW91 refitted” column are the R2 values obtained by refitting the 

model parameters with r moments from PW91. The “PW91 predicted” column are the R2 values calculated 

using CCSD model parameters from Table 1 but with PW91 r moments instead of CCSD r moments.  

Table 3 shows that the <r3> & <r4> model has the highest R2 in both tests; therefore, this model is the 

most robust and transferable. 

Table 3: R2 values for  parameters using PW91 r moments 

model 
PW91 refitted PW91 predicted 

αCCSD C6 wp αCCSD C6 wp 

N, <r2> & <r3> 0.8785 0.9130 0.7571 0.8127 0.8658 0.6181 

N, <r2> & <r4> 0.8904 0.9176 0.7942 0.8276 0.8706 0.6780 

N, <r3> & <r4> 0.8942 0.9181 0.8159 0.8345 0.8726 0.7104 
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 Hence, the new polarizability scaling law for an isolated atom is 

 

3.1657 3.3372 0.2892
3 ref 4 AIM AIM

unscreened ref

3 AIM 4 ref ref

r r N

r r N

        
        

        
  (29) 

where N is the number of electrons, the superscript “ref” means the value of neutral atom reference, and 

“AIM” means the value for atom-in-material after partitioning. The new wp scaling law for an isolated 

atom is 

 

3.7003 3.2228 0.3167
3 AIM 4 ref ref

unscreened ref

3 ref 4 AIM AIM

r r N
wp wp

r r N

        
      

        
  (30) 

unscreened

6C  for an isolated surface atom is then computed via eqn (25). These scaling laws allow different 

charge states of an atom to be accurately described while using only reference polarizability and wp values 

for a neutral free atom of the same element. For α, the effective power of the effective radius is 4*3.3372 

– 3*3.1657 = 3.8517, which is approximately 4. For wp, the effective power of the effective radius is 

3*3.7003 – 4*3.2228 = -1.7903, which is approximately 4. Scaling laws for non-isolated atoms will be 

addressed in Section 4 below. 

3.3 Higher Order Dispersion Coefficients and Quantum Drude Oscillator Parameters 

In this section, we consider higher-order dispersion coefficients C8, C9, and C10 and their mixing 

rules. The contribution of the three-body C9 term to the dispersion energy is typically less than 10%.9 

Nevertheless, McDaniel et al.74 showed that in order to obtain accurate results from force-field simulations 

for condensed phases, the three-body term (EABC) should be included. Tang et al. showed that the attractive 

potential at well depth for two free atoms is mainly composed of C6, C8, and C10 with contributions of 

roughly 65%, 25%, and 7% respectively.75 The rest comes from higher-order terms. Because the C8, C9, 

and C10 terms have modest contributions, we decided to include them in our model.  

The C8, A coefficient describes the fluctuating-dipole-fluctuating-quadrupole two-body dispersion 

interaction between atoms of the same type. We defined two dimensionless groups for least-squares fitting 

to a obtain model for C8, A:  

  

2
3

1/3
non dir A
6,A 4

A

r
group _1 ln C

r



  
  
  

   

 (31) 
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3

8,A A

non dir 4
6,A

A

rC
group _ 2 ln

C r


  
  
  

   

 (32) 

The reason for using <r3> and <r4> is that these are the same r moments used in models discussed above. 

Since C8,A describes the fluctuating dipole-quadrupole coupling while C6,A describes the fluctuating 

dipole-dipole coupling, there is no reason to believe directional effects on C8,A follow those on C6,A. 

Therefore, our correlations for higher-order dispersion coefficients (i.e., C8, C9, and C10) do not include 

directional coupling. non dir

6,AC   is obtained using the imfreq-dependent non-directionally screened atomic 
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polarizability  non dir

A u  in the Casimir-Polder integral. Linear fitting was performed to obtain the slope 

and intercept for group 2 as a function of group 1. The results were 0.8305 for the slope and 1.7327 for 

the intercept yielding: 

  
 

2 2*0.8305
4

0.83051
1.7327 non dir 3

8,A 6,A 3

r
C e C

r






 
  

 
 

  (33) 

The top panel of Figure 7 shows strong correlation between the model predicted C8,A and the reference 

data72, 73 for selected isolated atoms with MARE of 14.6%. 

The Quantum Drude Oscillator (QDO) model provides a natural framework for describing 

multibody polarizability and dispersion interactions beyond the dipole approximation, including 

quadrupolar, octupolar, and high-order interactions.7, 76, 77 A QDO consists of a negative pseudoparticle 

coupled via a harmonic potential to a pseudonucleus.7, 76, 77 This harmonic coupling produces a Gaussian 

charge distribution.7, 76 In our model, one QDO is centered on each atom in the material. Each QDO is 

completely described by three parameters: (a) an effective mass (mQDO), (b) an effective charge (qQDO), 

and (c) an effective frequency (wpQDO).7, 76 Using literature relations7 applied to our non-directionally 

screened quantities yields 
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     
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The 
9,ABCC  QDO mixing rule7 is similar to that described much earlier by Tang using a Padé 

approximation.71 The bottom panel of Figure 7 shows strong correlation between the model predicted 

C10,A and the reference data72, 73 for selected isolated atoms with MARE of 18.6%. 

 

 
Figure 7: Model predicted C8A and C10A vs reference 

 When constructing a force-field using the MCLF dispersion coefficients, care should be taken not 

to double-count the three-body dipole-dipole-dipole interactions. Specifically, the MCLF directional 
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screening (i.e., screened

6C ) already includes the three-body dipole-dipole-dipole interactions for the 

calculated system. (These were included via the directional dipole interaction tensor which was used in 

turn to compute screened

6C .) For example, if screened

6C  is computed using the MCLF method for a single 

benzene molecule, then the intramolecular dipole-dipole-dipole interactions are already included via the 
screened

6C  coefficient term, but the intermolecular dipole-dipole-dipole interactions are not already included 

and should be added in the force-field using the C9 coefficient term. In this case, the force-field’s C9 three-

body term should be constructed to include atom triplets from two or three molecules, but not from a 

single molecule. 

4. Theory of MCLF Method 

4.1 New Polarizability Component Partition 

 During tests, we noticed TS-SCS sometimes gives negative atomic polarizabilities. For example, 

in the ZrO molecule, the polarizability of oxygen is -0.607 from TS-SCS. This causes subsequent methods 

depending on the TS-SCS method to fail: (a) the C6 coefficient from the Casimir polder integral will be 

unphysical, (b) corresponding vdW radii in the TS-SCS method will be complex (since they depend on 

the cubed root of the polarizability)10, and (c) MBD, rsSCS@MBD, and related methods require non-

negative atomic polarizabilities as input38, 45, 49. In TS-SCS, the partial contraction of P follows the 

assumed form of Applequist et al.26:  

 A AB

B

P P    (43) 

This sometimes yields negative atomic polarizabilities, because the mixed contribution ABP
 (which might 

be negative) between an atom A with small polarizability and an atom B with large polarizability can 

surpass the magnitude of AAP
. In our new method, atoms with larger pre-screened polarizability get a 

proportionally larger piece of the screening mixed polarizability contribution: 
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Eqs. (44), (45), and (46)  correspond to the non-directional, fluctuating, and static polarizabilities, 

respectively.  After this new partition is applied, the oxygen in ZrO has the MCLF polarizability of 6.754. 

Also, Eq. (45) ensures the atom-in-material polarizability 
AP  is a symmetric tensor just like the total 

polarizability tensors78 of all molecules. In contrast, the TS-SCS polarizability tensor for an atom-in-

material is sometimes asymmetric with respect to the spatial coordinates (e.g., the xy and yx components 

are different). As an example, the ESI† contains the TS-SCS and MCLF results files for dibromomethane, 

where the TS-SCS yz and zy polarizability components for the last Br atom were 4.05 and 7.31, 

respectively; the MCLF method gave 7.17 for both components. 

 The symmetric atomic polarizability tensor can be visualized by plotting the ellipsoid78 
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where 
1 , 

2 , and 
3  are its three eigenvalues and 

Iê , 
IIê , and 

IIIê  are the corresponding mutually 

orthogonal eigenvectors. Figure 8 plots atomic polarizability tensors for the carbonyl sulfide molecule. 

All three atoms showed enhanced polarizability along the bond direction. The atom-in-material 

polarizability along a unit direction k̂  is quantified by the projection 
A

ˆ ˆk k . Choosing k̂  parallel to the 

inter-nuclear direction gives the bond polarizability of two bonded atoms:  A B
ˆ ˆk k  .78 Of interest, 

Raman spectrum peak intensities are proportional to the change in projected polarizability as vibration 

occurs.79-81 

 
Figure 8: Illustration of MCLF atom-in-material polarizability tensors for the carbonyl sulfide molecule. 

The sulfur atom had much higher polarizability than the carbon and oxygen atoms. All three atoms showed 

enhanced polarizability along the bond direction. Only the relative sizes and shapes of the ellipsoids were 

drawn to scale. 

4.2 Polarizability upper bound 

 Consider a perfectly conducting plate with thickness d in an external electric field E applied 

perpendicular to its surface. From Gauss’ Law, the two faces perpendicular to E develop surface charge 

densities 02 E     and form a dipole moment 0d*Area 2 Ed*Area     . Its polarizability is 

0p / E 2 d *Area    , which in atomic units ( 04 1   in atomic units) gives  

0p / (4 ) d*Area / (2 )     , also referred to as the polarizability volume since it carries volume units. 

Thus, the polarizability-to-volume ratio of the perfectly conducting plate is 1/(2π) in atomic units. 

 As a second example, consider a sphere of radius R and dielectric constant  placed in a constant 

externally applied electric field E along the z-direction. This sphere will develop a dipole moment of82  

 
sphere 3

0

1
(4 )R E

2

 
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 
 (48) 

Therefore, its polarizability in atomic units is    3R 1 2  , and its polarizability-to-volume ratio is 

       3/ 4 1 2    in atomic units. The solution for a perfect conductor can be obtained by taking 

the  limit     which yields 3/(4) as the polarizability-to-volume ratio for the conducting sphere.  

