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Abstract.  The antiproliferative antimicrobial fungal metabolites known as the myrocins have been 

proposed to cross-link DNA by double nucleotide addition.  However, the nature of the DNA-reactive 

species is ambiguous, as myrocins have been isolated as functionally-distinct 5-hydroxy-γ-lactone and 

diosphenol isomers.  Based on computational studies and literature precedent, we hypothesized that the 

diosphenol 7 (assigned the trivial name myrocin G) is the biologically-active form of the representative 

isolate (+)-myrocin C (1).  To probe this, we developed a 15-step enantioselective route to 7.  A complex 

fragment coupling reaction unites two synthetic precursors of similar complexity and forms the central 

ring of the target in a single step.  In support of our hypothesis, 7 was efficiently transformed to the 

bis(sulfide) 6, a product previously isolated from reactions of 1 with benzenethiol.  This work provides 

the first direct access to the diosphenol 7, sets the stage for elucidating the mode of interaction of the 

myrocins with DNA, and provides a foundation for the synthesis of other pimarane diterpenes. 

  



 

Main text:  Efforts to elucidate the mechanism of action of natural products are complicated when 

the metabolite can adopt two or more functionally-distinct forms.  This issue is exemplified by the 

antiproliferative antimicrobial metabolites myrocins C (1)1 and B (2),2,3 fungal isolates that contain a 

sensitive 5-hydroxy-γ-lactone residue (Scheme 1A, blue in 1 and 2).  Literature indicates4 this substructure 

undergoes facile ring-opening to the corresponding diosphenol under mildly acidic or basic conditions, 

raising uncertainty about its fidelity under biological conditions.  Consistent with this, the diosphenol 

isomer of 2, (–)-myrocin A (3), has been identified in fungal cultures.5  

Following their landmark total synthesis of (±)-myrocin C (1),6 Danishefsky and Chu-Moyer 

disclosed that treatment of synthetic (±)-1 with excess thiophenol and triethylamine generated the 

bis(sulfide) 6 (63%, Scheme 1B).7 The mechanism for formation of 6 was proposed to comprise SN2´ 

substitution of the tertiary hydroxyl group (1®4), isomerization to the diosphenol 5, and addition to the 

resulting activated cyclopropane. This reactivity led the authors to speculate that the myrocins cross-link 

DNA by sequential nucleotide addition reactions.8  

 

  



Scheme 1. A. Structures of myrocins A–C (1–3).  B. Structure of the bis(sulfide) 6 and the originally 
proposed mechanism for its formation.  C. The diosphenol 7 is 2.3 kcal/mol more stable than 1 and 

hypothesized to be the biologically-active form of 1.  D. Retrosynthetic analysis of 7.  

 

 

The isolation of 3 suggests the existence of an analogous diosphenol isomer of 1, “myrocin G (7)”.  

Consistent with earlier experimental studies,4b our own DFT calculations indicate that 7 is 2.3 kcal/mol 

more stable than the ring isomer 1 (Scheme 1C).  This stability derives from a hydrogen-bonding 

interaction between the hydroxyl group and the adjacent carbonyl in 7. These data suggested to us an 

alternative order of events for 1®6 wherein ring-opening of 1 to the diosphenol 7 precedes the initial 

alkylation.   

Motivated by this analysis, we targeted 7 as the initial entry into this natural product family.  In 

addition, we identified the diosphenol double bond as a strategic locus that could be converted 

retrosynthetically to the diketone 8 in a redox-neutral fashion (Scheme 1D).  Further disconnection of the 

C9–C10 bond by a fragment coupling reaction reveals the α,β-cyclopropylketone 9 and the unsaturated 
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ketone 10 as two precursors of similar complexity.  This synthetic strategy features the direct, redox-

neutral installation of the C9 alcohol, high modularity, and independent introduction of the peripheral C4 

and C13 quaternary centers. 

The coupling fragments 9 and 10 were prepared in 3–4 steps from known compounds (Scheme 2).  

Beginning with the Diels–Alder adduct 11,14 Wittig olefination [potassium bis(trimethylsilyl)amide, 

methyl triphenylphosophium bromide], tandem enoxysilane hydrolysis and �-carbamate elimination 

(aqueous hydrochloric acid), and α-dehydroiodination (iodine, pyridine)9 provided the C-ring fragment 

10 (22% over four steps).  The A-ring fragment 9 was synthesized from the �-ketoester 12.10 

Stereoselective Robinson annulation11 between 12 and acrolein diethylacetal provided the enone 13 (32%, 

92% ee).  α-Dehydroiodination9 of 13 proceeded in 97% yield.  Corey–Chaykovsky cyclopropanation12 

(trimethylsulfoxonium iodide, sodium hydride) provided a 2.3:1 mixture of diastereomeric α,β-

cyclopropylketones.  The major (desired) diastereomer 9 was isolated in 64% yield by recrystallization. 

