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Abstract

Finding new medicines is one of the most important tasks of pharma-
ceutical companies. One of the best approaches to finding a new drug
starts with answering this simple question: Given a known effective drug
X, what are the top 100 molecules in our database most similar to X?
Thus the essence of the problem is a nearest-neighbors search, and the
key question is how to define the distance between two molecules in the
database. In this paper, we investigate the use of topological, rather than
geometric, or chemical, signatures for molecules, and two notions of dis-
tance that come from comparing these topological signatures. We in-
troduce PHoS (for Persistent Homology-based virtual Screening), a new
system for ligand-based screening using a topological technique known
as multi-parameter persistent homology. We show that our approach can
match or exceed a reasonable estimate of current state of the art (including
well-funded commercial tools), even with relatively little domain-specific
tuning. Indeed, most of the components we have built for this system are
general-purpose tools for data science and will be released soon as open
source software.

1 Introduction

In recent years, the search for new drugs has been moving from the wet labs to
the computer. The search, when conducted in silico, uses a process known as
virtual screening. Drugs generally work by attaching to certain binding pockets
on specific proteins. The compound that attaches to the protein (i.e., the drug)
is called the ligand. There are two main ways of approaching virtual screen-
ing: structure-based methods consider the crystal structure of the protein and
search for ligands that will have a good fit with a known binding pocket of
that particular protein, by considering the shape and chemical properties of the
binding pocket, and trying various conformations of all the potential ligands
in the search database. The ligand-based approach instead focuses on a known
ligand (either an existing drug, or a naturally occurring substance such as a
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neurotransmitter), and searches the database to find compounds with similar
shapes and chemical properties [6].

Ligand-based screening is generally faster, and has the advantage of working
even when the exact binding site is unknown, or indeed even when the protein
the drug acts on is unknown. Structure-based approaches are more compu-
tationally intensive, and require more information, though they can be more
conclusive as a result. In either case, only after likely candidate drugs have
been found and validated in virtual screening are they ever tested in a wet
lab. [63]

Shape, particularly 3D shape, turns out to be extremely important to pre-
dicting the effectiveness of a drug-protein interaction [39]. Much of the difficulty
in virtual screening involves handling multiple conformations of compounds that
have the same molecular formula, but important structural differences, such as
differences in bond angles. Even small conformational differences can have up
to a 100x impact on the effectiveness of a drug [39].

While there are many approaches to ligand-based virtual screening, several
of which will be discussed in the Related Work section, our approach focuses
on the application of topological data analysis to this problem. Topology is the
branch of mathematics that deals with properties of a geometric object that are
invariant under continuous deformations (informally, continuous deformations
include bending, twisting and stretching, but not puncturing or tearing) [35, 59].
Topological data analysis (TDA) uses the techniques and tools of topology to
study the shape (i.e., coarse-scale, global, geometric properties) of data [16].

One of the most popular TDA tools is persistent homology [71, 28]. This
paper focuses on the application of an extension of this called multi-parameter
persistent homology [17].

Specifically, we make extensive use of a new software tool for working with 2-
parameter persistent homology called RIVET (the Rank Invariant Visualization
and Exploration Tool) [48], codeveloped by the the first two authors. Mathe-
maticians have been refining the tools of topological data analysis for more than
a decade, and there is now a large literature on the theoretical aspects of multi-
parameter persistence. However, RIVET is the first publicly available software
package for working with multi-parameter persistent homology in data analysis
applications.

The methodology we use to compare our approach to existing approaches
requires explanation: We do not have access to the (expensive) commercial
software licenses needed to run leading virtual screening tools like OpenEye’s
ROCS [55]. While benchmarks of the performance of such tools on publicly
available data have been published, for technical reasons1 we are not able to
exactly run the same benchmarks on our tool. Thus, to compare our tool with
these commercial tools, we run a slightly modified version of one benchmark
on our tool, and then derive an estimate of performance of our tool on the
unmodified benchmark by using the performance of an open source tool as a

1The tool needed to process the data is also commercial and expensive, so we used the
open source RDKit [46] instead, which failed to load some of the molecules in the dataset.
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reference. We explain this in more detail in the Results section.
We find that the estimated performance of our tool on the benchmark is

slightly better than ROCS and others, with many potential avenues remaining
for future improvements.