 In theory, the polarizability caused by distortion of the electron cloud for fixed nuclear positions 

should be less than or equal to that of a perfect conductor. Comparing the above results for the conducting 

plate and conducting sphere shows the polarizability-to-volume ratio of a perfect conductor is shape-

dependent; this is due to directional interactions within the material. To address this issue, we apply a 

conduction limit upper bound during non-directional screening, before any directional screening occurs. 
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Since the surface charge density of the conducting plate is uniform while that of the conducting sphere is 

not, and since stacking plates is space-filling while stacking spheres is not space-filling, the polarizability-

to-volume ratio of the conducting plate (not that of the conducting sphere) is operational for the non-

directional screening. So we defined the polarizability upper bound of atom A as  
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   
  (49) 

where VA is the volume of atom A in the material.  

 During MCLF calculation, if the calculated non-directionally screened polarizability is higher than 

this upper bound, the result will be replaced by the upper bound polarizability. This procedure is carried 

out by a smooth min function 
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  (51) 

where ϒ = 25 because this value provides a smooth curve with less than 0.58% deviation from max(min(a, 

b), 0). If either a or b is ≤ 0, the function is set to return a value of 0. Using a smooth curve, instead of 

simply min(a,b), is required ensure the forces (i.e., energy derivatives with respect to atom displacements) 

are continuous functions. 

4.3 M scaling to describe both surface and buried atoms 

 Section 3.2 above shows the polarizability of an isolated atom scales approximately proportional 

to its effective radius to the 4th power. Brinck et al. showed the polarizability of a polyatomic molecule is 

approximately proportional to its volume divided by an effective electron removal energy.83 As shown in 

Section 4.2, the polarizability of a conducting plate or sphere is proportional to its volume. For non-

conducting fluids, the Clausius-Mossotti relationship describes a polarizability-to-volume ratio that is a 

weak function of the dielectric constant.64 This implies the polarizability-to-volume ratio of a buried atom 

is approximately proportional to its volume. This means the atom-in-material polarizability transitions 

from approximately 4th power to 3rd power dependence on the atom’s effective radius as the atom goes 

from isolated to buried. 

 We define m to quantify how exposed an atom is: 
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where  A Ar  is the electron density of atom A,    A Aw r W r  is the fraction of the total electron density 

 r   at position r   that is assigned to atom A, and 
Ar

 means the spherical average. m equals 1 for an 

isolated atom and goes towards zero when an atom gets more and more buried.  

The modified unscreened scaling law for α now has the form 

 

3.1657 3.3372 0.2892
3 ref 4 AIM AIM

ref

3 AIM 4 ref ref

r r n

r r n

        
        

        
  (54) 

  
(1 m)

unscreened 3 mC r


     (55) 

When m = 1, it becomes the isolated atom scaling law in Section 3. When m = 0, it becomes 

 unscreened 3

m 0
lim C r

    (56) 

 There are two primary justifications for Eq. (56). First, the Clausius-Mossotti relation and 

conduction limit upper bound show the polarizability of a condensed phase (e.g., liquid or solid) is 

approximately proportional to its volume. Here, <r3> is a sort of proxy for the volume of an atom, so the 

sum of <r3> moments for atoms in a material is a sort of proxy for the material’s volume. The Clausius-

Mossotti relation and conduction limit upper bound show the polarizability-to-volume ratio of a material 

is not strongly element-dependent and has modest dependence on the material’s dielectric constant (see 

Eqs. (106)–(107)). Second, in condensed phases electrons undergo chemical potential equilibration that 

transfers some electron density from the least electronegative elements to the most electronegative 

elements. Accordingly, the chemical potential of the equilibrated condensed phase is not as extreme as 

either the most electropositive elements nor the most electronegative elements. For atoms in condensed 

materials, the polarizability to <r3> moment ratios will typically be lower than an isolated alkali metal 

atom (extremely electropositive) on the one hand and higher than an isolated fluorine atom (extremely 

electronegative) on the other hand. The polarizability to <r3> moment ratios of atoms in condensed 

materials thus exhibits a narrower range of values than for isolated atoms. Group 14 elements have 

approximately equal tendency to gain or lose electrons, thereby readily forming both positive and negative 

oxidation states. The isolated atom polarizability to <r3> moment ratios of Group 14 elements are 

approximately independent of the periodic row: C (0.34), Si (0.37), Ge (0.34), Sn (0.32), and Pb (0.31). 

Accordingly, we expect the same constant C in Eq. (56) will work for both light and heavy elements. 

 Tests on the polarizabilities of 28 solids were performed to optimize C. The criteria are that without 

any upper bound imposed, the MRE should be 0 – 10% and after the upper bound is imposed, the MARE 

should be ≤ ~10%. These criteria make sure the scaling law is as accurate as possible without the upper 

bound and the upper bound will not decrease the accuracy. Table 4 shows that C = 0.4 is optimal. This 

value is slightly higher than the polarizability to <r3> moment ratios of isolated Group 14 atoms. 

Table 4: Comparison of the % error in the polarizability of 28 solids as a function of C value. “NU” means 

no upper bound is applied and “U” means the upper bound is applied.  

  C = 0.35 C = 0.4 C = 0.45 C = 0.35 C = 0.4 

  NU NU NU U U 

MRE 1.14% 6.87% 11.91% -12.22% -9.14% 

MARE 26.75% 27.26% 29.09% 13.59% 11.89% 
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 The characteristic frequency wp also has different expressions for isolated and buried atoms. For 

an isolated atom (i.e., m = 1), wp should be proportional to α-1/2 which has been captured by the isolated 

atom scaling law. For a buried atom (i.e., m << 1), the polarizability becomes nearly proportional to 
AIM

3r  and C6 remains proportional to the atom’s effective radius to the sixth power; therefore, wp is less 

sensitive to changes in α when the atom is buried. So the scaling for wp has been modified to:    

 

3.7003 3.2228
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        
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  (57) 

 
AIM

3C r


    (58) 

 
 21 m 4 refwp wp


     (59) 

When m = 1, Eq. (59) reduces to the isolated atom scaling law in Section 3. A complete explanation and 

derivation of Eq. (59) is given in Section S3 of ESI†. Figure 9 shows pseudocode for the input file reading 

and unscreened calculation using m-scaling. 

 

Figure 9: Pseudocode for the input file reading and unscreened calculation using m-scaling.  

4.4 Iterative polarizability screening 

 The non-directional, fluctuating, and static dipole interaction tensors are defined as: 
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The subscripts  and  refer to spatial indices x, y, and z. This enables the non-directional and directional 

components to be separately screened. As described in Section 4.2, the conduction limit upper bound 

applies to the non-directionally screened (not the directionally screened) components. Computing static 

polarizabilities (i.e., system response to constant externally applied electric field) requires directionally 

screened polarizabilities. As discussed in Section 4.6, parameterizing polarizable force fields requires non-

directionally screened polarizabilities. 

  cutoff Abf d  is a smooth cutoff function that smoothly turns off dipole-dipole interactions between 

atoms as the distance between them increases: 

     
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d
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  (63) 

where AB,L

Abd r  is the distance between atom A and the image b in bohr. dcutoff is the dipole interaction 

cutoff length. H is the Heaviside step function. As shown in Fig. S1 of ESI†, this function smoothly 

decreases from ~1 at  Abd 0  to zero when Ab cutoffd d . The power of three in the exponential ensures 

that both the first and second derivatives are continuous at Ab cutoffd d , which is required for frequency 

calculations. The factor of 20 in the exponent provides a balanced cutoff function steepness. Specifically, 

 cutoff Ab cutofff d 0.5d 0.9179   ensuring that all positions within half the cutoff distance are counted at 

nearly full strength. 

 Imagine a parameter 0 1    that continuously turns on a particular screening type (e.g., non-

directional, fluctuating, or static). When 0  , the corresponding screening type is fully off. When 1 

, the corresponding screening type is fully on. Thus, the corresponding screening process can be 

envisioned as transitioning continuously from 0   to 1  . We expect the partially screened system 
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(i.e. 0 1   ) to have a polarizability intermediate between that for 0   and 1  . Since the Gaussian 

width  AB u  depends on the polarizability (eqn  (19)), the MCLF method continuously updates  AB u  

during the screening process. In contrast, the TS-SCS method uses  AB u  corresponding to  0   for 

the entire screening process, which does not allow the Gaussian width to equilibrate during the screening 

process. 

The screening of each tensor is now an iterative process. In each iteration, we compute  

 
j 1 j j jQ D      (64) 

where Δj is the screening increment. Then Pj+1
 is computed as the inverse of Qj+1.  The screening process 

is divided into non-directional and directional screening. Directional screening has two separate parts: 

screening for the static polarizability and screening for the fluctuating polarizabilities. These parts are 

summarized below. 

 Non-directional screening: For non-directional screening, both D and τ are Natoms by Natoms 

matrices. In the first iteration, j = 1 and D is constructed using   
1

unscreened u


  for the respective atoms 

along the diagonal and zeros elsewhere, and σAB(u) is calculated from  unscreened u . τj is defined in eq. 

(60) where σAB(u) is computed using PA,j and PB,j in each iteration j,  
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Dj is the matrix which has   
1

non dir

A, jP u



 of each atom on the diagonal and the rest is zero. The new Dj 

and τj are fed into eq. (64) for the next iteration. The calculation continues until 

 j

j

1   (66)   

On the last iteration,  raw _non dir

A u  is calculated via Eq. (44). 

 Because the polarizability upper bound must is calculated for uniform applied electric field and 

does not include any directional interactions between dipoles, it is applied at the end of non-directional 

screening and before directional screening. For each u value, the polarizability upper bound was applied 

to the raw non-directionally screened polarizability (i.e.,  raw _non dir

A u ) via the following equation to 

generate 
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 (67) 

Note that  

  force field non dir

A A u Nimfreqs     (68) 

 Directional screening for static polarizability: This procedure is only done at zero frequency. For 

directional screening, D and τ (eq. (62)) are 3*Natoms by 3*Natoms matrixes. D is a block diagonal matrix 

which has the inverse polarizability tensor of each atom on the block diagonal and the rest is zero. In the 
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first iteration, D and σAB are obtained using force field

A

 .  Pj undergoes a partitioned partial contraction (eqn 

(46)) to obtain partially screened polarizability tensors for each atom. The isotropic polarizability of each 

atom is 1/3 of the trace of their tensors. From this partially screened polarizability, the associated Gaussian 

screening width (eq. (19)) is obtained and fed into τj. The polarizability tensor of each atom is inversed to 

construct a new D matrix. The new Dj and τj are fed into eq. (64) for the next iteration. The calculation 

continues until Δj sums to 1.  

