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Abstract

The determination of a substrate or enzyme activity by coupling of one enzy-
matic reaction with another easily detectable (indicator) reaction is a com-
mon practice in the biochemical sciences. Usually, the kinetics of enzyme
reactions is simplified with singular perturbation analysis to derive rate or
time course expressions valid under the quasi-steady-state and reactant sta-
tionary state assumptions. In this paper, the dynamical behavior of coupled
enzyme catalyzed assays is studied by analysis in the phase plane. We an-
alyze two types of time-dependent slow manifolds – Sisyphus and Laelaps
manifolds – that occur in asymptotically autonomous vector fields that arise
from enzyme coupled assays. Projection onto slow manifolds yields various
reduced models, and we develop a mathematical framework from which to
analyze coupled enzyme assays through scaling and phase-plane analysis. We
demonstrate the necessity of fast indicator reactions to derive mathematical
expressions which could be used for the accurate estimation of enzyme kinetic
parameters through experimental assays in the laboratory.
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1. Introduction1

Biochemical reactions inside cells are generally catalyzed by enzymes,2

which accelerate the conversion of substrates into products under physiologi-3

cal conditions. Most of the complex chemical processes occurring inside cells4

or organisms that are necessary for the maintenance of life are catalyzed5

by enzymes. Consequently, the experimental measurement of enzyme ac-6

tivity through in vitro assays has been substantial importance in biological7

and biomedical sciences to understand the dynamic of biochemical processes8

inside cells [1]. Unfortunately, many interesting biochemical processes or9

macromolecules cannot be observed directly. In the biological science there10

are many tools – enzymatic or non-enzymatic – to observe indirectly molecu-11

lar and biological activity. Reporter genes are an excellent example of molec-12

ular and non-enzymatic indirect observation of activity; these are genes that13

enable the detection or measure of gene expression by attaching them to the14

regulatory sequence of another gene of interest.15

Often, the activity of numerous enzymes cannot be observed experimen-16

tally through direct observation of their reaction. Instead, these enzyme17

catalyzed reactions must be observed indirectly by coupling it to another18

enzyme catalyzed reaction that is used to indicate the non-observable reac-19

tion. The observable enzyme catalyzed reaction is known as the indicator or20

monitor reaction [2]. The non-observable enzyme catalyzed reaction can be21

of varying complexity; it could follow a linear inhibition or exhibit enzyme22

degradation [3]. Regardless of the nature of the non-observable reaction,23

there are two general mechanisms employed to couple enzyme reactions: the24

sequential enzyme reaction mechanism [4] and the auxiliary enzyme reaction25

mechanism [5].26

To set the stage, and explain how the coupling mechanisms between a non-
observable and an indicator reaction operate, let us assume (for simplicity)
that the non-observable reaction follows the Michaelis–Menten (MM) single-
enzyme, single-substrate mechanism of action [6]

E1 + S1

k1



k−1

C1

k2

→ E1 + P (1)

from which, we need to indirectly measure the activity of the enzyme E1,
through means of an indicator reaction (S1 is the substrate of the non-
observable reaction, C1 the complex, P is the product generated in the
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non-observable reaction). In the sequential enzyme reaction mechanism, the
product of the non-observable reaction is the substrate, S2 of the indica-
tor reaction. The indicator reaction occurs when S2 binds to the sequential
indicator enzyme, E2, and generates a final product, P :

E2 + S2

k3



k−3

C2

k4

→ E2 + P. (2)

In the above mechanism, k1, k1 , k3, k−3 are microscopic rate constants and27

k2, k4 are catalytic constants. C1 and C2 are intermediate enzyme-substrate28

complexes. The sequential assay is by far the most common type of coupled29

assay, and there are many examples reported in the literature (see, Tables30

II and III in [3] and Table 4.5 in [2]). One example is the phosphorylation31

of glucose to glucose-6 phosphate requires energy and so it is coupled to32

the hydrolysis of ATP to ADP and Pi. The primary reaction is catalyzed by33

hexokinase, and is non-observable in typical steady-state kinetic experiments.34

Therefore, to investigate the hexokinase activity, its reaction is coupled to the35

catalytic conversion of glucose-6 phosphate into 6-P gluconolactone with the36

enzyme glucose 6-P dehydrogenase. The later serves as an indicator reaction.37

A less common coupled assay is the auxiliary assay. In the auxiliary
enzyme reaction mechanisms, the product of the non-observable reaction
is the indicator enzyme E2, which binds with the substrate S2 to form a
product:

E1 + S1

k1



k−1

C1

k2

→ E1 + E2 (3)

E2 + S2

k3



k−3

C2

k4

→ E2 + P. (4)

The physiologic response to a vascular lesion entails a number of enzymatic38

steps, which leads to clot formation. These enzymatic steps are a cascade39

of enzyme catalyzed reactions following the auxiliary enzyme mechanism de-40

scribed above [7]. In the laboratory, the activity of thrombin, one of the blood41

coagulation enzymes, has been studied with a coupled auxiliary enzyme as-42

say. Thrombin catalyzes the activation of protein P, which is non-observable43
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using steady-state kinetic laboratory assays. However, the formation of p-44

nitroaniline from substrate S2266 is catalyzed by activated protein P, and is45

observable through steady-state kinetic progress curve experiments. By cou-46

pling the two reactions, thrombin function is studied with a coupled auxiliary47

enzyme assay [8].48

The MM equation is usually employed to measure the enzyme kinetics of
the primary reaction when it can be observed experimentally in steady-state
experiments. The MM equation itself is given by

dp

dt
=

V1s1

KM1 + s1
, (5)

where V1 is the limiting rate of the primary reaction and KM1 is its Michaelis
constant [9, 10]

KM1 =
k−1 + k2

k1
. (6)

The Michaelis constant is defined operationally as the concentration of the49

substrate at which the rate of the reaction is half of the limiting rate; that is,50

dp/dt = 0.5V1. The enzyme specificity is characterized through the specificity51

constant, which is the result of dividing k2 by KM1 [11, 12, 13].52

The kinetic constants V1 and KM1 are generally estimated through ini-53

tial rate or time course experiments [14, 2] by mathematically solving an54

inverse problem [15, 16]. In the case of coupled enzyme assays, the caveat55

with this procedure is that the primary reaction is not experimentally ob-56

servable. Thus, in coupled enzyme assays, V1 and KM1 need to be estimated57

through means of indirect measures of data recorded from the indicator re-58

action. From a theoretical point of view the demand is obvious; a mathe-59

matical theory must be developed that is capable of accurately describing60

the relationship between the non-observable reaction and the indicator re-61

action. To date, a nonlinear theory has not been established, even though62

coupled enzyme catalyzed reactions are commonly used to study the kinet-63

ics of non-observable reactions. Most enzyme kinetic analyses developed to64

study coupled enzyme assays assume that the coupled enzyme reactions fol-65

low first-order kinetics [17, 18, 19, 20, 21], and limit to measure the lag time of66

the reaction, which is effectively the length of time it takes before measurable67

formation rates of P become experimentally detectable.68

Accordingly, one of the main contributions of this paper is the devel-69

opment of utilizable mathematical techniques to investigate the kinetics of70
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enzyme catalyzed indicator reactions in typical state-state laboratory assays.71