2 Related Work

There are many other techniques for ligand-based virtual screening. Shin et al.
provide a useful survey [63], which we briefly summarize:

One dimensional approaches, such as SMILES [67] or SMARTS [1], represent
the molecule as a string of characters, and attempt to judge similarity using text
distance, Tanimoto correlation, or similar metrics. These methods are cheap,
but not very effective, since much of ligand-protein interaction depends on the
3D shape of the ligand, which such methods fail to capture.

Two dimensional approaches, such as BCI [8], RASCAL [58], MOLPRINT2D [10],
and SIMCOMP [36], represent the molecule as a graph similar to those found
in any chemistry textbook. These are more useful than 1D approaches, but still
fail to capture much of the important structure of the molecule. For example,
two different conformations of phosphodiesterase 4D that match exactly (100%)
with a 2D similarity method, have only 98% similarity in 3D, and the difference
between the two means a 10x-100x difference in efficacy [39], so it can’t be
ignored.

Three dimensional approaches, such as USR [7], PL-PatchSurfer [38], and
ROCS [37], use features like volume, atomic distances, surfaces, or fields.

• USR [7] works by calculating statistical moments from various reference
points in the molecule — for example, it calculates every atom’s distance
from the center of mass, and then averages those distances, and calculates
the variance and skewness. Similarly it measures the distance between
every atom and the farthest atom from the center, and the closest, and
also the atom that is farthest from the atom that is farthest from the
center. The inverse of the Manhattan distance between these 12 moments
in each of the two molecules is then the similarity. The weakness relative to
our method is that small changes (such as one that changes which atom is
farthest from the center of mass) can significantly and undesirably change
the signature. Also, this is a purely structural measure, so there is no way
to encode chemical or electrostatic properties in this signature. However,
later variations [6, 50] do make some alterations to support additional
properties.

• PL-PatchSurfer [38] takes a different approach. Rather than computing a
global fingerprint for each ligand, it computes the surface of each molecule
and breaks it down into local patches, so that it can compare the molecules
by looking for similar patches.

• ROCS [55] uses a spherical Gaussian function centered on each heavy
atom, and then tries to orient the two molecules such that they have the
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best possible overlap when superimposed. Once aligned, ROCS calculates
the “Shape Tanimoto” [31], which is a measure of the difference between
the volume of the two shapes. More recent implementations add “atom
color” to the similarity calculation, where color refers to role or type of the
atom in the overall molecule. Its performance depends heavily on having
a large number of conformations for each compound in the database. It
also depends on finding a good alignment of the two molecules, which the
algorithm does not guarantee to be optimal.

Ours is not the first application of topology to medicinal chemistry: One of
the early applications of persistent homology was to protein docking [3], which
continues to be an area of active exploration [69, 70, 44], though the details of the
approach taken in those work are rather different than ours. More recently, there
have been results in structure-based screening using standard (single-parameter)
persistent homology together with machine learning [14]. In contrast, our ap-
proach achieves state of the art performance in ligand-based screening, without
any need for training a machine learning model. Multi-parameter persistence
allows us to both capture the important properties of the shapes of molecules,
and to incorporate non-shape information such as electrostatics in a coherent
and effective manner.

More recently, there have been efforts to leverage deep learning [41], and
there has even been a system that combined (single-parameter) persistent ho-
mology with deep learning [14, 13] in a docking-based approach.

As far as we know, no one has published results on using multi-parameter
persistent homology for virtual drug screening. However, Anthony Bak has
given talks beginning in 2013 [4] and most recently in 2015 [5] on (hitherto
unpublished) work he did using the persist homology software Dionysus [52]
and the topological data analysis tool Mapper [64] on the problem of drug
similarity. He reports that he was able to find new chemical similarities that
experts in the field had previously not known about, and that these discoveries
were primarily driven by analysis of 2nd homology (voids or cavities). Bak’s
analysis uses standard 1-parameter persistent homology, not multi-parameter
persistent homology, though he suggests that the latter should be well suited to
this problem. He also repeatedly cited computational limitations as obstacles
to better results, a sentiment that we echo. We have made progress on this
issue by using cluster computing, but much future work remains in the area of
computational efficiency for this technique.