Directional screening for fluctuating polarizabilities: D and τ (eqn (61)) are 3*Natoms by 

3*Natoms matrixes. D is a block diagonal matrix which has the inverse polarizability tensor of each atom 

on the block diagonal and the rest is zero. In the first iteration, D and  AB u   are calculated using 

 non dir

A u .  Pj undergoes a partitioned partial contraction (eq. (45)) to obtain partially screened 

polarizability tensors for each atom. The isotropic polarizability of each atom is 1/3 of the trace of their 

tensors. From this partially screened polarizability, the associated Gaussian screening width (eq. (19)) is 

obtained and fed into τj. The polarizability tensor of each atom is inversed to construct a new D matrix. 

The new Dj and τj are fed into eq. (64) for the next iteration. The calculation continues until Δj sums to 1. 

On the last iteration,  screened

A u  is calculated via Eqn (45). This procedure is done at multiple frequencies 

and the resulting   screened

A u   are fed into the Casimir-Polder integral to calculate the C6 dispersion 

coefficient of each atom. Note that  

  low _freq screened

A A u Nimfreqs    (69) 

4.5 Multibody screening parameter (MBSP) 

 When a uniform external electric field is applied, the atomic dipoles induced by the field will align 

and atoms will interact with not only their neighbors but also atoms far away. The dispersion force, 

however, is caused by fluctuating dipoles. The fluctuating dipoles of the atoms will align with their 

neighbors but out of sync with atoms far away. The MBSP controls the length scale over which directional 

alignment persists: 

  
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d
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 
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  (70) 

First-order exponential decay (Eq. (70)) is the natural choice for the directional alignment function, 

because if 50% of the directional alignment persists over a distance dhalf, then over a distance 2*dhalf the 

expected persistence of directional alignment will be (50%)*(50%)=25%. As defined in the ESI†, unscreened

damp,Ar  

and 
unscreened

damp,Br  are unscreened damping radii of the atoms-in-material. We optimized MBSP with the C6 of 

the 12 polyacenes and 6 fullerenes, the same set studied in Section 6.5. Table 5 shows the MRE and 

MARE of different MBSP values of which 2.5 is optimal.  
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Table 5: Comparison of the % error in C6 of polyacenes and fullerenes using different MBSP values. 

 

 MBSP  2.0 2.25 2.5 2.75 

MRE 
Polyacenes -7.37% -4.73% -2.38% -0.28% 

Fullerenes 5.16% 6.09% 6.84% 7.45% 

MARE 
Polyacenes 10.76% 9.14% 7.77% 7.01% 

Fullerenes 5.16% 6.09% 6.84% 7.45% 

 

4.6 Flow diagram and explanation for three polarizability types 

 
Figure 10: Flow diagram for MCLF method 

 

 Figure 10 is the flow diagram for MCLF method. This method yields three kinds of polarizabilities: 

αforce-field, αstatic and αlow_freq. αforce-field is the polarizability with no directional ordering of the electric field 

and mainly used in force-field simulations. αstatic is the static polarizability in a constant applied electric 

field. αlow_freq describes the short-range ordering and long-range disordering of the fluctuating dipoles 

present in the dispersion interaction.  

 Because polarizability is a multibody effect, the polarizability of a molecule is not the sum of 

polarizabilities of its isolated constituent atoms. Directional interactions between atoms creates 

components to the molecular polarizability that do not exist for the isolated atoms.26, 27 Directional dipole-
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dipole interactions26, 27 are considered during classical atomistic (e.g., molecular dynamics or Monte 

Carlo) simulations that utilize polarizable force fields.14, 84 To avoid double counting these directional 

dipole-dipole interactions, the force field’s atomic polarizability parameters must be the non-directionally 

screened values.85-88 Many authors proposed direct additive partitioning of the quantum-mechanically 

computed molecular polarizability tensor into constituent atoms.8, 89-94 Because those values already 

incorporate directional dipole-dipole interactions, their use in force fields would result in double counting 

the directional dipole-dipole interactions; therefore, we do not recommend their use as force field 

parameters. Our method provides both the non-directionally screened and directionally screened atomic 

polarizabilities, and the non-directionally screened values should be used as polarizable force-field 

parameters. The directional screening then arises during the course of the classical atomistic simulation. 

5. Computational algorithm and timing results 

5.1 Lists of interacting atom pairs 

 Two separate lists of interacting atom pairs are prepared after the unscreened calculation and 

before the screened calculation. For convenience, we refer to these as the ‘small’ and ‘large’ lists, where 

‘small’ and ‘large’ refer to the interaction cutoff distance. Without loss of generality, the first atom in each 

pair can be considered to reside within the reference unit cell. The second atom is located somewhere 

within the dipole interaction cutoff length of the first atom. Therefore, constructing these lists involves 

two nested loops over atoms: (i) one loop over all atoms in the reference unit cell and (ii) one loop over 

enough images of the reference unit cell to completely enclose a sphere of  dipole interaction cutoff radius 

around every atom in the reference unit cell. Only translation symmetry unique atom pairs need to be 

included in the loops over atom pairs. As explained in the earlier bond order article, an atom image pair 

is translation symmetry unique iff. at least one of the following criteria is satisfied: (i) the index numbers 

of the atoms are different (e.g., atom 210 and atom 1056), (ii) 1L 0 , (iii) 1L 0  and 2L 0 , or (iv) 

1 2L L 0   and 3L 0 .58 

 The small lists all atom pairs having ‘overlapping’ Gaussian dipole model densities as defined by 

the cutoff criterion 

 
 

unscreened Ab
Ab cutoffunscreened
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u Nimfreqs
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  (71) 

This criteria ensures     2

Ab Aberfc exp 0      for any atom pair not included in the list. The value 

4/3

cutoff 5   was chosen such that even if the (partially) screened polarizability is larger than the 

unscreened polarizability by up to a factor of five, then    screened 12

Aberfc erfc 5 1.5 10     and 

    
2

screened 11

Abexp exp 25 1.4 10      . The following information was saved in the small list array for 

each included atom pair: the index numbers of the first and second atoms, the translation integers for the 

second atom, the atomic number of each atom, dAb, the value of the smooth cutoff function, the value of 

the multibody screening function times the smooth cutoff function, and the following six tensor 

components: 1,1 = 3(x)2/dAb
2 - 1, 1,2 =2,1 = 3xy /dAb

2, 1,3 =3,1 = 3xz /dAb
2, 22 = 3(y)2/dAb

2 

- 1, 2,3 =3,2 = 3yz /dAb
2, 3,3 = 3(z)2/dAb

2 - 1. Here, x, y, and z are the Cartesian components 

of 
A bR R . 
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 The large lists all atom pairs (A, B) in the reference unit cell for which atom A (first atom) is 

located a distance less than dipole interaction cutoff length to at least one image of atom B (second atom). 

The self-pair (A, A) is included iff. one of the non-trivially translated images of atom A is located a 

distance less than dipole interaction cutoff length to atom A in the reference unit cell. The number of atom 

pairs in the large list is always ≤ N(N+1)/2, where N is the number of atoms in the unit cell. For example, 

a NaCl crystal containing two atoms in the reference unit cell would contain three pairs in the large list: 

Na-Na, Na-Cl, and Cl-Cl. For each pair (A, B) in the large list, a loop is performed over all atom b images 

located within dipole interaction cutoff length of atom A, and the following sums are accumulated and 

stored: 

  AB Ab

cutoff Ab

L

g f d    (72) 

    AB Ab

cutoff Ab MBS Ab

L

h f d f d    (73) 

Since g   and h   are symmetric with respect to exchange of the spatial indices, only six components need 

to be computed and stored for each. 

 Having separate small and large lists provides the following computational efficiencies. First, non-

directional screening only needs to be performed over the ‘overlapping’ atoms contained in the small list. 

Second, the computationally expensive erfc function only needs to be evaluated for atom pairs in the small 

list. This provides computational savings during directional screening that first loops over all pairs in the 

small list and then over all pairs in the large list. Third, the large list contains pre-computed sums over all 

periodic images of interacting atom pairs. For non-overlapping atoms, this avoids re-computing any sums 

over periodic images at each screening increment and each frequency point.  

 These two lists of interacting atom pairs are used as follows. For each screening increment of each 

frequency point, non-directional screening loops over all atom pairs in the small list to compile the 

necessary dipole-dipole interaction terms. For each screening increment of each frequency point, 

directional screening first loops over all atom pairs in the small list and then over all atom pairs in the 

large list to compile the associated dipole-dipole interaction terms. More details are provided in Section 

5.3 below.  

 Table 6: Effect of dipole interaction cutoff length on the MCLF computed properties of graphene.  

 10 bohr 25 bohr 50 bohr 75  bohr 100 bohr 

C6 37.91 50.33 52.43 52.31 52.31 

static 11.42 18.13 20.15 19.95 19.96 

low_freq 9.75 11.81 12.14 12.12 12.12 

force-field 7.03 7.03 7.03 7.03 7.03 

 Table 6 studies the effect of dipole interaction cutoff length on computed precision. Graphene was 

chosen as a test system, because it has strong long-range dipole-dipole coupling. As shown in Table 6, 

results differed by <1% between 50 and 100 bohr cutoffs. static differed by ~10% between 25 and 50 bohr 

cutoffs. A 10 bohr cutoff was woefully inadequate. For dense materials with large unit cells, doubling the 

dipole interaction cutoff length increases the computational cost by approximately eight-fold. We selected 

dipole interaction cutoff length = 50 bohr as a good compromise between computational cost and 

precision. This value was used for all other results in this article. 
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5.2 Integration over imaginary frequencies 

 The Casimir-Polder integral relates the AB

6C  dispersion coefficient between two subsystems A and 

B to the product of their fluctuating polarizabilities at imfreq   integrated over all imfreqs:67 

 
AB

6 A B
0

3
C (u) (u)d



   
 

  (74) 

As shown in Eq. (74), the integration limits are zero to infinity.  For convenience, we used the substitution 

of variables in eqn (15) to make both integration limits finite. Differentiating eqn (15) yields 

 
2

Nimfreqs
d du

u
    (75) 

which upon substitution into eqn (74) for A=B gives 

 
  

2

Nimfreqs AAA

6 20

u Nimfreqs3
C du

u



 

 (76) 

u=0 corresponds to infinite imfreq. Near infinite imfreq, the polarizability becomes inversely proportional 

to 2  (e.g., eqn (20)).95 At this limit, the integrand in Eq. (76) simplifies to 

 
    

22 2

A

2 2u 0 u 0

cons tan t Nimfreqsu Nimfreqs
lim lim

u u 


   (77) 

Substituting eqn (15) into (77) gives 

 
   

 

2 2

4 2
u 0 u 0

22

cons tan t Nimfreqs cons tan t Nimfreqs
lim lim 0

Nimfreqs Nimfreqs
u 1 1 Nimfreqs u

u u

 
 

   
     

   

 (78) 

Therefore, the u=0 point contributes nothing to the integral. 