To construct a mathematical framework of indicator equations, we observe72

that, from the vantage point of a mathematical landscape, the validity of the73

MM equation resides in the presence of disparate timescales (slow and fast74

timescales) inherent in the non-observable reaction. The separation of these75

timescales is known as the Quasi-Steady-State Approximation (QSSA). In76

short, intrinsic slow and fast timescales within the non-observable reaction77

will imply the existence of a one-dimensional slow manifold on which the78

MM equation is a valid approximation to the two-dimensional mass action79

kinetic model [22]. Because the indicator reaction is enzyme catalyzed, it will80

also exhibit (under certain circumstances) slow and fast timescales. Thus,81

model reduction methods based on slow manifold projections will be central,82

although not always necessary, in the analysis and model reduction of the83

indicator reaction. Central to the slow manifold projection method is the84

presence of quasi-steady-state (QSS) dynamics, which are generally assumed85

to hold whenever substrate concentrations are in excess of enzyme concen-86

trations. “Test tube” experiments can be designed so that concentrations are87

favorable for QSS dynamics. Although the current experimental technology88

does not allow the reliable estimation of enzyme kinetic parameters intra-89

cellularly yet, the QSS dynamics can hold inside cells as the concentration90

of most substrates exceed their cognature enzyme concentrations in several91

tissues and organisms (see, [23] for a meta-analysis).92

From a theorists’ perspective, the dynamics of the indicator reaction are93

mathematically interesting. As we will show, the vector fields that deter-94

mine the transient kinetics of the indicator reaction are asymptotically au-95

tonomous. The novelty of asymptotically autonomous vector fields is that,96

since they are a unique class of non-autonomous vector fields, the slow man-97

ifolds that are present in them will naturally be time-dependent. This is in98

contrast to the stationary slow manifold in the single enzyme, single sub-99

strate reaction when the QSSA or reactant stationary assumption (RSA)100

holds [24, 25]. Moreover, the existence of slow manifolds in the asymp-101

totically autonomous vector fields is dependent on the rate kinetics of the102

non-observable reaction, and physical initial conditions restrict the initial103

velocities of the indicator reaction to be identically zero. As a result, it is104

tempting to assume that indicator reactions, projected onto a slow manifold,105

will lack a “fast transient” since experimental initial conditions would sug-106

gest that phase-plane trajectories circumnavigate the fast temporal boundary107

layer. We will explore, from both the mathematical and biochemical moti-108
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vation, the influence of fast (short) timescales that naturally arise from the109

scaling analysis of the indicator reaction. In addition, we will show that, in110

the limiting case of an extremely fast sequential enzyme reaction, the phase-111

plane dynamics can be projected onto a zero-dimensional manifold. This112

analysis demonstrates the necessity of fast indicator reactions in coupled as-113

says. While such assumptions have previously been endorsed, it has never114

been established as a mathematical result from nonlinear analysis. This is115

a novel result in the context of coupled enzyme kinetics, and serves as the116

primary contribution of this paper.117

2. Mathematical background of critical manifolds for dynamical118

systems with fast and slow scales119

Here we briefly review the necessary mathematical background that is
pertinent to fast/slow systems and slow manifolds. If we consider a system
of the form

ẋ = f(x, y), x ∈ Rn, f : Rn × Rm → Rn, (7a)

εẏ = g(x, y), y ∈ Rm, g : Rm × Rn → Rm, (7b)

where ε is a constant such that ε � 1, then as a result of Tikhonov and120

Fenichel we have the following theorem [26]:121

Theorem 1. Let M be a compact and normally hyperbolic manifold of the122

critical manifold M0 and let f, g of (7a) and (7b) have r continuous deriva-123

tives (i.e., f, g ∈ Cr with r <∞). If 0 < ε� 1 then the following are true:124

125

(1) ∃ a locally invariant manifold Mε that is diffeomorphic to M0.126

127

(2) The Hausdorff distance from Mε to M0 is O(ε)128

129

(3) The flow in Mε converges to flow on M0 as ε→ 0.130

131

(4) Mε is a Cr-differentiable manifold.132

133

(5) The stability of Mε is the same as the stability of M0.134

135

(6) Mε may not be unique, but all admissible manifolds that satisfy136

(1)-(5) will be at distance apart that is O(e−ω/ε) (with 0 < ω <∞).137

6



The critical manifold M0 of Theorem 1 refers to the zero level set of
g(x, y):

M0 ≡ {(x, y) : g(x, y) = 0}. (8)

If we solve (8) and obtain an expression y = h(x) with g(x, h(x)) = 0, then
the stability properties of the critical manifold can be determined by the
location of the eigenvalues of the matrix JM0

JM0 = Dg(x, h(x)), (9)

where “D” is used to denote the derivative with respect to the fast variables
“y”. If the eigenvalues of JM0 have negative real parts, thenM0 is attracting
and henceMε will inherit the same attribute. In addition to conditions that
imply the presence of a slow manifold, we obtain from the Fenichel-Tikhonov
theorem the leading order approximation to (7a) and (7b):

ẋ = f(x, h(x)) +O(ε) (10a)

y = h(x) +O(ε). (10b)

The validity of the leading order approximation (10b) in the context of
asymptotically autonomous vector fields will be a subject of critical impor-
tance in the upcoming sections. Formally, an asymptotically autonomous
vector field consists of a vector field,

f(x, t) x ∈ Rn (11)

such that
lim
t→∞

f(x, t) = g(x). (12)

Thus, an asymptotically autonomous vector field is a vector field that be-138

comes autonomous in the limiting case as t→∞ [27].139

3. Analysis of the sequential enzyme reaction mechanism140

We start our analysis with the sequential enzyme reaction mechanism141

represented by the chemical equations (1)–(2), which consists of a single-142

substrate, single-enzyme non-observable reaction followed by another single-143

substrate, single-enzyme observable reaction (indicator reaction). In this144

mechanism, the product of the non-observable reaction becomes the substrate145

of the indicator reaction. By applying the law of mass action to (1)–(2), we146

obtain a nonlinear system of differential equations with three conservation147

laws [5]. We begin our analysis by scaling the mass action equations.148
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3.1. Scaling of the sequential enzyme reaction149

After eliminating redundant expressions using the conserved quantities
s01, e

0
1, and e02, the mass action equations that model the sequential enzyme

mechanism are:

ṡ1 = −k1(e01 − c1)s1 + k−1c1 (13a)

ċ1 = k1(e
0
1 − c1)s1 − (k−1 + k2)c1 (13b)

ṡ2 = −k3(e02 − c2)s2 + k−3c2 + k2c1 (13c)

ċ2 = k3(e
0
2 − c2)s2 − (k−3 + k4)c2. (13d)

The lowercase letters s1, c1, e1 and s2, c2, e2, p denote the concentrations of150

S1, C1, E1 and S2, C2, E2, P respectively. Notice equations (13a)-(13b) are151

autonomous and independent of s2 and c2. In this regard, the first catalyzed152

reaction drives the second catalyzed reaction; thus, the indicator reaction153

can be viewed as a non-autonomous system with forcing term k2c1(t).154

The complete catalyzed sequential enzyme reaction (13) is characterized
by four timescales tc1 , ts1 , tc2 and ts2 , which are easily derived by the method
of Rice [28, 29],

tc1 =
1

k1(KM1 + s01)
, ts1 =

KM1 + s01
k2e01

(14a)

tc2 =
1

k3(KM2 + s01)
, ts2 =

KM2 + s01
k4e02

, (14b)

with KM1 and KM2 denoting the Michaelis constants:

KM1 =
k−1 + k2

k1
KM2 =

k−3 + k4

k3
. (15)

The timescales tc1 and ts1 define, respectively, the temporal order of magni-155

tude of the initial fast transient and the approximate length of non-observable156

reaction [30]. Analogously, the timescale tc2 is a fast timescale, and ts2 is the157

approximate time it takes the indicator reaction to complete. Thus, tc1 and158

tc2 are fast timescales, while ts1 and ts2 are slow timescales.159

To establish the presence of slow manifolds, we rescale the mass action
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equations with respect to the following dimensionless variables