Finally, multi-parameter persistent homology has been used to classify hep-
atic lesions in computed tomography images [2].

3 Methods

3.1 The PHoS Pipeline

Our PHoS approach to ligand-based virtual screening begins, as any ligand-
based virtual screening system must, with a database of candidate ligand molecules.
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Such a database may either contain one representative conformation for each
ligand, or multiple conformations per ligand. We first outline our ligand screen-
ing pipeline in the case that there is just one conformation per ligand: Using
2-parameter persistent homology, we associate to each ligand several topolog-
ical signatures; we work with two basic types of signatures: fibered barcodes
and Hilbert functions. We consider a dissimilarity measure on fibered barcodes
called the matching distance [], and a dissimilarity measure on Hilbert functions
called the `2-distance. These dissimilarity measures on ligand signatures give
us dissimilarity measures on the ligands themselves, in the obvious way.

Virtual screening then works in the following simple fashion: Given a dis-
similarity measure d on ligands obtained as above and a query ligand M , we
find and return the k nearest neighbors of M in the database, with respect to
d. In what follows, we explain the topological signatures and the metrics on
them: First, we introduce the requisite ideas from ordinary and two-parameter
persistent homology. Then, using these ideas, we discuss the PHoS pipeline in
more detail.

To extend our pipeline to the case where we have multiple conformations per
ligand, a number of straightforward approaches are possible; the simplest is to
take the dissimilarity between two molecules to be the minimum dissimilarity
between any two conformations. In this paper, our computational experiments
focus on the single confirmation case.

3.2 Betti numbers and Persistent Homology

Persistent homology provides simple, efficiently computable invariants of data
called barcodes. By data, we will mean a finite set of points in Euclidean space
Rn, though persistent homology works with other data types as well. A barcode
is simply a finite collection of pairs (x, y) ∈ R× (R∪{∞}), with x < y. Here we
give a brief informal explanation of persistent homology, emphasizing the basic
geometric intuition. Along the way, we also explain closely related topological
invariants called Betti numbers, which also play an important role in our work.
For a fully formal account of persistent homology, we refer the reader to the
literature [26, 57, 33]; we also highly recommend Matthew Wright’s short and
very clear video introduction[68].

To construct a barcode from data, we first construct a nested sequence of
geometric objects called a Vietoris-Rips filtration. To explain this, we will need
several simple definitions.

Neighborhood Graphs First, given a data set X = {x1, . . . , xk} ⊂ Rn, and
r ≥ 0 we define N(X)r, the r-neighborhood graph of X, to be the undirected
graph with vertices X and an edge [xi, xj ] if and only if |xi−xj | ≤ r. For r < 0,
we define N(X)r to be the empty graph, i.e., the graph with no vertices and no
edges.

Simplicial Complexes A simplicial complex is a higher-dimensional gener-
alization of an undirected graph, where we allow not only vertices and edges,
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but also triangles, tetrahedra, and their higher-dimensional analogues (called
simplices). If S and T are simplicial complexes such that S = T or T is ob-
tained from S by adding more simplices, we say that S is a subcomplex of T
and write S ⊂ T .

Clique Complexes For G an undirected graph with vertex set V , a k-clique
of G is a subset σ of V of size k such that any two elements of σ are connected
by an edge in G. We can extend G to a simplicial complex C(G), called clique
complex of G, by adding in a k-dimensional simplex with vertices σ for each
(k + 1)-clique σ, for all k ≥ 2. Thus, we add a triangle into the graph for each
3-clique, add a tetrahedron for each 4-clique, and so on.

Betti numbers The primary example of a property of a geometric object
that is invariant under continuous deformations is the presence and number of
holes in the object. As such, topology is largely concerned with the study of
holes. In fact, topologists distinguish between holes of different degree. In the
language of topology, 0-degree holes are connected components. Thus, to a
topologist, the symbol + has a single degree-zero hole, the symbol = has two
degree-0 holes, and the symbol ÷ has three degree-0 holes. A degree-1 hole is a
“tunnel” or hole you can see through, like the center of a roll of paper towels.
A degree 2-hole is a “hollow space,” like the empty space in an inflated balloon.
Objects in 3-dimensional space cannot have any other kinds of holes, but higher
dimensional objects can also have i-dimensional holes, for i ≥ 3.