 We numerically integrated using Richardson extrapolation (i.e., Romberg integration).96-98 

Dividing the (0,1] interval into 2G segments and performing Romberg integration of order (G, G) yields 

an integration error of the order 2-G(2G+2).96 Normally, Romberg integration of  2G segments corresponds 

to 2G+1 integration points. Since the u=0 point contributes nothing to the integral, this leaves only 

Nimfreqs = 2G nontrivial integration points. The ESI† contains the Romberg integration weights Rhomberg

G,uc  

of these 2G integration points for G = 1 to 5. The integral is computed using the following sum: 

 
 

2
Nimfreqs

AAA R homberg

6 G,u

u 1

Nimfreqs u
C c

u

 
  

 
  (79) 

where  

 
Nimfreqs

R homberg

G,u

u 0

c 1


  (80) 

 Table 7 shows computed AIM C6 coefficients for four materials. The K bcc solid showed a small 

difference (0.3%) in the C6 coefficient between 16 and 32 integration points. All other results were 

virtually identical for 16 and 32 integration points. Moreover, all results for 8 integration points differed 

by <1% from the higher integration points. This shows the results are highly converged for 16 integration 

points, which is the value we chose. 
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 Table 7: Effect of Rhomberg integration order (G) and number of integration points (Nimfreqs=2G) 

on the computed atom-in-material C6 coefficients in atomic units. 

G  3 4 5 

Nimfreqs  8 16 32 

graphene 52.39 52.43 52.43 

K bcc solid 444.29 448.35 447.00 

NaF solid 
11.69 (Na) 

45.13 (F) 

11.69 (Na) 

45.26 (F) 

11.69 (Na) 

45.26 (F) 

C60 29.57 29.67 29.67 

 

 
Figure 11: Pseudocode for computing the screened dispersion coefficients and QDO parameters. 

 Although the mixed 
AB

6C  dispersion coefficients could in principle be computed from the Casimir-

Polder integral using a similar procedure, this would involve many integrations for materials containing 
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thousands of atoms in the unit cell. Therefore, we used the following mixing formula which is consistent 

with both Padé approximation71 and QDO7 models: 

 

   

low _ freq low _ freq AA BB
AB A B 6 6
6 2 2

low _ freq AA low _ freq BB

B 6 A 6

2 C C
C

C C

 


  
 (81) 

In our method, the polarizabilities appearing in Eq. (81) must be 
low _ freq , because these are the 

polarizabilities associated with the dispersion interaction. Of note, the TS and TS-SCS methods use similar 

mixing formula, except the polarizabilities appearing in the mixing formula are 
TS  and 

TS SCS ,10, 38 

because those methods do not yield 
low _ freq . Figure 11 illustrates a pseudocode for computing the 

screened dispersion coefficients and QDO parameters. 

5.3 Avoiding direct inversion of large matrices 

 Direct inversion of large matrices is extremely computationally expensive. Gaussian elimination 

with partial pivoting (GEPP) is a common matrix inversion algorithm that exhibits numerical instability 

for some matrices but is usually stable in practice.99, 100 GEPP, QR factorization, Cholesky and LDL 

decomposition (for positive definite Hermitian matrices), and other common matrix inversion algorithms 

have computational costs scaling proportional to the number of rows (Nrows) cubed.100, 101 The more 

complicated Strassen algorithm has scaling proportional to Nrowslog (7)/log(2)=Nrows2.807....101  

 A direct matrix inversion algorithm would first construct the dipole interaction tensor, then invert 

it to get the multibody polarizability matrix, and then contract the multibody polarizability matrix to get 

the atom-in-material polarizability tensors.26 Consider a material containing 250000 atoms in the unit cell. 

For this material, the dipole interaction tensor has 750000 rows and an equal number of columns. The 

computational cost of the matrix inversion step would be on the order of Nrows3= (750000)3 = ~4×1017 

floating point operations. This corresponds to ~117 computational hours on a teraflop computer. Since the 

dipole interaction tensor would need to be inverted at each imfreq integration point, a TS-SCS or MCLF 

calculation on this material would take thousands of computational hours when using direct matrix 

inversion. 

 To address this problem, we developed a new computational algorithm that converges to the same 

solution without requiring any matrix inversions. This inverse-free algorithm is conceptually related to 

the iterative Schulz method for matrix inversion. In the Schulz method, an estimate P(i-1) for the inverse of 

matrix Q is iteratively refined by102 

 (i) (i 1) (i 1) (i 1)P 2P P QP      (82) 

where index i is the Schulz iteration. The key difference between our inverse-free algorithm and the Schulz 

matrix inversion method is that we exploit the particular structures of the dipole interaction tensor and 

multi-body polarizability matrix contraction to enable us to work with Natom scalars for the non-

directional screening and Natom 3×3 matrices for the directional screening instead of working with 

Natom×Natom and 3Natom×3Natom matrices for matrix inversions using GEPP or Schulz method. This 

allows us to reduce the computational cost from cubic scaling (for GEPP or Schulz method using 

conventional matrix multiplications) to linear in Natoms as the unit cell becomes sufficiently large. 

 Substituting j 1 j j jQ D     from Eq. (64) into (82) with i=0 gives the first Schulz iteration as 

  (1) (0) (0) (0)

j 1 j 1 j 1 j j j j 1P 2P P D P        (83) 
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where  

  (0)

j 1 jP inv D   (84) 

is the initial estimate for  j 1inv Q  . The subscript j+1 is the screening iteration and should not be confused 

with the Schulz iteration (superscript i). Substituting Eq. (84) into (83) and simplifying yields 

       (1)

j 1 j j j j jP inv D inv D inv D      (85) 

Note that: (1) 
j  includes non-zero blocks only for interacting atom pairs (i.e., atom pairs in the ‘small’ 

and/or ‘large’ lists), (2) Dj and  jinv D  are block-diagonal matrices, (3) the non-zero blocks of  jinv D  

are the partially screened atomic polarizabilities  A

j , and (4) the multi-body polarizability matrix P is 

only needed in its contracted form as partially screened atomic polarizabilities (Eqs. (44) and (45)). Using 

these to simplify Eq. (85) yields 

     
A

A A A A,b b b b,A Ain
j 1 j j j j j j j jA B

b in in



  
            

   
  (86) 

 Three different types of atomic polarizabilities are computed using this inverse-free algorithm. For 

non-directional screening to compute  non dir

A u , Eq. (86) becomes 

    
 

   
       

unscreened

AA A A A,b b

j 1 j j j non dir, j junscreened unscreened
b small_ list A B

2 u
u u u u u

u u
 



  
              

  (87) 

 A,b

non dir, j u  is from Eq. (60), where the Gaussian width  AB, j u   is updated at the start of screening 

iteration j+1 using  A

j u   and  B

j u  into Eqs. (18)–(19). The process starts with  

    A unscreened

j 1 Au u   (88) 

and ends with  non dir

A u  as the value on the left-side of Eq. (87) after the last screening increment 

finishes.  

 For directional screening to compute  screened

A u , Eq. (86) become 

           A,b A,b A,b A A,b b

j MBSP cutoff j j jM1 f f u u u u       (89) 

      A A,B B

j j jM2 u h u u     (90) 

 

   
 

   
 

 

   
 

non dir

AA A T

j 1 j non dir non dir
b small _ list A B

non dir

A T

non dir non dir
B large _ list A B

u
u u M1 M1

u u

u
M2 M2

u u



  




 


  
           

  
        





 (91) 

where M1 and M2 are square matrices with 3 rows and  
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 
            

2

A,b Ab Ab
j 3 2 3

AB, j AB, jAb Ab AB, j AB, j

d d1 2 1 2
u erfc exp

u ud d u 3 u

                                      

 (92) 

     A A

j ju trace u / 3    (93) 

In Eq. (92), the Gaussian width  AB, j u   is updated at the start of screening iteration j+1 using  A

j u   

and  B

j u  from Eq. (93) into Eqs. (18)–(19). The process starts with  

  

 

 

 

non dir

A

A non dir

j 1 A

non dir

A

u 0 0

u 0 u 0

0 0 u









 
 

   
  

 (94) 

and ends with  screened

A u  as one-third the trace of the tensor on the left-side of Eq. (91) after the last 

screening increment finishes. 

 For directional screening to compute static

A , Eq. (86) become 

           A,b A,b A A,b b

j cutoff j j jM1 f u u u u       (95) 

      A A,B B

j j jM2 u g u u     (96) 
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 
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forcefield
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forcefield forcefield
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M1 M1

M2 M2







  
      

   

  
   

   





 (97) 

where  A,b

j u  and  A

j u  are defined analogous to Eqs. (92)–(93) except based on A

j  from Eq. (97). 

The process starts using Eq. (94) and ends with static

A  as the tensor on the left-side of Eq. (97) after the 

last screening increment finishes. Summing static

A  over all atoms in the unit cell gives the unit cell (or 

molecular) polarizability tensor. Taking one-third the trace of the atomic or molecular static polarizability 

tensors yields the corresponding isotropic static polarizabilities. 