T =
t

ts1
s̄1 =

s1
s01

c̄1 =
(KM1 + s01)

e01s
0
1

c1, (16a)

τ =
t

ts2
, s̄2 =

s2

smax
2

, c̄2 =
(KM2 + smax

2 )

e02s
max
2

c2, (16b)

where smax
2 denotes the maximum amount of unbound indicator substrate ob-

served in the reaction. In dimensionless form, the mass action equations (13)
that govern the non-observable reaction are:

ds̄1

dT
= (1 + σ1)(1 + κ1)

[(
σ1

1 + σ1
c̄1 − 1

)
s̄1 +

α1

1 + σ1
c̄1

]
, (17a)

ε
dc̄1

dT
= (1 + σ1)(1 + κ1)

[(
1−

σ1

1 + σ1
c̄1

)
s̄1 −

1

1 + σ1
c̄1

]
. (17b)

The dimensionless equations that describe the indicator reaction are:

ds̄2

dτ
= (1 + σ2)(1 + κ2)

[(
σ̃2

1 + σ̃2
c̄2 − 1

)
s̄2 +

α2

1 + σ̃2
c̄2

]
+ ΛδS c̄1, (18a)

λ
dc̄2

dτ
= (1 + σ̃2)(1 + κ2)

[(
1−

σ̃2

1 + σ̃2
c̄2

)
s̄2 −

1

1 + σ̃2
c̄2

]
. (18b)

The variables σ̃2, σ1, σ2, κ1, and κ2 given by,

σ̃2 ≡ smax
2 /KM2 , σ1 ≡ s01/KM1 , σ2 ≡ s01/KM2 , κ1 ≡ k−1/k2, κ2 ≡ k−3/k4

(19)
and the constants α1 and α2 are dependent on κ1 and κ2 respectively,

α1 = κ1/(1 + κ1), α2 = κ2/(1 + κ2). (20)

The constants ε and λ are dependent on the initial enzyme and substrate
concentrations and the Michaelis constants

ε =
e01

KM1 + s01
, λ =

e02
KM2 + s01

, (21)

and the ratios Λ and δS are:

Λ =
s01
smax
2

, δS =
ts2
ts1
. (22)
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Scaling the indicator reaction with respect to τ = t/ts2 is no accident.160

This is because, if the indicator reaction is slow, then ts2 gives a very good161

estimate of the completion timescale corresponding to the indicator reaction.162

Moreover, the ratio δS should give a good indication of how well the indicator163

reaction “keeps up” with the non-observable reaction. Since the completion164

of the indicator reaction cannot occur before the completion of the non-165

observable reaction, we would expect that if δS � 1, then the completion166

of the indicator reaction will occur at roughly the same time as the non-167

observable reaction.168

The ratio, Λ, will be very large if the indicator reaction is fast; this169

is because for fast indicator reactions, s2 should quickly bind with e2 and170

form product. Consequently, the maximum amount of unbound indicator171

substrate s2 should be much less than the initial non-observable susbtrate172

s01. In contrast, if the indicator reaction is slow in comparison to the non-173

observable reaction (i.e., if ts2 � ts1), then Λ ≈ 1.174

If ε, λ� 1, then there will exists slow manifoldsMε,Mλ, whose leading
order expansions are:

Mε =M0 +O(ε) with M0 ≡ c1 −
e01

KM1 + s1
s1 = 0, (23a)

Mt
λ =M0,λ +O(λ) with M0,λ ≡ c2 −

e02
KM2 + s2

s2 = 0. (23b)

The presence of the slow manifolds, Mλ and Mε, implies that

ṡ1 = −
V1

KM1 + s1
s1 +O(ε) (24a)

ṡ2 = −
V2

KM2 + s2
s2 + k2c1 +O(λ) (24b)

are good zeroth order approximations to the mass action equations on the
T and τ timescales, respectively. Moreover, after the initial fast transient of
the non-observable reaction, equation (24b) can be reduced to

ṡ2 = −
V2

KM2 + s2
s2 +

V1

KM1 + s1
s1 +O(λ) +O(ε). (25)

The validity of (23a) is well-established and, we will not go into the details175

of this here. What is interesting in this case is the criteria for the validity of176
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(23b). While the qualifier “λ � 1” is sufficient to establish the presence of177

a slow manifold, and scaling analysis can give us an idea of just how small178

λ should be in order for first order approximations to be “good” on the179

depletion timescale, it not clear if the first order approximation is good on180

shorter timescales (i.e., does the QSSA remain valid on timescales that are181

shorter than ts2?).182

Several remarks need to be made before we begin to establish conditions183

for the first order validity of (23b). First, although Mλ is a time-dependent184

manifold, its explicit dependence on time is determined by the O(λ) terms.185

Consequently, the manifold will evolve in the two-dimensional phase-plane,186

and the slow and fast timescales of both the indicator and non-observable187

reactions will play an integral role in understanding the validity of the first188

order truncation. Second, because experimental initial conditions typically189

lie on the c2-nullcline, it’s not immediately clear if we should expect to see190

an initial fast transient towards the slow manifold over some fast timescale191

since the solution is on the c2-nullcline is already when t = 0. Thus, two192

questions arise that must be answered: (1) how small should λ be in order to193

ensure a first order truncation is valid, and what does scaling the mass-action194

equations with respect to shorter (long timescales) say about the validity of195

the QSSA? (2) If the timescale tc2 does not account for a fast response under196

typical experimental conditions, then what, if anything, does it account for?197

We begin with a qualitative description of Mλ in order to answer these198

questions.199

3.2. The sequential enzyme reaction exhibits a Sisyphus manifold200

When the indicator reaction is roughly the same speed as the non-observable
reaction (i.e., δS ≈ 1), and λ � 1, then the phase plane of the indicator re-
action exhibits what we call a Sisyphus manifold. In this case, smax

2 will be
proportional in magnitude (although still less than) s01. Thus, we do not
expect Λ to be very small. Consequently, it is permissible to scale s2 with
respect to s01 when δS ≈ 1. Scaling the mass action equations with respect
to the dimensionless time τ , and smax

2 ≡ s01 yields:

ds̄2

dτ
= (1 + σ2)(1 + κ2)

[(
σ2

1 + σ2
c̄2 − 1

)
s̄2 +

α2

1 + σ2
c̄2

]
+ δS c̄1, (26a)

λ
dc̄2

dτ
= (1 + σ2)(1 + κ2)

[(
1−

σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

]
. (26b)
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If λ� 1, then at zeroth order, for t ≥ tc1 , we have:

ṡ2 = −
V2

KM2 + s2
s2 +

V1

KM1 + s1
s1, (27a)

c2 =
e02

KM2 + s2
s2. (27b)

The solution to (27a)–(27b), which starts on the c2-nullcline when experi-201

mental initial conditions are prescribed, essentially moves up and down the202

c2-nullcline. Since the c2-nullcline resembles a hill, we refer to the slow man-203

ifold, Mλ, that lies close to the c2-nullcline, as the Sisyphus manifold, after204

the Greek mythological king who was sentenced for eternity to push a stone205

up a hill only to have it roll back down as it neared the top (see Figure 1206

and Movie 1 in the Supplementary Material).207

0 20 40 60 80 100 120
s2

0.0

0.2

0.4

0.6

0.8

c 2

Figure 1: The numerical solution of the mass action equations (13) (thin black curve)
moves up, then down, the c2-nullcline in phase-space for the sequential enzyme reac-
tion mechanism. Movement is illustrated dynamically in Movie 1 available in the Sup-
plementary Material. The dimensionless units using in the numerical integration are:
s01 = 1000, e01 = 1, e02 = 1, k1 = 1, k2 = 10, k−3 = 1, k3 = 1, k4 = 10, k−3 = 1.