A standard construction associates to any simplicial complex S a sequence
of non-negative numbers

β0(S), β1(S), β2(S), . . .

called the Betti numbers of S. Informally speaking, we interpret βi(S) as the
number of i-dimensional holes in S.

Importantly, the Betti numbers of a simplicial complex can be efficiently
computed in practice via linear algebra [26].

Vietoris-Rips Filtrations A filtration is a collection of simplicial complexes
F = {Fr}r∈R such that Fr ⊂ Fs whenever r ≤ s. Given a data set X, taking
the clique complex of each neighborhood graph of X gives us a filtration

V R(X) := {C(N(X)r)}r∈R.

This is called the Vietoris-Rips filtration of X; it is arguably the most pop-
ular construction of a filtration from data in applied topology, though others
are commonly considered as well. Note that if X is finite then are only finitely
many different simplicial complexes in V R(X).
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Figure 1: The Vietoris-Rips filtration of the heavy atoms of
2,3-butanediol in R3 (slightly simplified to save space). Blue is
used for triangles and green for tetrahedra.

Figure 2: The barcodes of the filtration in Figure 1 of the
heavy atoms of 2,3-butanediol. 0th barcodes are shown in black.
Intervals in this barcode represent connected components: each
interval ends when the component it represents connects to
another component. The 1st barcode, which consists of a single
interval, is shown in red: the interval represents the cycle that
is born in step 5 and dies in step 6. This example has an empty
ith barcode for all i > 1.

Barcodes As noted above, a barcode is a finite collection of intervals [x, y) on
the real line; see Fig. 2.

Under a very mild finiteness condition on a filtration F which is always
satisfied in practice, one obtains a barcode Bi(F ) for each i ∈ {0, 1, 2, . . .}, via
the application of standard ideas from algebraic topology and abstract algebra
[26, 22]. These barcodes are sometimes called the persistent homology of F .
Given a data set X, we thus obtain a barcode Bi(V R(X)) for each i. The
intervals of B0(V R(X)) are always of the form (0, y) for some y > 0.

Informally, the geometric interpretation of persistent homology is as follows:
Each pair (x, y) in the ith barcode of a filtration corresponds to an i-dimensional
hole in the filtration. x is the index at which the hole forms, and y is the index
at which the hole closes up. As this interpretation suggests, the barcode Bi(F )
in fact determines the Betti number βi(Fr) for each r ≥ 0: βi(Fr) is simply the
number of intervals in Bi(F ) which contain r. However, the barcode contains
additional information about how holes in different simplicial complexes of F
are related to one another.

The Vietoris-Rips filtration on the centers of the heavy atoms of the molecule
2,3-butanediol is shown in Figure 1, and its associated 0th and 1st barcodes are
shown together in Figure 2.

Importantly, these barcodes are readily computable for data sets contain-
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Figure 3: The Vietoris-Rips bifiltration of the heavy atoms of
2,3-butanediol in R3 (slightly simplified to save space), using
partial charge as the second parameter. Blue is used for trian-
gles and green for tetrahedra. Note the top row is identical to
Figure 1, while the lower rows provide new information.

ing thousands of points (or even more points for low-dimensional data, if one
uses a suitable approximation scheme [61, 25] or an alternative construction
called the alpha-filtration [26, 27]). The standard algorithms use a variant of
Gaussian elimination [26]. Moreover, these barcodes are known to be stable to
perturbations of the data [20].

3.3 Bifiltrations and Two-Parameter Persistent Homol-
ogy

In many data-analytic situations, a single filtration is not sufficient to encode
the structure of interest in our data. For example, if our data points X represent
atom centers in a molecule, the construction of barcodes outlined above is not
sensitive to the partial charge of the atoms. This motivates the consideration
of two-parameter persistent homology.

Two parameter persistent homology associates to a data set a bifiltration, a
2-parameter analogue of a filtration. A bifiltration is a collection of simplicial
complexes {Fr,s}(r,s)∈R2 such that Fr,s ⊂ Fr′,s′ whenever r ≤ r′ and s ≤ s′.