 We now derive the order of the error residual. Since 
(1)

j 1P   is a calculated estimate of  j 1inv Q  , we 

begin by defining the error residual as 

 (1)

j 1residual I Q P    (98) 

where  is any desired matrix norm and I is the identity matrix. Multiplying Eq. (85) by j 1 j j jQ D     

gives 

     (1)

j 1 j 1 j j j j j jQ P I inv D inv D        (99) 

Multiplying each side of Eq. (99) by -1, adding I, and taking the norm gives 

          
2

(1)

j 1 j j j j j j j j j j jI Q P inv D inv D inv D inv D           (100) 
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The right-most side follows from the theorem that norm(scalar×matrix)=scalar×norm(matrix).103 For 

convenience, we used fixed size screening increments: 
j   . Eq. (100) shows that at each screening 

iteration, the difference between this inverse-free algorithm and direct matrix inversion will be on the 

order of 2, where  is the screening increment. Since the total number of screening iterations is 1/, the 

total difference between this inverse-free algorithm and direct matrix inversion will be on the order of .  

 By taking the limit 0  the inverse-free and direct matrix inversion algorithms converge to the 

identical solution. We used Richardson extrapolation98, 104 to evaluate the limit . As explained in 

the prior paragraph, without Richardson extrapolation the overall error using screening increment  is of 

Order(). Each Richardson extrapolation step removes a successive power of  in the error. After K 

Richardson extrapolation steps (RES), the remaining error will thus be of Order(). We extrapolated 

using screening increments of 1, 2-1, 2-2, …2-K. Because the screening increments sum to 1 for a full 

screening calculation (Eq. (66)), this extrapolation corresponds to extrapolating from results computed 

with 1, 2, 22, …2K screening points. The final =2-K undergoes K RES leading to a residual error of Order(
 K K 1

2
 

). Note that 7 RES are approximately twice as expensive as 6 RES and four times as expensive as 

5 RES. 

 Richardson extrapolation was applied to the following atomic polarizabilities: 

 non-directional screening:    
K 1

non dir extrap non dir,

A (K 1), A

1

u c u


  

 



     (101) 

 frequency-dependent directional screening:    
K 1

screened extrap screened,

A (K 1), A

1

u c u




 



     (102) 

 static induced directional screening: 
K 1

static extrap static,

A (K 1), A

1

c




 



     (103) 

As explained above, forcefield,

A

 ,  screened,

A u , static,

A

  are the values computed using 
12
 screening points 

(i.e., screening increment of 
12 

). The coefficients 
 
extrap

K 1 ,
c

 
 for K=1 to 7 RES are given in the ESI†. Note 

that 

  low _freq screened

A u Nimfreqs    (104) 

  forcefield non dir

A u Nimfreqs    (105) 

Figure 12, Figure 13, and Figure 14 illustrate pseudocodes for Richardson extrapolation with inverse-free 

algorithms used to compute   non dir

A u ,   screened

A u , and  static

A , respectively. The array indices in 

these figures correspond to what is actually needed in the computer program: (1) the atom number appears 

as an array index rather than as a subscript, (2) the screening increment does not appear as an array index 

because temporary results for each screening increment are computed in-place, (3) the imfreq integration 

point  u appears as an array index only where needed, etc.  

  

0



35 

 

 

Figure 12: Pseudo-code for non-directional screening to compute   non dir

A u  and the force-field 

polarizabilities  forcefield

A  using inverse-free algorithm and Richardson extrapolation 
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Figure 13: Pseudocode for imfreq directional screening to compute   screened

A u  and  low freq

A

  using 

inverse-free algorithm and Richardson extrapolation 
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Figure 14: Pseudocode for directional static screening to compute the static polarizability tensors  static

A  

using inverse-free algorithm and Richardson extrapolation 
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 Table 8 lists computed results for graphene. After testing, we settled on five RES for the force-

field polarizabilities (i.e., non-directional screening), five RES for the low frequency fluctuating 

polarizabilities used to compute C6 coefficients, and seven RES for the static polarizabilities. The static 

polarizability requires more RES than the force-field and low frequency fluctuating polarizabilities, 

because of the longer range dipole-dipole interactions contributing to the static polarizability. The inverse-

free and GEPP algorithms converged to the same results in the limit 0 . The inverse-free algorithm 

is preferable, because it exhibits better computational cost scaling than GEPP. 

Table 8: Effect of number of Richardson extrapolations steps (RES) applied to the MCLF screening 

increments. Graphene was chosen as a test system, because it has strong long-range dipole-dipole 

coupling.  

 (5,5)a RES (6,6)a RES (7,7)a RES (5,7)a RES (7,7)a GEPPb 

static 20.10 20.14 20.15 20.15 20.15 

low_freq 12.14 12.14 12.14 12.14 12.14 

C6 52.43 52.43 52.43 52.43 52.43 

force-field 7.03 7.03 7.03 7.03 7.03 

relative 

computational 

cost 

17 34 68 20c cubic 

a The first number in parentheses refers to the number of RES used for non-directional screening and 

short-range directional screening to compute  non dir

A u   and  screened

A u , respectively. The second 

number in parentheses is the number of RES used for long-range directional screening to compute static

A

. b Explicit large matrix construction and inversion using Gaussian elimination with partial pivoting.  c 

Nominal computational cost for (5,7) algorithm includes 16 frequency points at 5 RES plus the static 

polarizability at 7 RES, which gives 16(1) + 1(4) = 20 compared to 17 for the (5,5) algorithm. 

 Both the required computational time and memory of this inverse-free algorithm are proportional 

to the number of atoms in the unit cell times the number of separately cataloged pairwise interactions per 

atom. Case 1: For an isolated molecule much smaller than the dipole interaction cutoff radius, increasing 

the number of atoms in the molecule also increases the number of pairwise interactions per atom. In this 

case, the required computational time and memory scale proportional to the number of atoms squared. 

Case 2: Quadratic scaling of computational time and memory is also observed for periodic materials 

having small unit cells. As the number of atoms in the unit cell increases, the number of separately 

cataloged pairwise interactions per atom also increases. Case 3: When the unit cell is large enough to 

completely enclose a sphere of dipole interaction cutoff radius, the number of separately cataloged 

pairwise interactions per atom saturates. Making the unit cell even larger does not increase the number of 

separately cataloged pairwise interactions per atom. In this case, both the required computational time and 

memory scale linearly with increasing system size. 

 Figure 15 plots required computational time and random access memory (RAM) to perform MCLF 

analysis on ice crystals containing different numbers of atoms in the periodic unit cell. These calculations 

described the same hexagonal ice crystal structure, but with different sized unit cells. MCLF results from 

these different sized unit cells are numerically equivalent. Electron densities for the unit cells containing 

12 to 8748 atoms were taken from the bond order article.58 Herein, we also constructed periodic unit cells 
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containing 20736 to 263424 atoms from the computed DDEC6 atom-in-material properties. As shown in 

Figure 15, the required computational time and memory for MCLF analysis scaled linearly with increasing 

number of atoms in the unit cell when the unit cell was large enough to enclose a sphere of dipole 

interaction cutoff radius.  

 
Figure 15: Plot of required computational time and random access memory (RAM) to perform MCLF 

analysis on ice crystals containing different numbers of atoms in the periodic unit cell: 12, 96, 324, 768, 

1500, 2592, 4116, 6144, 8748, 20736, 32928, 49152, 69984, 111132, 165888, and 263424. For 12 atoms, 

the required RAM was <1 MB. Beyond a certain system size (governed by the dipole interaction cutoff 

radius), the required computational time and memory scale linearly with increasing system size. TS-SCS 

results for 12 to 2592 atoms per unit cell are also shown for comparison. Because of direct matrix 

inversion, the TS-SCS method has nearly cubic scaling computational cost, which makes it infeasible for 

large unit cells. Each calculation was run in serial mode on a single core in a Xeon E5-2680v3 multi-core 

processor in the Comet cluster at SDSC. 

 For comparison, Figure 15 also shows the time and memory (RAM) required to perform TS-SCS 

analysis on the ice crystals containing 12 to 2592 atoms in the unit cell. To maximize computational 

efficiency, TS-SCS calculations were performed using small and large list arrays of interacting atom pairs, 

analogous to those described above for MCLF except collecting the tensor components appropriate for 

TS-SCS. Same as MCLF, TS-SCS calculations used Rhomberg integration with 16 imfreq points. A hard 

50 bohr dipole interaction cutoff was used for TS-SCS compared to the smooth cutoff (Eq. (63)) used for 

MCLF. Because TS-SCS analysis used explicit large matrix construction and inversion,38 TS-SCS 

analysis required more computational time and memory than MCLF analysis. Because of direct matrix 
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inversion using GEPP, the TS-SCS method had nearly cubic scaling computational cost with increasing 

number of atoms in the unit cell. We attempted TS-SCS calculations on ice crystals containing ≥4116 

atoms per unit cell, but these did not complete within one week. It is currently unclear whether it is future 

possible to create an iterative-based TS-SCS algorithm with linear scaling computational cost. 

6. Results and Discussion 

Unless otherwise labeled, the following results are calculated using DDEC6 partitioning. The DDEC6 

results were calculated using the Chargemol program.52, 57-59 

6.1 Diatomic molecules 

 We first tested our model’s sensitivity to the choice of exchange-correlation functional and basis 

set used to compute the system’s electron and spin density distributions. A set of 57 diatomic molecules 

with elements across the periodic table were chosen as the test set. Three sets of electron density 

distributions of the test set were generated using Gaussian09 with CCSD/def2QZVPPDD, Gaussian09 

with B3LYP/def2QZVPPDD, and VASP with PBE/planewave. The Chargemol program was then used 

to DDEC6 partition the electron density followed by MCLF analysis to obtain the static polarizabilities 

and C6 coefficients. Figure 16 shows polarizability and C6 computed using CCSD/def2QZVPPDD 

densities versus polarizability and C6 computed using the PBE/planewave and B3LYP/def2QZVPPDD 

densities. This figure shows our model did not show strong dependence on the choice of exchange-

correlation functional or basis set. Hence, MCLF gives similar results using electron density distributions 

from different proficient quantum chemistry levels of theory. 