We invoke moving nullcline analysis to geometrically illustrate why solu-
tions roll up and then slide down the c2-nullcline. Starting with some basic
notation, we will denote the respective s2 and c2 nullclines as{

(s2, c2) ∈ R2

∣∣∣∣c2 − k3e
0
2s2 − k2c1

k3s2 + k−3
= 0

}
≡ N t

s2
, (28a){

(s2, c2) ∈ R2

∣∣∣∣c2 − e02
KM2 + s2

s2 = 0

}
≡ Nc2 , (28b)
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where the superscript “t” in (28a) denotes the time-dependency of the s2-
nullcline. If we consider snapshots of the s2–c2 phase plane at different points
in time (i.e., let t = tn), we see that there is a fixed point, x∗(tn),

x∗(tn) = Nc2
⋂
N t=tn
s2

, (29)

that slides, like a bead on a wire, up and down the c2-nullcline. Algebraically,
the fixed point x∗(t) is given by

s2 =
KM2

V2 − k2c1
k2c1, c2 =

e02
KM2 + s2

s2. (30)

An interesting observation can be made here. As V2 → k2c1, the maximum
distance from x∗ to the origin becomes arbitrarily large:

lim
V2→k2c1

(
KM2

V2 − k2c1
k2c1

)
=∞, lim

s2→∞

(
e02

KM2 + s2
s2

)
= e02. (31)

In contrast, as V2 gets arbitrarily large, the maximum distance from x∗ to
the origin gets negligibly small:

lim
V2→∞

(
KM2

V2 − k2c1
k2c1

)
= 0, lim

s2→0

(
e02

KM2 + s2
s2

)
= 0. (32)

What phase-space trajectories do is follow the sliding fixed point and, if λ is208

sufficiently small, the phase plane trajectory will follow the fixed point along209

a path that is extremely close c2-nullcline. This typically occurs in three210

stages: (1) the trajectory chases the fixed point up the c2-nullcline, (2) the211

trajectory “catches” the fixed point, at which time both s2 and c2 reach their212

maximum values and, (3) the trajectory follows the fixed point back down213

the c2-nullcline (see Figures 2a- 2d for another visualization of the Sisyphus214

manifold). The speed of the indicator reaction determines how far the fixed215

point, x∗, can travel away from the origin. For fast indicator reactions, we216

see that the maximum distance from x∗ to the origin to be very small, and217

thus we expect that smax
2 will be very small. In contrast, the fixed point will218

travel very far away from the origin if the indicator reaction is slow, and thus219

we expect smax
2 ≈ s01.220
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Figure 2: Visualization of the Sisyphus manifold in the sequential enzyme reaction mech-
anism. The numerical solution of (13) (black dot) follows the intersection, x∗ (purple
dot) of the nullclines, along a path that can be approximated by the c2-nullcline (panels
(a) and (b)). Eventually, the solution catches x∗ (panel (c)) and then chases x∗ back
down the c2-nullcline (d). In the panels, the initial conditions and parameter values are:
e01 = 1, s01 = 1000, k1 = 1, k2 = 10 and k−1 = 1. s02 = 0, e02 = 1, k3 = 10, k4 = 10 and
k−3 = 1.

3.3. Analysis of slow and fast sequential indicator reactions221

As we saw in the previous section, when ts2 ≈ ts1 , the indicator reaction222

is effectively in a QSS for (seemingly) most of the coupled sequential enzyme223

reaction mechanism. We now want to consider the cases when the indicator is224

very fast, or very slow, in comparison to the non-observable reaction. It must225
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be noted that the completion of the indicator reaction cannot occur before the226

completion of the non-observable reaction for the coupled sequential enzyme227

reaction mechanism. Thus, a fast indicator is taken to be synonymous with228

small maximum displacement of x∗.229

3.3.1. Analysis of extremely fast indicator reactions230

The first form of the indicator reaction we will consider is the case when
V2 � V1, and the indicator reaction is incredibly fast. What phase space
trajectories do in the case of the sequential enzyme reaction is chase the
moving fixed point x∗. Given the limits computed in (32), we expect the
phase plane trajectory to “catch” x∗ very quickly when the indicator reaction
is fast. This means that (30) will serve as a very good approximation to the
mass action equations over measurable timescales. In fact, we can simplify
the expression even further in the limiting case. First, we write the expression
for s2 as

s2 =
KM2

V2 − k2c1
k2c1 =

KM2

V2

(
1−

k2c1

V2

)k2c1. (33)

Next, employing a Taylor series expansion we have

1

1−
k2c1

V2

= 1 +O(φ), φ ≡ max
k2c1

V2
. (34)

Thus, we can take
s2 = KM2φ+O(φ2) (35)

as a leading order solution to s2 when the indicator reaction is fast. Insert-
ing (35) into ṗ = V2s2/(KM2 + s2), and taking the limit as φ→ 0 yields

ṗ =
V1

KM1 + s1
s1 +O(φ), (36)

provided ε� 1, and the non-observable reaction is in a QSS for the duration
of the reaction. Therefore, the rate expression for the product formation
is equivalent to the rate expression for the single-enzyme, single-substrate
reaction when the indicator reaction is extremely fast. What is remarkable
about this approximation is its condition for validity, namely that,

max
t>0

k2c1 � V2 ≡
V2

V1
�

σ1

1 + σ1
. (37)
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Notice that is not necessary that λ � 1, and the restriction that e02 be less231

than s01 is not required. In fact, large concentrations of e02 will actually be232

beneficial, as the indicator reaction will tend to speed up with increasing233

initial concentrations of the indicator enzyme e2 in the coupled sequential234

enzyme reaction mechanism.235

To put the proverbial “nail in the coffin”, we examine how the same
approximation can be obtained through scaling. If the indicator reaction
is fast, then δS � 1. Additionally, since we can assume, based on our
geometrical observations in the phase plane, that smax

2 � s01, which implies
that Λ � 1. Then, we will expect ts1 to provide a reasonable depletion
timescale when the indicator reaction is fast. Rescaling the mass action
equations with respect to T = t/ts1 ,

ds̄2

dT
=

(1 + σ2)(1 + κ2)

δS

[(
σ̃2

1 + σ̃2
c̄2 − 1

)
s̄2 +

α2

1 + σ̃2
c̄2

]
+ Λc̄1 (38a)

λ
dc̄2

dT
=

(1 + σ̃2)(1 + κ2)

δS

[(
1−

σ̃2

1 + σ̃2
c̄2

)
s̄2 −

1

1 + σ̃2
c̄2

]
(38b)

and multiplying through by δS yields

δS
ds̄2

dT
= (1 + σ2)(1 + κ2)

[(
σ̃2

1 + σ̃2
c̄2 − 1

)
s̄2 +

α2

1 + σ̃2
c̄2

]
+ δSΛc̄1 (39a)

δSλ
dc̄2

dT
= (1 + σ̃2)(1 + κ2)

[(
1−

σ̃2

1 + σ̃2
c̄2

)
s̄2 −

1

1 + σ̃2
c̄2

]
. (39b)