Vietoris-Rips Bifiltration As with the one-parameter case, there are several
ways one can associate a bifiltration to data. We will consider the Vietoris-Rips
Bifiltration[17], which has the advantage of being simple and computationally
tractable. Given a data set X = {x1, . . . , xk} ⊂ Rn and any function γ : X → R,
we define a bifiltration V R(X, γ) by taking V R(X, γ)r,s = C(N(Xs)r), where
Xs is the subset of X consisting of just those points whose function value is at
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most s. For instance, we may take X to be the set of atom centers of a molecule
and γ to be the function specifying the partial charge of each atom. Figure 3
illustrates this bifiltration for the same molecule considered in Figure 1.

At the end of this section, we consider in more detail the problem of associ-
ating a bifiltration to a ligand.

Barcodes of Bifiltrations? Perhaps surprisingly, the natural analogue of
a barcode for bifiltrations is (in general) an extremely complicated object—so
complicated in fact that one cannot hope to use this object in practical data
analysis applications, except in special cases [57, 17, 56]. In particular, contrary
to what one might naively hope, a barcode of a bifitration generally cannot be
defined in any reasonable way as a collection of regions in the plane.

Nevertheless, one can define simple topological signatures of bifiltrations
that are useful for data analysis. We focus on two here, the fibered barcode and
the truncated Hilbert function.2

Fibered Barcodes We define a fibered barcode to be a map which associates
each line L in R2 of non-negative slope to a barcode. Given a bifiltration F , we
now define an associated fibered barcode Bi(F ) for each i ≥ 0, as follows:

For L a line in R2 with non-negative slope, the restriction of F to L gives a
1-parameter filtration FL. We define Bi(F ), the ith fibered barcode of F , to be
the map L 7→ Bi(FL); this is well defined under very mild conditions on F .

The fibered barcodes Bi(F ) encode important information about the topo-
logical structure of F . For example, if L is a diagonal line—say, a line of slope
1—a long interval in Bi(FL) corresponds to a topological feature in F that
persists over a large range of both bifiltration parameters.

Truncated Hilbert Functions Let N denote the non-negative integers. For
i ≥ 0, the ith Hilbert function of a bifiltration F , denoted HiliF , is the function
R2 → N given by HiliF (a) := βi(Fa). That, is HiliF (a) is the ith Betti number
of the simplicial complex in F at index a. A visualization of some Hilbert
functions of bifiltrations arising from molecular data, provided by RIVET, is
shown in Figure 4; darker shading indicates a higher function value. It is easy
to check that the ith fibered barcode of a bifiltration determines the ith Hilbert
function.

We work with a variant of the Hilbert function, which takes the function to
be zero outside of a certain rectangle: Given a bifiltration F , let Ri(F ) denote
the minimal rectangle [a, b)× [c, d) containing any index where an i-dimensional
hole forms or closes up. This rectangle is well defined and of finite area under

2Both of these signatures are are defined in terms of an algebraic object called a persistent
homology module; this is basic object of study in multidimensional persistence[17]. To min-
imize the amount of formalism we need to introduce, we do not discuss persistence modules
here.
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Figure 4: The 0th Hilbert function on the bifiltrations of three
different molecules, taking the function γ to be the partial
charge function. From left to right: acetylsalicylic acid, ac-
etaminophen, and doxorubicin.

mild assumptions on F , e.g., when F is a Vietoris-Rips bifiltration. A formal
definition of Ri(F ) requires technical language that we have not introduced.3

Define RHi
F : R2 → N, the ith restricted Hilbert function of F , by

RHi
F (a) :=

{
HiliF (a) for a ∈ Ri(F ),

0 otherwise.

Remark 3.1. For X ⊂ Rn finite, and γ : X → R any function, RHi
V R(X,γ)

is piecewise constant; indeed, it can be shown that there is a rectangular grid
on Ri(F ), consisting of cells of the form [a, b) × [c, d), such that RHi

V R(X,γ) is

constant on each cell. RHi
V R(X,γ) is also square integrable, i.e.,∫

(RHi
V R(X,γ))

2 dA <∞.