 For the same 57 diatomic molecules, the isotropic static polarizability and the three eigenvalues of 

the static polarizability tensor from TS-SCS and MCLF were compared to the reference data. The 

reference is CCSD calculations with def2QZVPPDD basis set. System-specific polarizabilities for CCSD 

reference, TS-SCS, and MCLF are listed in the ESI†. Table 9 summarizes the error statistics. The TS-SCS 

method gave large errors independent of the charge partitioning method used (Hirshfeld or DDEC6). On 

average, MCLF was four times more accurate than TS-SCS for these materials. 

 Figure 17 is the absolute % error of isotropic polarizability from TS-SCS vs. NAC of the atoms in 

the molecules. We only use the positive NAC to represent the whole molecule because for neutral diatomic 

molecules, the positive and negative charged atom have the same absolute value of the charge. From the 

plot, we can see TS-SCS gives much larger errors for highly charged molecules than neutral and low-

charge molecules. This confirms that TS model does not work for charged atoms and MCLF fixed the 

problem with highly charged systems. 
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Figure 16: Comparison of MCLF α and C6 of 57 diatomic molecules computed using electron and spin 

density distributions from CCSD, PBE and B3LYP calculations with large basis sets. 

 

Table 9: Comparison of the % error in the static polarizability of 57 diatomic molecules. The isotropic 

static polarizability equals one-third of the trace of the static polarizability tensor. 

 

  
TS-SCS(H) TS-SCS(DDEC6) MCLF 

isotropic eigenvalues isotropic eigenvalues isotropic eigenvalues 

MRE 34.43% 36.08% 27.83% 29.36% -7.78% -7.96% 

MARE 41.06% 44.92% 36.56% 40.23% 10.44% 13.67% 

Range -21 – 437% -35 – 484% -24 – 440% -35 – 491% -34 – 17% -40 – 52% 

 

 



42 

 

 
Figure 17: The absolute % error of isotropic static polarizabilities from TS-SCS/H, TS-SCS/DDEC6 and 

MCLF versus DDEC6 NAC magnitude of 57 diatomic molecules. 

6.2 Dense periodic solids 

 Static polarizabilities were computed for 28 dense periodic solids including electric insulators, 

semi-conductors, and conductors. The geometries are from Inorganic Crystal Structure Database 

(ICSD).105 We generated electron densities in VASP106 using the PBE107 functional. See Gabaldon-Limas 

and Manz59 for a description of the VASP computational settings used. 

Since the polarizability should not exceed the conduction limit, the reference static polarizability 

was set equal to the smaller value of the Clausius-Mosotti relation (eq. (106)) and conduction limit (eq. 

(107)): 

 
volume 3 1

* *
atom 4 2


 

 
  (106) 

 
volume 1

*
atom 2

 


  (107) 

where volume is obtained from the Inorganic Crystal Structure Database (ICSD108) crystal structure and 

   is the experimental static dielectric constant. Results from different partitioning methods and screening 

methods were compared this reference data. ICSD codes and computed results for individual materials are 

listed in the ESI†.  

 Table 10 summarizes the error statistics. Comparing the MRE and MARE of the screened and 

unscreened polarizabilities with the same partitioning method (e.g., TS/H vs. TS-SCS/H), screening 

increases the accuracy for each partitioning method. Because all of the unscreened methods gave >100% 

error for some materials, screening is an essential step in polarizability calculations. Comparing TS-SCS 

with different partitioning methods: IH is more accurate than H, and DDEC6 is more accurate than IH.  

The tendency of TS-SCS/H and TS-SCS/IH to overestimate polarizabilities for solids was previously 

reported by Bucko et al.48 with improved results reported using the fractionally ionic approach of Gould 

et al.45 (Those studies included some of the same materials as here.45, 48) Using DDEC6 partitioning, 

MCLF gives more accurate results than TS-SCS with MARE of 12% and 24%, respectively. 
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Table 10: Comparison of the % error in the computed static polarizabilities of 28 solids using different 

methods. H indicates Hirshfeld partitioning. IH indicates iterative Hirshfeld partitioning. 

 

 unscreened methods 

  
TS 

(H) 

TS 

(IH) 

TS 

(DDEC6) 

unscreened 

MCLF 
  

  

MRE 297% 141% 86% 36% 

MARE 297% 152% 93% 55% 

Range 11–714% -53–537% -28–379% -36–180% 

 screened methods 

 TS-SCS 

(H) 

TS-SCS 

(IH) 

TS-SCS 

(DDEC6) 
MCLF 

 

MRE 46% 16% 15% -9% 

MARE 47% 30% 24% 12% 

Range -10–76% -53–50% -31–50% -37–14% 

 

6.3 Polarizabilities of Small Molecules 

 A set of 22 molecules were selected from Thole27 and Applequist et al.26 that have experimentally 

measured isotropic static polarizability. Six of these also have experimentally measured polarizability 

tensor eigenvalues.26, 27 The geometries are from geometry optimization we performed in Gaussian09 with 

B3LYP functional and def2QZVPPDD basis set. Table 11 and Table 12 show that both TS-SCS and 

MCLF performed well for this test set. 

Table 11: Comparison of the isotropic static polarizability in atomic units of 22 molecules  
 

  
reference 

TS-SCS 

(DDEC6) 
MCLF  reference 

TS-SCS 

(DDEC6) 
MCLF 

C2H2 22.472 23.540 27.855 CH3CN 30.233 33.818 34.111 

C2H4 28.694 28.886 29.127 (CH3)2CO 43.122 47.864 43.785 

H2O 9.785 9.168 35.429 CH3OCH3 35.361 38.102 36.270 

C6H6 69.868 70.437 75.646 CH2ClCN 41.165 46.973 19.532 

CF4 19.705 21.928 23.071 CH2OCH2 29.900 32.003 53.566 

CFCl3 63.907 57.929 61.873 C2H5OH 34.282 37.546 9.845 

NH3 16.129 13.862 57.983 H2CO 16.533 17.979 18.624 

CO2 19.644 17.884 49.071 HCONH2 27.938 28.328 30.208 

CS2 59.385 51.175 30.739 CH2Br2 60.735 57.041 14.368 

C3H8 42.829 47.435 42.233 SF6 44.134 35.627 37.522 

C2H6 30.233 32.626 29.131 SO2 26.993 25.164 26.650 

MRE           1.04% 2.92% 

MARE           8.74% 7.49% 
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Table 12: Comparison of the static polarizability tensor eigenvalues in atomic units of 6 molecules. For 

each molecule, the three eigenvalues were sorted smallest to largest. 

 reference TS-SCS(DDEC6) MCLF 

 eigen 1 eigen 2 eigen 3 eigen 1 eigen 2 eigen 3 eigen 1 eigen 2 eigen 3 

C2H5OH 30.368 33.607 38.870 30.219 34.512 47.909 30.702 33.116 42.469 

CF4 19.705 19.705 19.705 21.928 21.928 21.928 23.071 23.071 23.071 

C2H6 27.668 27.668 35.361 28.210 28.210 41.457 27.495 27.496 32.403 

CH3CN 25.981 25.981 38.735 23.995 23.996 53.463 22.735 22.735 56.862 

(CH3)2CO 31.380 48.959 49.027 35.472 49.630 58.489 33.686 48.247 49.422 

CH3OCH3 29.625 33.337 43.054 31.823 31.989 50.495 31.998 32.168 44.643 

MRE   8.75%  4.85% 

MARE   10.95%  9.40% 

6.4 C6 Coefficients of Atom/Molecule Pairs 

This test involves C6 coefficients for pairs of atoms and molecules studied by Tkatchenko and 

Scheffler.10 The geometries are from geometry optimization we performed in Gaussian 09 with B3LYP 

functional and def2QZVPPDD basis set.  

Figure 18 compares the TS-SCS(DDEC6) and MCLF C6 coefficients to the reference values 

derived from the dipole oscillator strength distribution (DOSD) data of Meath and co-workers65, 66 as 

tabulated in the supporting information of Bucko et al.46 As shown in Figure 18, TS-SCS predicts too 

large C6 values for the larger molecules, while MCLF does not have this problem. For these 49 

atoms/molecules, MCLF gave 1.15% MRE and 5.79% MARE while TS-SCS(DDEC6) gave 8.09% MRE 

and 10.29% MARE. 

The same reference data source was also used for the 1225 pairs formed from these 49 

atoms/molecules. Figure 19 plots MCLF versus reference C6 values for these pairs. These MCLF C6, AB 

values were computed from the C6, A values using the mixing rule in Eq. (81). MCLF yielded highly 

accurate results with 0.80% MRE and 4.45% MARE. Results for individual materials in this data set are 

listed in the ESI†. 

 
Figure 18: TS-SCS(DDEC6) and MCLF predicted C6 in atomic units of 49 atoms/molecules compared to 

experimentally-derived reference C6 values. TS-SCS(DDEC6) predicts too large C6 values for the larger 

molecules. 
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Figure 19: MCLF predicted C6 coefficients in atomic units for 1225 pairs formed from 49 atoms/molecules 

compared to the experimentally-derived reference C6 coefficients. 

6.5 Polyacenes and fullerenes 

Polycyclic aromatic compounds, such as polyacenes, and fullerenes, have strong directional 

alignment of dipoles in the ring planes. A set of 12 polyacenes and a set of 6 fullerenes were selected as 

test sets. We generated electron densities in VASP106 using the PBE107 functional. See Gabaldon-Limas 

and Manz59 for a description of the VASP computational settings used. 

 
Figure 20: Structures of 12 polyacenes 
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The polyacene geometries are from our VASP geometry optimization using the PBE functional. 

Polyacene reference static polarizabilities and C6 coefficients are from Marques et al.68 The polyacene 

structures are shown in Figure 20. Computed results are summarized in Table 13. The MRE and MARE 

show MCLF was significantly more accurate than TS-SCS for describing both the static polarizabilities 

and the C6 coefficients of these materials. 