As δS → 0, both terms on the left hand sides of (39a)–(39b) vanish, and we236

see that the indicator reaction is reducible through slow manifold projection237

(keep in mind that as δS → 0, Λ → ∞, and therefore the term δSΛc̄1 is238

not asymptotically negligible). What is unique in the limiting case is that239

the slow manifold is zero-dimensional (i.e., it reduces to a single fixed point,240

x∗ = (0, 0)). The geometric validity of this reduction resides in the motion241

of slow manifold (fixed point), and as we have shown, the reduced zero-242

dimensional model will be valid as long as the motion of the fixed point243

remains negligible (see Figures 3a and 3b).244

As a final remark, we note, as a result of the scaling analysis, that the
dynamics of s2 (during its accumulation to smax

2 ) is expressible in terms of a
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Lambert-W function (when the indicator reaction is fast, see [5] for details),

s2 = smax
2

(
1 +$W

[
−

1

$
exp

(
−

1

$
−

(s01/ts1 − V2)2

V2KM2

t

)])
(40)

where $ ≡ V2/V1 · (1 + σ1)/σ1. The natural timescale that arises from this
expression is,

tcs2 =
KM2 + smax

2

k4e02
(41)

which is essentially characteristic of the time it takes for s2 to accumulate
smax
2 when the indicator reaction is fast. In this case, it is straightforward to

show that

smax
2 ≈

KM2

$ − 1
. (42)

If we rescale the mass action equations with respect to T = t/tcs2 , then we
obtain,

λmin
dc̄2

dT
= (1 + κ2)(1 + σ̃2)

[(
1−

σ̃2

1 + σ̃2
c̄2

)
s̄2 −

1

1 + σ̃2
c̄2

]
(43)

where λmin is given by,

λmin =
e02

KM2 + smax
2

. (44)

If λmin � 1, then the approach to smax
2 will occur along the slow manifold245

in the phase-plane. However, if λmin is order unity, then the trajectory will246

move very rapidly until it catches the sliding fixed point, at which time the247

indicator reaction will remain in a QSS. Thus, if λmin is large enough, the248

“fast transient” can be interpreted geometrically as the rapid approach to249

the fixed point in the phase-plane.250

3.3.2. Analysis of slow indicator reactions251

The indicator reaction will be slow in comparison to the non-observable252

reaction if ts2 � ts1 ; thus, in the slow regime, we take δS � 1.253
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Figure 3: Time course of the product formation for the coupled sequential reaction mech-
anism when the indicator reaction is extremely fast. The solid black curve is the nu-
merical solution to the mass action equation (13), ṗ = k4c2, and the broken red curve
is the numerical solution to ṗ = V1s1/(KM1

+ s1). As shown, fast indicator reactions
can be projected onto a zero-dimensional manifold, yielding a progress curve from which
KM1 and V1 can be estimated directly. The initial conditions and parameter values are:
e01 = 1, s01 = 100, k1 = 1, k2 = 1 and k−1 = 1. s02 = 0, k3 = 10, k4 = 100 and k−3 = 1. In
(a), e02 = 1, and in (b) e02 = 1000.

Since ts1 is now fast relative to ts2 , we want to rescale the indicator
reaction mass action equations with respect to T :

ds̄2

dT
=

(1 + σ2)(1 + κ2)

δS

[(
σ2

1 + σ2
c̄2 − 1

)
s̄2 +

α2

1 + σ2
c̄2

]
+ c̄1 (45a)

λ
dc̄2

dT
=

(1 + σ2)(1 + κ2)

δS

[(
1−

σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

]
(45b)

Looking carefully at the scaled equations, we see that if δS � (1+σ2)(1+κ2)
then

ds2 = −ds1 +O(δS) +O(ε), tc1 ≤ t ≤ ts1 , (46)

which indicates the scaling of ṡ2 is O(1) over the ts1 timescale. In order to
reduce the equations via slow manifold projection over the ts1 timescale, it
is thus necessary that

λδS � (1 + σ2)(1 + κ2), (47)
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which is equivalent to demanding adequate separation of the fast timescale
tc2 and the depletion timescale ts1 :

λδS � (1 + σ2)(1 + κ2) ≡
tc2
ts1
� 1. (48)

Given that the typical experimental initial conditions begin on the c2-nullcline,254

two questions naturally arise from this analysis: (1) How does the slow man-255

ifold,Mλ, emerge in the vector field when the QSS cannot be imposed when256

t < ts1? (2) What role does the fast timescale, tc2 play in determining the257

applicability of the QSSA?258

First, we will analyze the higher order terms in the approximation toMλ.
Since the sequential enzyme reaction can be analyzed in four-dimensional
phase-space, we know that on the slow manifold

c2 = h(s1, c1, s2). (49)

where h : R3 → R1 is an unknown function. Second, since Mλ is invariant,
h must satisfy the partial differential equation

k3(e
0
2 − h)s2 − (k−3 + k4)h = v · ∇(h), (50)

where the differential operator ∇() is defined as2

∇ = i
∂()

∂s1
+ j

∂()

∂c1
+ k

∂()

∂s2
. (51)

The velocity, v, is given by:

v = [ṡ1, ċ1, ṡ2]
T . (52)

We now want to approximate the solution to the dimensionless form of (50).
To write the dimensionless form of (50), we rescale the concentrations of
complex (c1 7→ c̄1, c2 7→ c̄2) and substrate (s1 7→ s̄1, s2 7→ s̄2) and introduce
the dimensionless operator ∇̄:

∇̄ = i
∂()

∂s̄1
+ j

∂()

∂c̄1
+ k

∂()

∂s̄2
. (53)

2The vectors i, j and k are the standard unit vectors in R3.
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Next, we are free to non-dimensionalize time with respect to any timescale.
We choose ts1 , and write the dimensionless velocity, v̄ as

v̄ = [s̄′1, c̄
′
1, s̄
′
2]
T
, (54)

where prime denotes differentiation with respect T = t/ts1 . The dimension-
less form of (50) is then given by

1

λ

ts1
ts2

[(
1−

σ2

1 + σ2
h̄

)
s̄2 −

1

1 + σ2
h̄

]
= v̄ · ∇̄(h̄). (55)

To approximate the solution to (55), we will expand h̄ in terms of a power
series in λ

h̄ =
∞∑
i=0

h̄iλ
i (56)

where the h̄i’s are functions of the dimensionless concentrations s̄1, c̄1 and s̄2:

h̄i = h̄i(s̄1, c̄1, s̄2). (57)

Inserting (56) into (55) and collecting like terms yields, at zeroth order,

h̄0 =
(σ2 + 1)

σ2s̄2 + 1
s̄2, (58)

which is identically the c̄2-nullcline. Additionally, at first order, we have,

h̄1 =
(σ2 + 1)2

(σ2s̄2 + 1)4(κ2 + 1)
s̄2 −

δS(σ2 + 1)2

(s̄2σ2 + 1)3(κ2(σ2 + 1) + 1)
c̄1. (59)

The second term on the right hand side of (59) represents (at first order) the
time-dependency of the manifold Mλ. We will denote this term as h̄1(t):

h̃1 ≡
(σ2 + 1)2

(σ2s̄2 + 1)4(κ2 + 1)
s̄2, h̄1(t) ≡

δS(σ2 + 1)2

(s̄2σ2 + 1)3(κ2(σ2 + 1) + 1)
c̄1. (60)

Thus, up to first order, we have, as an approximation to the dynamics on
Mλ

c̄2 = h̄0 + λ
[
h̃1 − h̄1(t)

]
+O(λ2), (61)
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and the first order solution (59) is therefore comprised of two terms: h̃1 and
h̄1(t). The truncated approximation

c̄2 = h̄0 + λh̄1 +O(λδS c̄1) (62)

is the static approximation, which gets closer to the c̄2-nullcline as λ →
0. The term h̄1(t) is dynamic, and accounts for the non-autonomous time-
dependency of the slow manifold as the non-observable reaction transpires.
By inspection of (60), it is clear that if

δSλ ∼ 1, (63)

then the asymptotic expansion of Mλ may no longer be uniform when c1 is
large. In other words, a QSSA may not be appropriate on the ts1 timescale,
over which we can assume that c1 will be near its maximum value. What is
the nature then, of the fast timescale tc2 , and what does it tell us about the
QSSA for the indicator reaction? Let us rescale the mass action equations
with respect to T̄ = t/tc2 to obtain:

ds̄2

dT̄
= λ

[(
σ2

1 + σ2
c̄2 − 1

)
s̄2 +

α2

1 + σ2
c̄2

]
+
tc2
ts1
c̄1, (64a)

dc̄2

dT̄
=

[(
1−

σ2

1 + σ2
c̄2

)
s̄2 −

1

1 + σ2
c̄2

]
. (64b)

If λ� 1, but tc2/ts1 is order unity, then the tc2 is a timescale over which the
accumulation of s2 is linear, i.e.