3.4 Metrics on Topological Signatures of Bifiltrations

In both theory and applications of topological data analysis, dissimilarity mea-
sures on topological signatures play an essential role. Most often, one works with
a pseudometric, i.e., a dissimilarity measure which is non-negative, symmetric,
and satisfies the triangle inequality. There is a substantial literature on pseu-
dometrics in the multi-parameter persistence setting, and many pseudometrics

3For i ≥ 0, let F j denote the jth module in a minimal free resolution for the ith homology
module of F . Ri(F ) is the minimal rectangle containing all bigrades of elements in bases for
F 0 and F 1; see, e.g., the work of Lesnick and Wright[48].
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have been proposed; see for example [47, 60, 45, 12]. Here, we consider one pseu-
dometic on fibered barcodes, the matching distance [45], and one pseudometric
on Hilbert functions, the `2-distance. As mentioned above, these pseudomet-
rics each induce pseudometrics on ligands that we will use in our PHoS ligand
screening pipeline.

Matching Distance on Fibered Barcodes The matching distance on fibered
barcodes is a multiparameter extension of a popular metric on barcodes called
the bottleneck distance. Roughly, the bottleneck distance db(B, C) between two
barcodes B and C is the magnitude of a perturbation of B required to transform
B into C (or vice versa); here, magnitude is defined as the maximum distance
an endpoint of any interval moves in the perturbation.[21]. This distance has
very good theoretical properties, and plays a important role in the theoretical
foundations of topological data analysis [20, 18, 9, 62, 30]. The bottleneck dis-
tance is also readily computed [42], and together with its variant the Wasserstein
distance, is commonly used in applications[29, 2].

The matching distance dM between fibered barcodes B and C is defined in
terms of db by taking

dM (B, C) := max
L

wL db(B(L), C(L)),

where L ranges over all affine lines of positive slope, and wL is a weight depend-
ing only on the slope of L. The weights wL are chosen to ensure that dM satisfy
a natural stability property [45].

`2-Distance on Restricted Hilbert Functions For f, g : R2 → N any
square-integrable functions, the `2-distance between f and g is given by

d2(f, g) :=

√∫
(f − g)2 dA.

By Remark 3.1, when f and g are restricted Hilbert functions of Vietoris-Rips
bifiltrations, d2R(f, g) is well defined and finite.

3.5 Computation of Invariants and Metrics of Two-Parameter
Persistence

The RIVET software allows for computationally efficient handling of both fibered
barcodes and restricted Hilbert functions. RIVET precomputes a data struc-
ture on which efficient queries of a fibered barcode B can be performed: Given
a line L in R2 of non-negative slope, this data structure returns B(L). For
details about this, including statements about computational complexity, see
the RIVET paper [48]. A matrix reduction algorithm can be used to compute
the restricted Hilbert functions [49]. For the bifiltrations we consider in our
virtual screening applications, these computations are very fast in practice (see
Figure 11).
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The stability of persistent homology implies that the matching distance
dM (B, C) between fibered barcodes B and C can be computed approximately,
up to arbitrary accuracy, by computing the bottleneck distance db(M

L, NL)
for a finite number of lines L [11]. The computational complexity of the best
known algorithm for computing the bottleneck distance is O(n1.5 log n) where
n is the number of intervals [42] in the two barcodes. Thus, if we approximate
a matching distance by computing S bottleneck distances, the runtime of the
computation is O(S(n1.5 log n)), where n is the maximum number of intervals
of any barcode encountered in the computation. In our setting, we take S to be
at least 225 to get sufficiently good approximations to the matching distance,
and n is typically on the order of 20−40. We find that these matching distance
computations are practically feasible in our setting, but rather costly. In con-
trast, the time cost of computing the `2-distance between two restricted Hilbert
functions, is linear in the number of cells in the grid over which the Hilbert
function is piecewise constant (see Remark 3.1), and considerably faster than
the matching distance computation in practice.

3.6 The PHoS Pipeline Revisited

As we have explained above, to define a topological signature of a ligand con-
formation using two parameter persistence, we first associate to the ligand a
bifiltration, and then take a topological signature of the bifiltration. Build-
ing on the discussion of two-parameter homology above, we now provide some
additional details about these steps.

As we have already explained, given a data set X ⊂ R3 and a function
γ : X → R, we can construct the Vietoris-Rips bifiltration V R(X, γ). Given
a ligand conformation M , it is natural to choose X to the be set of centers of
atoms of L. A number of reasonable choices are available for γ. For example, as
mentioned above, we can take γ to be a partial charge function. Alternatively
we can take γ to measure mass, or hydrogen donor/acceptor status, among
others.4 Fig. 5 shows a Vietoris-Rips bifiltration on the atom centers of the
same 2,3-butanediol molecule considered in Fig. 3, but this time taking γ to
measure mass rather than partial charge.