Table 13: Comparison of the α and C6 in atomic units for 12 polyacenes  

 

static polarizability, α C6 dispersion coefficient 

reference 
TS-SCS 

(DDEC6) 
MCLF reference 

TS-SCS 

(DDEC6) 
MCLF 

C6H6 70.5 71.864 79.100 1730 2018.50 1999.34 

C10H8 123 122.500 133.052 4790 5641.58 5298.26 

C14H10 189 181.475 197.738 9920 11866.54 10477.15 

C18H12 264 247.574 271.016 17500 21191.56 17595.20 

C22H14 353 319.109 350.487 28100 33936.60 26638.47 

C26H16 454 395.191 434.779 42100 50407.20 37626.79 

C30H16 484 402.755 441.127 47800 55318.93 46503.57 

C40H16 612 523.270 590.151 82500 95014.04 81069.67 

C40H20 799 570.497 626.426 97000 105993.06 83472.16 

C48H20 770 665.562 745.500 122000 147407.13 118431.09 

C50H24 1196 748.553 822.271 168000 175992.78 131300.24 

C54H18 840 707.953 806.519 150000 173114.17 147130.26 

MRE  -13.15% -4.14%  16.40% -2.38% 

MARE  13.47% 8.75%  16.40% 7.77% 

Table 14 summarizes calculation results for fullerenes. The fullerene geometries are from Saidi 

and Norman.109 Tao et al. studied this set of fullerenes in 2016 and obtained excellent results using a 

hollow sphere model with modified single frequency approximation.110 The reference static 

polarizabilities and C6 coefficients are from Kauczor et al.’s TD-DFT calculations.111 For this test set, TS-

SCS systematically underestimates the polarizabilities by 18.67% and C6 coefficients by 10.44%. 

In these two test sets, MCLF has better overall performance than TS-SCS with all four MCLF 

MAREs under 10% compared to all four TS-SCS MAREs over 10%. In contrast to TS-SCS, MCLF uses 

(i) an iterative update of the Gaussian dipole width and (ii) a multi-body screening function (eqn (70)) to 

describe decay of the dipole directional order. These allow MCLF to describe dipole directional alignment 

effects more precisely than TS-SCS. 
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Table 14: Comparison of the α and C6 in atomic units for 6 fullerenes  

  

static polarizability, α C6 dispersion coefficient 

reference 
TS-SCS 

(DDEC6) 
MCLF reference 

TS-SCS 

(DDEC6) 
MCLF 

C60 536.6 446.94 512.624 100100 88860.41 106807.97 

C70 659.1 534.37 616.607 141600 125502.37 150149.97 

C78 748.3 605.63 701.272 178200 159842.09 190785.18 

C80 798.8 626.63 727.065 192500 170229.03 201556.87 

C82 779.7 642.93 746.097 196800 179253.82 213111.45 

C84 806.1 659.27 765.368 207700 188430.29 224796.59 

MRE   -18.67% -5.92%  -10.44% 6.84% 

MARE   18.67% 5.92%  10.44% 6.84% 

 

6.6 Large biomolecule 

 Non-reactive molecular mechanics force fields are model potentials containing several different 

parameter types: dispersion-repulsion parameters (e.g., Lennard-Jones, Buckingham, or other forms), 

point charges or model atomic charge distributions (e.g., Gaussian, Slater), flexibility parameters, and 

(optionally) polarizabilities.112, 113 These molecular mechanics force fields enable classical atomistic 

simulations, such as molecular dynamics or Monte Carlo, to be performed over larger distance and time 

scales than would be practical using quantum chemistry methods such as density functional theory 

(DFT).113-115 These atomistic simulations are useful to estimate thermodynamic ensemble properties (e.g., 

density, vapor pressure, adsorption isotherms, etc.), transport properties (e.g., diffusion coefficients, 

viscosity, etc.), and structures (e.g., protein folding and other conformational changes).113, 114, 116-119 

 An approach often used is to classify atoms into types, where similar atoms share the same atom 

type and same force-field parameters.120, 121 We will refer to these as Typed Force Fields (TFF). TFFs 

have been successively improved over the past few decades by refining their atom type definitions and 

parameter values to make them more accurate and robust.122-124 Today, several TFFs perform reasonably 

well on various organic molecules and some small inorganic molecules.117, 118, 125-128 

 There are still areas for further improving force fields, especially for systems containing high 

chemical bonding diversity and charged ions. Metal-containing systems are especially prone to high 

chemical bonding diversity. For example, metal-organic frameworks (MOFs) can contain dozens of 

different metal elements in a plethora of different bonding motifs.129-131 While some efforts have been 

made to define new atom types for MOFs,132 the high chemical diversity makes it difficult to completely 

parameterize force fields for all MOFs using atom types. Quantum-mechanically derived force-fields 

(QMDFFs) are ideal for modeling these systems, because QMDFFs do not require pre-defined atom 

types.133, 134 Machine learning is a recent approach in which force-field parameterization is trained to a 

machine learning model using QM-derived parameters.4, 135, 136 Advantages of the machine learning 

approach include highly automated, computationally fast, and the ability to handle large chemical diversity 

without having to manually define atom types.4, 135, 136 

 Non-polarizable force fields often model charged ions with reduced effective charges, but this 

places artificial constraints on the simulation.137 To make the parameters more transferable between 

different chemical systems and compositions, the reduced effective charge model should be replaced with 

a polarizable force-field.14, 17, 138-140 Kiss and Baranyai concluded for water that “It is impossible to 

describe the vapor-liquid coexistence properties consistently with nonpolarizable models, even if their 
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critical temperature is correct.”13 Hence, an automated method like MCLF to assign atom-in-material 

polarizabilities is extremely important for modeling materials containing ions.  

 Useful insights can be gained by comparing TFF parameters for an atom type to QM-derived ones. 

Where the TFF parameters and the QM-derived ones are in good agreement, this validates the 

parameterization. Conversely, where the TFF parameters and the QM-derived ones differ substantially, 

this indicates areas for further study to potentially refine the atom type definitions and/or parameter values. 

A multimodal distribution or wide range of QM-derived parameter values suggests when to divide atoms 

into multiple atom types. A narrow distribution of QM-derived parameter values that is substantially offset 

from the TFF parameter value can indicate a need to update the TFF parameter value. In such a way, these 

comparisons can produce force-field improvements. 

 In this section, we compare MCLF C6 atom-in-material dispersion coefficients and polarizabilities 

to OPLS and AMOEBA force-field parameters for the Human Immunodeficiency Virus reverse-

transcriptase (HIV-RT) enzyme complexed with an inhibitor molecule. HIV is a retrovirus with RNA 

genome.141 Retroviruses replicate in a host cell by using a reverse-transcriptase enzyme to transcribe the 

virus’s RNA genome into the host cell’s DNA that is subsequently replicated by the host.141 Therefore, 

inhibition of the reverse-transcriptase enzyme is a potential way to slow virus replication, which is 

extremely important for controlling disease caused by the virus.141 

 
Figure 21: Structure of the inhibiter molecule and its complex with HIV reverse-transcriptase. In the 

complex, atoms of the inhibiter molecule are displayed as colored balls: yellow (C), white (H), red (O), 

blue (N), cyan (F), and Cl (green). 

 Bollini et al. and Cole et al. previously studied several oxazole derivatives as HIV-RT 

inhibiters.142-144 As an example of the MCLF method applied to macromolecules, we study one of these 

HIV-RT inhibiters, C20H16ClF2N3O (CAS # 1422256-80-1), shown in Figure 21 together with a significant 

portion (2768 atoms) of its complex with wild-type HIV-RT. We computed the electron density 

distribution for this complex in ONETEP145, 146 using the PBE107 exchange-correlation functional. 

Preparation of the input structure is described elsewhere.142, 143 It was constructed from the 1S9E PDB 

file147 using the MCPRO148 and BOMB149 software. The 178 amino acids closest to the ligand were 

retained.  The complex was solvated in a 25 Å water cap and equilibrated at room temperature for 40 
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million Monte Carlo steps using the MCPRO software. Water molecules were stripped from the final 

configuration, and the resulting structure (Figure 21) was used as input for the ONETEP calculations.  

 Interactions between electrons and nuclei were described by Opium norm-conserving 

pseudopotentials.150 NGWFs were initialized as orbitals obtained from solving the Kohn-Sham equation 

for isolated atoms.151 The NGWFs were expanded as a psinc basis set152 with an equivalent plane-wave 

cut-off energy of approximately 1000 eV and the electron density was stored on a Cartesian grid of spacing 

0.23 Bohr. The localization radii of the NGWFs were 10.0 Bohr. Calculations were performed using an 

implicit solvent model with a dielectric constant of 78.54 to mimic the water environment.153 Electron 

density partitioning was performed using the DDEC6 method implemented in the Chargemol program.52, 

57-59 

 Table 15 compares the computed C6 coefficients in the HIV-RT complex for a number of 

frequently-occurring OPLS atom types,117 including both backbone and side chain atoms. The C6 

coefficients computed using MCLF generally show a much smaller range than the corresponding TS-

SCS(DDEC6) data. Also, the OPLS force field C6 coefficients are usually closer to the MCLF results than 

to the TS-SCS results. While one should not draw too many conclusions from this, the OPLS parameters 

have been carefully fit over a number of decades to accurately reproduce experimental observables, such 

as organic liquid properties117 and protein NMR measurements154. It is also noteworthy that the OPLS C6 

coefficient is slightly higher than the MCLF result. This is expected since the C6 term in the OPLS force-

field must effectively compensate for higher-order dispersion (C8, C10, ...) terms that are not explicitly 

included in the OPLS force-field.155 The high value of C6 on the backbone carbonyl carbon (C (bb)) has 

been noted previously,3 and should be revisited in future force fields. 

Table 15. Comparison of QM-derived and TFF C6 coefficients in atomic units for the HIV reverse 

transcriptase complex. Two QM-derived methods (MCLF and TS-SCS) are compared to the OPLS TFF. 

The mean unsigned deviation (MUD) quantifies the QM-derived C6 coefficient variation compared to the 

mean value for that atom type. bb signifies backbone atoms. 