ṡ2 = k2c1 +O(λ), t ≤ tc2 . (65)

One the other hand, if tc2/ts1 � 1, then tc2 defines a lag time, which is a259

timescale over which the indicator reaction is essentially stationary.260

Next, consider let us consider that λ < tc2/ts1 � 1. In this case, the
leading order solution is still given by (65), and the fast timescale tc2 defines
a narrow time interval over which the accumulation of both s2 and c2 is
asymptotically linear. Note this is analogous to the timescale tc1 in the non-
observable reaction, over which the growth of c1 is asymptotically linear and
the depletion of s1 is negligible if ε � 1. In the context of the indicator
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reaction, tc2 defines a short timescale over which the accumulation is linear
but asymptotically negligible. Additionally, since

λδS ∼
tc2
ts1
. (66)

we see that minimizing tc2 acts to reduce the region of non-uniformity in the261

asymptotic expansion ofMλ. We also note that if k−3 � k4, then, practically262

speaking, we can assume a QSS at t = 0, since the higher order term h̄1(t)263

is inversely proportional to (1 + κ2) (see Figure 4d).264

We can conclude that, as a rule of thumb, the smaller the ratio tc2/ts1 ,265

the more readily the QSSA can be imposed on the ts1 timescale when the in-266

dicator reaction is slow. However, if λ� tc2/ts1 . 1, then a QSSA cannot be267

immediately imposed on the dynamical model of the mass action equations;268

therefore a QSSA should not be applied for t . ts1 . Thus, the lag timescale269

influences when the QSSA is valid, in much the same way tc1 determines270

the onset of validity of the MM equation in the non-observable reaction (see271

Figures 4a–4d).272

From the perspective of the dynamics in the four-dimensional phase-
space, when δS � 1, the non-observable reaction occurs so quickly that the
phase space trajectory, at approximately t = ts1 , lies extremely close to the
intersection of the s2–c2 plane and the hyperplane s2 = s01. In other words,
when δS is sufficiently large, the reactions essentially decouple temporally:

ṡ2 =
V1

KM1 + s1
s1, tc1 ≤ t ≤ ts1 , (67a)

ṡ2 = −
V2

KM2 + s2
s2, ts1 < t. (67b)

Thus, we naturally obtain an inner solution (67a), valid for t ≤ ts1 , and an273

outer solution (67b), valid for t > ts1 (see [5] for technical details regarding274

the precise asymptotic expansions).275

4. The auxiliary enzyme reaction mechanism276

We now turn our attention to the auxiliary enzyme reaction mechanism277

described by the chemical equations (3)–(4). In this assay, the product of the278

non-observable reaction is the indicator enzyme E2 [4]. Following the same279

format utilized in the analysis of the sequential enzyme reaction mechanism,280
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Figure 4: Numerical solution of the mass action equations (solid black curves) and the
QSS approximation (27a) (broken red curve) for the coupled sequential enzyme reaction
mechanism when the indicator reaction is slow. In all simulations e01 = 1, s01 = 100, k1 =
10, k2 = 100 and k−1 = 1 and e02 = 1. Panel (a): k3 = 0.1, k−3 = 0.1, k4 = 0.1. Panel (b):
k3 = 1, k−3 = 1, k4 = 1. Panel (c): k3 = 10, k−3 = 1, k4 = 1. k3 = 1, k−3 = 100, k4 = 1.
As the ratio tc2/ts1 gets smaller, the QSSA can be imposed almost immediately. In fact,
if k−3 is large, the QSSA can be imposed when t = 0 as illustrated in panel (d). This is
captured asymptotically by the fact that the order λ terms in the expansion of Mλ are
inversely proportional to (1 + κ2).

we begin by scaling the mass action equations obtained by applying the law281

of mass action to (3)–(4).282
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4.1. Scaling of the auxiliary enzyme reaction283

The mass action equations that govern this reaction are:

ṡ1 = −k1(s01 − c1)e1 + k−1c1 (68a)

ċ1 = k1(e
0
1 − c1)s1 − (k−1 + k2)c1 (68b)

ṡ2 = −k3(eA2 − c2)s2 + k−3c2 (68c)

ċ2 = k3(e
A
2 − c2)s2 − (k−3 + k4)c2, (68d)

where eA2 denotes the concentration of the activated enzyme E2 and is given
by

eA2 = s01 − s1 − c1 (69)

with s01 denoting the initial non-observable substrate S1 concentration. Thus,
the indicator reaction is described by a non-autonomous set of equations
with eA2 (t) as its forcing term. As with the sequential enzyme reaction, the
auxiliary enzyme reaction has four timescales. The timescales tc1 and ts1 are
identical to those defined earlier in the sequential reaction. The additional
timescales are tac2 and tas2

tac2 =
1

k3(KM2 + s02)
, tas2 =

KM2 + s02
k4〈eA2 〉

, (70)

corresponding to the respective fast and slow timescales of the indicator reac-
tion (see [4] for details regarding the validity of these timescales). The quan-
tity 〈eA2 〉 is the average amount of enzyme produced by the non-observable
reaction over the duration of the indicator reaction. Rescaling the indicator
reactions with respect to ts1 yields

ds̃2

dT
=

max eA2
〈eA2 〉

(1 + β)(1 + κ2)

δaS

[(
β

1 + β
c̃2 − ẽA2

)
s̃2 +

α2

1 + β
c̃2

]
(71a)

µ
dc̃2

dT
=

max eA2
〈eA2 〉

(1 + β)(1 + κ2)

δaS

[(
ẽA2 −

β

1 + β
c̃2

)
s̃2 −

1

1 + β
c̃2

]
, (71b)

where µ, β, δaS, s̃2,max eA2 , ẽ
A
2 and c̃2 are given by:

δaS ≡ tas2/ts1 , β ≡
s02
KM2

, µ ≡ max eA2
KM2 + s02

, ẽA2 = eA2 /max eA2 (72a)

s̃2 ≡
s2

s02
, c̃2 ≡

(KM2 + s02)

s02 max eA2
c2, max eA2 ≡ max

t≤tas2
eA2 . (72b)
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As in the case of the sequential enzyme reaction with λ, µ � 1 is enough
to establish the presence of a slow manifold. But, does the rate of the non-
observable reaction affect the validity of the leading order approximation

c2 =
eA2 s2

KM2 + s2
+O(µ) (73)

on faster timescales, even when µ � 1? Again, we must consider how the284

slow manifold of the indicator reaction evolves in the phase-plane.285

4.2. The auxiliary enzyme reaction exhibits a Laelaps manifold286

In the case of the auxiliary enzyme reaction, the time-dependent slow287

manifold propagates (swings) through the vector field as long as the non-288

observable reaction is producing E2. In this scenario, the c2-nullcline swings289

through the phase-plane (with the slow manifold lying just above it) almost290

like a (curved) windshield wiper rotating counterclockwise. The phase-plane291

solution to the indicator reaction initially follows behind the swinging c2-292

nullcline until it eventually catches it, at which time c2 reaches its maximum293

value. After the solution catches the c2-nullcline it slides down the c2-nullcline294