In our experiments we work with the ith fibered barcodes and restricted
Hilbert functions for i = 0, 1, 2; this captures information about clusters, tun-
nels, and voids formed by the atoms of a ligand. When comparing two sig-
natures, regardless of whether we use fibered barcodes or restricted Hilbert
functions, we consider the distance between two signatures to be the sum of the
ith distances for i = 0, 1, 2.

4Note that it is possible, and quite reasonable in fact, to take γ to be the negative of any
of these functions; the Vietoris Rips filtration V R(X,−γ) carries different information about
the pair (X, γ).
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Figure 5: The Vietoris-Rips filtration of the heavy atoms of
2,3-butanediol in R3 (slightly simplified to save space), using
atomic mass for the second parameter. Compare with Figure 3,
which is based on partial charge instead of mass. Blue is used
for triangles and green for tetrahedra.

3.7 Example

We illustrate the topological approach to ligand screening, by considering its
behavior on 4 substances: acetylsalicylic acid, acetaminophen, sucrose, and dox-
orubicin. Since acetylsalicylic acid and acetaminophen work on the same protein
target, we would hope for them to be quite similar in our system. Doxorubicin
and sucrose are more complex molecules that work with different receptors, so
we would expect them to be quite different from the first two, and perhaps more
similar to each other, though not nearly so similar as acetylsalicylic acid and
acetaminophen are. In Figure 6, we see qualitative similarities as we expect
in the Hilbert functions of these molecules, and in Figure 7 we see the actual
calculated distances are also in line with these expectations. It is interesting to
note that in this work we only consider the sum of the distances for connected
components, holes, and voids, but it is possible that a more sophisticated (per-
haps discovered via machine learning?) scheme for combining theses distances
could be even more effective.

3.8 Implementation

Our implementation must process a large number of molecules, and relate them
using one of our chosen distances measures. For each molecule, we calculate
and store topological signatures for Vietoris-Rips bifiltrations that capture con-
nected components, holes, and voids. The computations of the bifiltrations and
their signatures are somewhat expensive, but the distance computations are the
bottleneck: While our `2 distance computations are considerably faster than
our approximate matching distance computations, both approaches are costly,
especially compared to lightweight virtual screening approaches like USR [7],
which can analyze a dataset of the size we used in a few seconds.

Thus, to make the problem computationally feasible, we distribute the work
using a cluster of 50 Intel R© Xeon R© E5-2699 v4 servers at 2.20 GHz (88 cores
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Figure 6: Four example substances, along with their ith Hilbert
functions for i = 0, 1, 2 (connected components, holes, and
voids). The axis units are discrete value steps rather than phys-
ical values. The molecules are shown with the partial charge
indicated, which ranges from red for low partial charge to blue
for higher partial charges. The colors of the Hilbert functions
range from blue for lower values, red for higher values, and the
actual color values are comparable only within each column.
The red areas in the connected components column shows that
sucrose and (especially) doxorubicin have more atoms than the
other substances. All of these molecules have some holes that
result from aromatic rings, and the more complex the molecule,
the more likely it is to have additional temporary holes and
voids as well.
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Figure 7: Distance matrices for the four example substances,
showing the distance for each of the three ith Hilbert functions,
as well as the summed total distance. As we would hope, acetyl-
salicylic acid and acetaminophen are quite a bit closer than the
other substances. We also see that the total distance is largely
determined by the 0th Hilbert function, with higher numbers
making relatively smaller contributions.
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per server), with 128 GB of memory. In the present work we generally used
between 8 and 16 machines for each run. At this point we have not attempted
to optimize any of the tools we use for these calculations, so we do not present
performance data, leaving that for future work. The present implementation
uses Python [66], including SciPy [40], Pandas [51], and HDF5 [34] for the
pre-processing stages that generate the bifiltrations for each molecule, and the
metric database is written in Rust [24]. Both parts use MPI [32, 23, 65] for
cluster communication. As part of this work, C++, C, and Python APIs for
RIVET [48] (available as part of the RIVET distribution), and C and Python
APIs were created for Hera [43], which we used to compute the bottleneck
distance.