Atom Type 
MCLF TS-SCS(DDEC6) 

OPLS 
Range Mean (MUD) Range Mean (MUD) 

N (bb) 31.7-47.2 39.0 (1.9) 33.7-71.9 48.2 (5.2) 58.2 

H (bb) 0.7-1.2 0.9 (0.1) 0.2-1.4 0.6 (0.2) 0.0 

C (bb) 20.1-28.9 24.4 (1.0) 19.3-54.8 34.7 (4.1) 84.8 

O (bb) 25.3-39.9 31.8 (2.8) 18.4-31.5 24.1 (1.8) 41.0 

CT (bb) 27.8-32.7 30.3 (0.9) 50.7-81.2 64.8 (5.0) 35.2 

CT (CH3) 30.2-34.7 32.2 (0.8) 45.0-76.0 55.1 (4.2) 35.2 

CT (CH) 24.7-37.0 30.5 (2.2) 35.7-98.8 53.8 (8.0) 35.2 

HC 1.1-2.6 1.6 (0.2) 0.4-2.1 0.7 (0.2) 2.1 

CA 32.6-43.1 36.9 (1.9) 36.0-65.2 45.7 (4.1) 40.7 

HA 1.1-2.2 1.6 (0.2) 0.6-2.5 1.3 (0.3) 1.8 

 Table 16 compares the three kinds of MCLF polarizabilities (i.e., force-field, static, and low freq) 

to parameters used in the AMOEBA14, 139 polarizable force field. For the H atoms, the AMOEBA 

polarizabilities are larger than the MCLF polarizabilities, though both are small compared to the 



50 

 

polarizabilities of C, N, and O atoms. For the N (bb) atom, the AMOEBA polarizability is similar to the 

MCLF force-field polarizability. For the O (bb) atom, the AMOEBA polarizability (5.6) is smaller than 

the MCLF polarizability (6.9). Since the polarizability of an isolated oxygen atom is ~5.2,56 these 

polarizabilities are in line with O (bb) being slightly negatively charged and more diffuse than an isolated 

oxygen atom. For the C atoms, the AMOEBA polarizabilities are substantially larger than the MCLF 

force-field polarizabilities and close to the MCLF static polarizabilities; this suggests the AMOEBA C 

atom polarizabilities include some directional screening effects. The AMOEBA polarizabilities use 

Thole27 model atomic charge distributions14   3

1 2 Ac exp c r  while the MCLF polarizabilities use 

Gaussian model charge distributions, so the optimized atomic polarizabilities can be different in these two 

methods and still approximately reproduce the molecular polarizability. Importantly, computed results 

presented earlier in this article show the MCLF force-field polarizabilities input into the dipole interaction 

tensor and solved yield good accuracy molecular static polarizabilities. Therefore, the MCLF force-field 

polarizabilities are appropriate for use in polarizable force-fields. 

Table 16. Comparison of MCLF QM-derived and AMOEBA TFF polarizabilities in atomic units for the 

HIV reverse transcriptase complex. All three MCLF polarizabilities are listed: force-field, static, and low 

freq. The mean unsigned deviation (MUD) quantifies the MCLF polarizability variation compared to the 

mean value for that atom type. bb signifies backbone atoms. 

Atom 

Type 

MCLF 

(force-field) 

MCLF 

(static) 

MCLF 

(low freq) 
AMOEBA 

Range 
Mean 

(MUD) 
Range 

Mean 

(MUD) 
Range 

Mean 

(MUD) 

N (bb) 6.4-7.8 7.4 (0.2) 8.8-15.0 11.4 (0.9) 8.1-11.1 9.6 (0.4) 7.2 

H (bb) 1.4-2.0 1.6 (0.1) 1.5-2.0 1.7 (0.1) 1.5-2.0 1.7 (0.1) 3.3 

C (bb) 5.6-6.4 6.1 (0.1) 7.3-11.5 9.0 (0.5) 7.0-8.6 7.8 (0.2) 9.0 

O (bb) 6.2-7.7 6.9 (0.3) 6.3-11.4 8.4 (0.9) 6.5-9.4 7.8 (0.5) 5.6 

CT (bb) 6.7-7.3 7.0 (0.1) 8.8-11.3 9.9 (0.4) 8.1-9.0 8.5 (0.2) 9.0 

CT (CH3) 7.0-8.0 7.6 (0.2) 8.3-10.1 9.0 (0.3) 8.0-8.9 8.4 (0.2) 9.0 

CT (CH) 6.6-8.1 7.4 (0.3) 7.8-12.8 9.5 (0.7) 7.5-9.7 8.5 (0.4) 9.0 

HC 1.6-2.9 2.1 (0.1) 1.7-3.1 2.2 (0.1) 1.6-3.0 2.1 (0.1) 3.3 

CA 7.2-8.3 7.7 (0.2) 9.6-13.1 10.9 (0.6) 8.9-10.5 9.6 (0.3) 11.8 

HA 1.8-2.4 2.0 (0.1) 1.9-2.9 2.3 (0.2) 1.9-2.6 2.2 (0.1) 4.7 

 OPLS atom types117 were assigned using MCPRO software148 and have the following descriptions. 

Sidechain atom types included: CT(CH3): alkane carbon bonded to three hydrogen atoms; CT(CH): alkane 

carbon atom bonded to one hydrogen atom; HC: alkane hydrogen atom; CA: carbon atom in an aromatic 

ring; HA: hydrogen bonded to an aromatic ring. Backbone atoms were classified according to: N: amide 

nitrogen; H: hydrogen bonded to amide nitrogen; C: amide carbon; O: amide oxygen; CT: alpha carbon 

atom. Only the most common atom types were analyzed to ensure adequate statistics. The substantial 

ranges of QM-derived parameter values in Table 15 and Table 16 suggest there is room to further improve 

the atom type definitions. For example, by defining atom types according to the set of directly bonded 
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neighbors (e.g., N-C2H as an atom type denoting N directly bonded to two carbon atoms, one hydrogen 

atom, and no others) and (optionally) second bonded neighbors, which was previously shown4, 59 to give 

highly consistent DDEC6 NACs. We recommend the atom type definitions be explored further in future 

work. 

7. Conclusions 

In summary, we introduced a new method (MCLF) to compute polarizabilities and dispersion force 

coefficients. This method can be applied to large and complex materials for which ab initio methods such 

as time-dependent DFT or CCSD perturbation response theory are too computationally expensive. Like 

TS-SCS, this method: (i) only requires the electron and spin density distributions as inputs, (ii) is capable 

of computing polarizability tensors and C6 coefficients for atoms-in-materials as well as for the whole 

molecule or unit cell, and (iii) works for materials containing 0, 1, 2, or 3 periodic boundary conditions. 

We show that using DDEC6 partitioning increases accuracy compared to Hirshfeld and IH partitioning. 

The MCLF method achieves a long list of important improvements compared to existing methods: 

1) MCLF has new polarizability and C6 scaling relations for isolated atoms to set the reference values. 

These cover the charged atom states using a fundamentally different approach than the Fractional 

Ionic (FI) and TS-SCS methods. Unlike FI, this new approach does not require quantum 

mechanically computed reference polarizabilities and C6 values for charged atoms; this is a huge 

advantage, because some isolated charged atoms are unstable. Unlike the TS method, this new 

approach describes changes in the polarizability-to-volume ratio with atomic charge state. 

2) MCLF uses a new polarizability partition that avoids negative polarizabilities for highly charged 

atoms (e.g., ZrO molecule) by partitioning the mixed pair contribution proportional to the 

polarizability of each atom in the pair. In contrast, the TS-SCS method sometimes assigns negative 

polarizabilities to atoms-in-materials, and this makes subsequent calculations (e.g., MBD or van 

der Waals radius) crash. 

3) M scaling provides a unified scaling law describing the different behaviors of isolated atoms and 

buried atoms. This allows MCLF to accurately describe both surface and buried atoms. The TS-

SCS method (which does not use m scaling) could not accurately describe polar diatomic 

molecules irrespective of the partitioning method. 

4) MCLF separates non-directional from directional screening of the dipole interaction tensor. The 

non-directionally screened polarizability is constrained to be less than or equal to the conduction 

limit upper bound, and this provides improved accuracy for buried atoms. In contrast, the TS-SCS 

method often produces atomic polarizabilities that are unphysically higher than the conduction 

limit. 

5) MCLF uses a multibody screening function to capture the fluctuating dipole alignment at short 

distances and disorder at long distances. This computes more accurate C6 coefficients. 

6) MCLF computes three different types of screened dipole polarizabilities: (a) the non-directionally 

screened polarizabilities that are used as force-field and QDO input parameters, (b) the imfreq 

fluctuating polarizabilities that describe the local directional alignment contributing to C6 

coefficients, and (c) the static polarizability containing long-range directional alignment of dipoles 

due to a constant externally applied electric field. MCLF computes the full polarizability tensors 

including diagonal and off-diagonal components. 
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7) MCLF uses an iterative polarizability screening that improves accuracy and allows the 

computational cost to scale linearly with increasing number of atoms in the unit cell by avoiding 

matrix inversions. In contrast, the TS-SCS method uses matrix inversions that cause approximately 

cubic scaling of computational cost with increasing number of atoms in the unit cell. For this 

reason, MCLF is much more computationally efficient than TS-SCS. 

8) MCLF parameterizes a Quantum Drude Oscillator (QDO) model to yield higher-order (e.g., 

quadrupolar and octupolar) atom-in-material polarizabilities and higher-order atom-in-material 

dispersion coefficients (e.g., C8, C9, C10) and associated mixing rules. 

9) The MCLF atom-in-material polarizability tensors are always symmetric, while the TS-SCS atom-

in-material polarizability tensors are sometimes asymmetric. Symmetric polarizability tensors are 

more convenient, because they can be displayed as ellipsoids. 

 Tests were performed on diverse material types: isolated atoms, diatomic molecules, periodic 

solids, small organic and inorganic molecules, fullerenes, polyacenes, ice supercells containing up to 

263424 atoms per unit cell, and an HIV reverse transcriptase biomolecule. For each test set in this study, 

MCLF gave ≤ 12% MARE on the static polarizabilities and C6 coefficients, and ≤ 14% MARE for the 

static polarizability eigenvalues. This substantially improves over the TS-SCS method. For the static 

polarizabilities of solids: (a) TS-SCS with H, IH, and DDEC6 partitioning gave MARE of 47%, 30%, and 

24%, respectively, (b) MCLF(DDEC6) gave MARE of 12%, and (c) all of the unscreened methods gave 

much larger errors than the screened methods. For the static polarizabilities of diatomic molecules: (a) 

TS-SCS(H) gave 41% MARE with a largest error of 437%, (b) TS-SCS(DDEC6) gave 37% MARE with 

a largest error of 440%, and (c) MCLF(DDEC6) gave 10% MARE with a largest error of 34%.  
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