(essentially on the slow manifold) as it approaches the origin (see, Movie 2295

in Supplementary Materials). We refer to this manifold as a Laelaps manifold296

after the Greek mythological dog that always caught what she was hunting.297

Analogously, the solution to the mass action equations “hunts” the moving298

the c2-nullcline (see Figures 5a–5d).299

4.3. Analysis of slow and fast auxiliary indicator reactions300

In this section we again consider the extreme cases when the indicator re-301

action is very fast or very slow in comparison to the non-observable reaction302

for the coupled auxiliary reaction mechanism. The major difference between303

the auxiliary and the sequential reaction mechanisms is that, while the in-304

dicator reaction for the sequential enzyme assay cannot complete before the305

non-observable reaction, the auxiliary indicator reaction can complete before,306

after, or near the same time as the non-observable reaction.307

4.3.1. Analysis of fast indicator reactions308

If the indicator reaction is extremely fast, then we can assume that δaS �
1. If µ� 1, then the leading order approximation is

c2 =
eA2

KM2 + s2
s2 +O(µδaS) (74)
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Figure 5: Snapshots of the numerical solution of the mass action equations (68) (solid
black dot) and c2-nullcline (broken red curve) for the coupled auxiliary enzyme reaction
mechanism. This reaction mechanism exhibits a Laelaps manifold. Note that the numer-
ical solution follows the c2-nullcline, eventually catching it, and then descends towards
the origin along a path that lies extremely close to the c2-nullcline. The nullcline swings
through the phase-plane almost like a windshield wiper that rotates counterclockwise.
A dynamical representation of the Laelaps manifold is shown in Movie 2 (Supplemen-
tary Materials). The constants (without units) used in the numerical simulation are:
e01 = 1, s01 = 100, k1 = 1, k2 = 10 and k−1 = 1. s02 = 100, k3 = 1, k4 = 5 and k−3 = 1.

and the depletion of substrate is given in terms of a Lambert-W function
(again, see [4] for details regarding this particular solution):

s2 = KM2W

[
σ2 exp

(
σ2 −

k4$t
2

2KM2

)]
, $ ≡ εk2s

0
1 (75)
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Notice for fast indicator reactions, it is not necessary that s02 � s01, as the309

amount of activated enzyme concentration e2 produced by the non-observable310

will be small if the duration of the indicator reaction is short. Geometrically,311

the phase-plane solution catches the c2-nullcline rather slowly; this is because312

the solution “hovers” under the c2-nullcline for most of the reaction. It313

catches the c2-nullcline towards the end of the reaction and then follows314

the s2-nullcline and c2-nullclines down to the origin of the phase-plane (see315

Figures 6a–6d).316

Thus, if we observe the dynamics in the phase-plane, we see a long (al-317

though short relative to the depletion timescale of the non-observable reac-318

tion) period of depletion of s2 and accumulation of c2, followed by a small319

timescale over which the concentration c2 rapidly diminishes (see Figure 7).320

Note that this is opposite of typical fast/slow systems, as there is usually a321

short timescale which accounts for rapid accumulation, followed by a long322

timescale the accounts for slow depletion. In the latter case, when the indi-323

cator reaction is extremely fast, we see slow/fast dynamics in the mass action324

equations of the indicator reaction; this is in contrast to the usual slow/fast325

dynamics of prototypical singularly perturbed equations.326

4.3.2. Analysis of slow indicator reactions327

As the indicator reaction begins to slow down, the slow depletion or328

accumulation timescale (present when the indicator reaction is fast) begins329

to shorten, and the timescale that accounts for the rapid depletion of c2330

begins to lengthen. As the speed of the indicator reaction begins to shorten,331

the dynamical behavior of the solution in the phase plane starts to resemble332

a more standard slow/fast problem (see Figure 8).333

The reason for this can be explained through scaling analysis. First, if
the non-observable reaction is much faster than the indicator reaction, then
we expect that

〈eA2 〉 = lim
t→∞

1

t

∫ t

0

eA2 dt ≈ s01 ≡ sup
0≤t<∞

eA2 , (76)

and thus we will take Ts2

Ts2 =
KM2 + s02
k4s01

(77)

to be the appropriate depletion timescale for the indicator reaction. More-
over, we will also assume that δaS � 1 for slow indicator reactions. Applying
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Figure 6: Snapshots of the numerical solution of the mass action equations (68) (solid
black dot) and c2 (broken red curve) and s2 (broken blue curve) nullclines for the coupled
auxiliary enzyme reaction mechanisms when the indicator reaction is fast. The constants
(without units) used in the numerical simulation are: e01 = 1, s01 = 100, k1 = 1, k2 = 1 and
k−1 = 1. s02 = 1000, k3 = 10, k4 = 100 and k−3 = 1.

the previous scaling laws, we obtain

ds̃2

dT
=

(1 + β)(1 + κ2)

δaS

[(
β

1 + β
c̃2 − ẽA2

)
s̃2 +

α2

1 + β
c̃2

]
(78a)

µ
dc̃2

dT
=

(1 + β)(1 + κ2)

δaS

[(
ẽA2 −

β

1 + β
c̃2

)
s̃2 −

1

1 + β
c̃2

]
, (78b)
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Figure 7: In the coupled enzyme auxiliary reaction mechanism when the indicator reaction
is slow, phase-plane trajectories undergo a long period of rapid accumulation of c2 followed
by a short period of rapid depletion of c2. In this simulation k3 = 1, k4 = 100, k−3 = 1, s02 =
1000, and k1 = 1, k2 = 1, k−1 = 1, e01 = 1 and s01 = 100.
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Figure 8: In the coupled auxiliary enzyme reaction mechanism when the indicator reaction
is fast, phase-plane trajectories undergo a short period of rapid accumulation of c2 followed
by a longer period of slow depletion of c2. In this simulation k3 = 1, k4 = 1, k−3 = 1, s02 =
100, and k1 = 10, k2 = 100, k−1 = 1, e01 = 1 and s01 = 10.

where µ and δaS are now given by

µ ≡
s01

KM2 + s02
, δaS ≡

Ts2
ts1
. (79)

The condition that µ � 1 is necessary to ensure a QSSA on the depletion
timescale (i.e., when t > ts1 . However, by inspection, it is clear that if

δaS � (1 + β)(1 + κ2) (80)
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then s2 will be a slow variable for the duration of the non-observable reaction.
The question we want to address is: Can we assume a QSSA for the duration
of the non-observable reaction? First, notice we can define a RSA for the
indicator reaction over ts1 as

max |ṡ2| · ts1 � s02 =⇒ δaS � (1 + β)(1 + κ2), (81)

which is equivalent to the relationship we observe in the scaled equation
(78a). On the other hand, if we demand that

µδaS � (1 + β)(1 + κ2), (82)

we find that it is necessary that

tac2
ts1
� 1, (83)

where tac2 is given by

tac2 ≡
1

k3(KM2 + s02)
. (84)