 

Scheme 2.  Synthesis of the fragment coupling partners 9 and 10. TMSE = 2-(trimethylsilyl)ethyl. 

 

 

 

Treatment of the iodocyclopropane 9 with iso-propylmagnesium chloride–lithium chloride 

complex,13,14 followed by addition of the iodoenone 10, generated the fragment coupling product 14 (92%, 

8.2:1 dr, Scheme 3).  The stereoselectivity in the addition was anticipated based on the known 
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stereoelectronic preferences for nucleophilic addition to cycloalkanones15 and consideration of non-

bonded interactions in the transition state.  It is noteworthy that retro-aldol reaction of 14 is precluded by 

the geometric constraints introduced by the cyclopropane ring.   

The ring closure precursor 16 was prepared by a five-step sequence comprising Stille cross-

coupling  [tetrakis(triphenylphosphine)palladium-(0), copper(I) iodide, cesium fluoride] with tributyl(1-

ethoxyvinyl) tin, hydrolysis of the vinyl ether product (aqueous hydrochloric acid), tandem alcohol 

silylation–enoxysilane formation (trimethylsilyl trifluoromethanesulfonate, triethylamine), Rubottom 

oxidation (3-chloroperoxybenzoic acid), and conversion of the primary alcohol to an allyl carbonate (allyl 

chloroformate, pyridine, 37% overall).  The structure of the intermediate α-hydroxyketone was confirmed 

by X-ray analysis.16 

After much experimentation, we found that treatment of the allyl carbonate 16 with sodium tert-

butoxide in tetrahydrofuran at 0 °C generated the diosphenol 19 (64%).  Mechanistic studies suggest that 

19 is formed via aldol addition (16→17), carbonate migration (17→18), and β-elimination.  The silyl 

migration product 20 was isolated separately in 15% yield. 

 

  



Scheme 3. Synthesis of 19. 

 

 

This cyclization cascade provides expedient access to a protected form of 7.  After some 

consideration, we recognized that the key fragment coupling–ring closure cascade could potentially be 

carried out in one flask by embedding a latent enolate nucleophile in the C-ring electrophile.  Toward this 

end, we prepared the enoxysilane 24 by the sequence shown in Scheme 4.  Beginning with the α-

iodoenone 10, ketalization (ethylene glycol, p-toluenesulfonic acid) followed by lithium–halogen 

exchange and addition of the Weinreb amide17 21 provided the α,β-unsaturated ketone 22 (70%).  Removal 

of the silyl ether (tetra-n-butylammonium fluoride), installation of the allyl carbonate (allyl chloroformate, 

pyridine), and removal of the acetal (aqueous hydrochloric acid) generated the β-diketone 23.  Site-

selective deprotonation of 12 (lithium hexamethyldisilazide) and trapping of the resulting enolate with 

chlorotrimethylsilane provided the target enoxysilane 24. 
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Scheme 4. Synthesis of the enoxysilane 24. 

 

 

Attempts to effect the fragment coupling of the enoxysilane 24 with the organomagnesium reagent 

derived from 9 were unsuccessful.  We found, however, that lithium–halogen exchange (n-butyllithium, 

–78 °C), followed by immediate addition of the enoxysilane 24 and warming to 0 °C provided the fully 

annulated product 19 in 38% yield (Scheme 5).  The modest yield of this transformation is offset to some 

extent by the rapid increase in molecule complexity achieved.  Deprotection of 18 (tetra-n-

butylammonium fluoride) then provided the target 7 (64%).  Subjecting synthetic 7 to the conditions 

disclosed by Danishefsky and Chu-Moyer7 provided the bis(sulfide) 6 (74%, Scheme 6).  This result 

provides support for the our hypothesis and indicates that the diosphenol 7 is a competent intermediate in 

the double nucleophilic addition of thiols.  We reasoned that (+)-myrocin C (1) itself might be accessible 

by disrupting the diosphenol hydrogen bond, thereby making lactonization thermodynamically 

favorable,18 although exploratory experiments toward this end were unsuccessful.  
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Scheme 5. One-step synthesis of 19 from 9 and 24. 

 

 

Scheme 6.  Synthesis of the bis(sulfide) 6 from the diosphenol 7. 

 

 

In summary, we have developed a concise, enantioselective synthesis of “myrocin G” (7), the 

putative active form of the antiproliferative antimicrobial metabolite myrocin C (1).  Key to the success 

of this approach was the development of a powerful annulation strategy that forges the central ring of the 

target in a single step.  Future work will focus on elucidating the mode of interaction of 7 with DNA or 

its protein target(s) and applying this strategy to other pimarane diterpene natural products. 
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