The task now is to understand the significance of both (82) and (83), and the
nature of tc2 . To state things precisely, what happens when (80) holds but
(82) does not? Can a QSSA for the indicator reaction still be employed for
t ≥ 0? To explore this relationship, we first rescale the mass action equations
with respect to t̂ = t/tac2

ds̃2

dt̂
= µ

[(
β

1 + β
c̃2 − ẽA2

)
s̃2 +

α2

1 + β
c̃2

]
(85a)

dc̃2

dt̂
=

(
ẽA2 −

β

1 + β
c̃2

)
s̃2 −

1

1 + β
c̃2, (85b)

from which we see that tac2 defines a short time scale when µ� 1. The take-334

away is that if tac2 is very short, then we do not expect s2 or c2 to change very335

much along this timescale. Thus, tac2 is a lag time, similar to the timescale336

tc2 defined in the sequential reaction. However, if tac2 begins to lengthen, and337

approaches a magnitude that is comparable to ts1 , then we expect c2 to vary338

significantly over ts1 .339
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What happens, however, when tc2 is of the same order of magnitude of
as ts1? In mathematical terms, this is

1

10
ts1 < tac2 ≤ ts1 . (86)

Geometrically, the QSSA fails until t is on the order of ts2 . This is because
in order to impose the QSSA, it is necessary that the equation for complex
scale as

εċ2 = f(c2, s2, t), (87)

where ε� 1. If µδaS is too large, and tc2 is similar in magnitude to ts1 , then340

it is not asymptotically valid to approximate c2 as being in a QSS during the341

time course of the non-observable reaction. Thus, in an analogous manner342

that was observed in the analysis of the sequential enzyme reaction, the343

timescale tac2 plays a critical role in regulating when the QSSA is valid (see344

Figures 9a and 9b).345

Geometrically, the invalidity of the QSSA over the ts1 timescale is due to346

the fact that the c2-nullcline propagates through the phase-plane at a speed347

that is initially much faster than the solution to the mass action equations348

(see Figures 10a and 10b for the geometrical interpretation).349

As a concluding remark, we note that when the indicator reaction is
extremely slow, we have

s2 = s02, t ≤ ts1 (88a)

s2 = KM2W [β exp(β − η2t)] , t ≥ ts1 , (88b)

where η2 ≡ V2/KM2 and W [·] denotes the Lambert-W function. Thus, the350

reactions essentially decouple (temporally), and the indicator reaction re-351

sembles a single-enzyme, single-substrate reaction when t ≥ ts1 . Together,352

equations (88a) and (88b) constitute inner and outer solutions.353

5. Discussion354

In this work, two types of coupled enzyme reaction mechanisms – the355

sequential enzyme and auxiliary enzyme reaction mechanisms – assays have356

been analyzed through scaling analysis. The main contribution of this paper357

is the phase-plane analysis and geometric understanding of how scaling laws358

and how singularly perturbed problems in chemical kinetics can be analyzed359
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Figure 9: Illustration of the validity of the QSSA in the coupled auxiliary enzyme reaction
mechanism. The broken red curve is the numerical solution corresponding to the QSS
approximation (74), and the solid black curve is the numerical solution to the mass action
equations (68). In panel (a), δaS ≈ 27, µ ≈ 0.03 and tc2/ts1 ≈ 0.3. In panel (b), δaS ≈ 9.2,
µ ≈ 0.098 and tc2/ts1 ≈ 0.0088. Notice the QSSA approximation matches for all time in
(b), even though µ is larger than in (a). This is because tc2/ts1 is very small, whereas in
(a), tc2 is of the same order magnitude as ts1 . (a) The constants (without units) used in
the numerical simulation are: e01 = 1, s01 = 10, k1 = 1, k2 = 100 and k−1 = 1. s02 = 100,
k3 = .01, k4 = 1 and k−3 = 1. (b) The constants (without units) used in the numerical
simulation are: e01 = 1, s01 = 10, k1 = 1, k2 = 100 and k−1 = 1. s02 = 100, k3 = 1, k4 = 1
and k−3 = 1. The concentration c2 has been scaled by its maximum value, and time has
been mapped to the t∞ scale: t∞(t) = 1− 1/ ln(t+ e).

when multiple timescales – four timescales in our case – are part of the360

phase-plane dynamics.361

From a mathematical perspective, we have shown that the mass action
equations that model the indicator reactions of both the sequential and aux-
iliary enzyme reaction mechanisms are expressed in a general form as

ṡ2 = δf(s2, c2, t) (89a)

εċ2 = δg(s2, c2, t), (89b)

where ε is proportional to the ratio of slow and fast timescales of the indica-362

tor reaction, and δ is the ratio of the slow timescales of the non-observable363

reaction to the indicator reaction.364

In the case of the indicator reaction of the coupled sequential enzyme
reaction mechanism we have shown that, if δ � 1, then, the mass action
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Figure 10: The geometric interpretation of the validity of the QSSA for the coupled
auxiliary enzyme reaction mechanism. The broken red curve is a snapshot of the c2-
nullcline in the phase-plane, and the solid black dot is the corresponding snapshot of the
numerical solution to the mass action equations (68). In panel (a), δaS ≈ 27, µ ≈ 0.03
and tc2/ts1 ≈ 0.3. In panel (b), δaS ≈ 9.2, µ ≈ 0.098 and tc2/ts1 ≈ 0.0088. The numerical
solution lags behind the c2-nullcline in (a), whereas in (b), the solution “keeps up” with
the swinging c2-nullcline. The approximation gets better as µ and tc2/ts1 get smaller. (a)
The constants (without units) used in the numerical simulation are: e01 = 1, s01 = 10, k1 =
1, k2 = 100 and k−1 = 1. s02 = 100, k3 = .01, k4 = 1 and k−3 = 1. (b) The constants
(without units) used in the numerical simulation are: e01 = 1, s01 = 10, k1 = 1, k2 = 100
and k−1 = 1. s02 = 100, k3 = 1, k4 = 1 and k−3 = 1. Time has been mapped to the t∞
scale: t∞(t) = 1− 1/ ln(t+ e).

equations can be can be approximated by a fixed point, x∗. As δ → ∞,
the approximation gets better and better. The significance of this result
is imperative to the analysis of the inverse problem, when KM1 and V1 are
estimated by applying least linear or non-linear squares algorithms to exper-
imental data collected from the indicator reaction. In the limit as δ → ∞,
the rate expression for product reduces to

ṗ =
V1

KM1 + s1
s1, (90)

when the RSA holds for the non-observable reaction. Thus, KM1 and V1365

could be estimated by analyzing progress curves generated by the indicator366

reaction.367

In contrast, we have shown that when δ � 1, the non-observable and in-
dicator reaction decouple temporally, in which case the mass action equations

33



can effectively be analyzed separately as two, two-dimensional autonomous
dynamical systems. Additionally, we have shown how fast timescales that
arise naturally in the scaled mass action equations of the indicator reactions
play a role in the determining the appropriate domain of validity for the
QSSA. This result is novel, since initial conditions typically start on the crit-
ical manifold of the singularly perturbed equations and thus it would seem
that a QSS could be imposed for all time. However, as we have shown, this
assumption does not hold if the indicator reaction is slow and th lag timescale
is too long. Moreover, if the indicator reaction is fast, then it must hold that:

λmin =
e02

KM2 + smax
2

� 1, µmax =
max eA2
KM2 + s02

� 1. (91)

This result has been explained via scaling but also geometrically through368

phase plane analysis.369

We hope that the applied mathematics and chemical kinetics communities370

will continue to investigate these types of reactions, as we feel there are still371

interesting and novel results to uncover.372
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