4 Results

4.1 Datasets

Our experiments were conducted with the Cleves and Jain [19] dataset, as well
as with a large (approximately 1.5 million substances) subset of the DUD-E [53]
database, which we further resampled into small (approximately 1 thousand
substances) samples, each with a single target (i.e., each dataset contains only
ligands that bind to the same single protein binding pocket), and stratified so
that the ratio of actives (true or potential drugs) to decoys (non-drugs with
similar chemical properties to drugs) was the same for that target as in the
larger sample. In the Cleves and Jain dataset, each target has only a very few
actives, and all the decoys are used regardless of query target. In DUD-E, each
target has its own decoys.

4.2 Evaluation

We tested both USR [7] and PHoS in the manner described by Shin et al. [63],
using the Enrichment Factor (EF). As in their case, we define EFα% as follows:

EFα =
Nactives,α%/Ndatabase,α%

Nactives/Ndatabase
, (1)

where Nactives is the total number of actives in the entire database, Ndatabase is
the total number of all compounds in the database including decoys, and α% ∈ R
is the percentage of the query results we wish to inspect. Thus, Nactives,α% is
the number of actives in the top α percent of the results, and Ndatabase,α% is α
percent of Ndatabase.

4.3 Parameter Search

Since we use 2-parameter persistence, with the first parameter chosen to range
over the inter-atom Euclidean distance, we must choose a function γ (see Bifil-
trations and Two-Parameter Persistent Homology) over the atoms, which offers
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Figure 8: Performance on DUD-E vs. USR, 1 conformation,
using matching distance. Each column is a box and whisker plot
representing the given EFx averaged across all queries, with the
circles representing outliers. We can see that PHoS with partial
charge and PHoS with hybridization both greatly outperform
USR. The two PHoS methods perform similarly, with a slight
edge to partial charge due to a few high-performing outliers.

the greatest insight into the structure of the molecule. There are also a number
of hyperparameters to consider, such as the granularity of the bifiltrations that
we calculate.

We first ran the pipeline interactively several times to determine reasonable
starting values for the parameters of bifiltration resolution and slice resolution,
settling on values of 11 and 15, respectively. Then to determine which grouping
parameter would offer the best performance, we ran each of 15 different pos-
sible choices of γ on one 1000-element subsample of DUD-E per target (that
is, 15 functions × 90 targets = 1350 runs on our compute cluster). Interest-
ingly, we found that there was no one winner; different grouping parameters
worked better on different targets, though there were some that were clearly
more important than others. For the best performing grouping parameters, we
repeated the experiment with bifiltration resolution of 100, and slice resolution
of 30. Values higher than these either led to computational difficulties or did
not appreciably improve the results.

4.4 Performance with Best Parameters

Next, we tested the best parameters obtained against the DUD-E dataset ver-
sus USR, so as to help place our method in that context as well. Unfortu-
nately, to compare with other important methods such as ROCS [55] or PL-
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Figure 9: Performance on Cleves and Jain dataset with 1-
parameter persistence, 1 conformation, using matching dis-
tance. Each column is a box and whisker plot, representing the
given EFx averaged across all queries, with the circles represent-
ing outliers. In this plot, we see that 2-parameter persistence
with partial charge outperforms both traditional 1-parameter
persistence and USR on this dataset.

PatchSurfer[38], we would need access to expensive licenses for ROCS and
OMEGA [54] that our lab does not have. We refer the interested reader to the
work of Shin et al. [63] for a comparison between USR and these other meth-
ods. Nevertheless, the comparison with USR on the Cleves and Jain dataset
in Table 1 should serve to provide a first approximation of where PHoS might
place in a broader comparison of ligand based virtual screening tools.

For reference, USR [7] (using an open source Python implementation [15])
was also run against the Cleves and Jain dataset. Summary results for both
PHoS and USR are displayed in Table 1, and more detailed information for PHoS
with partial charge and USR is included in the Supplemental Information.

We note that since we used RDKit [46] to load the molecules, there were
differences in the number of decoys that could be loaded (65 failed in our dataset,
versus 8 in Shin et al.’s case), which we expect explains the difference between
USR’s performance in their study (mean EF2% of 8.8 across all targets) and in
ours (mean EF2% of 10.16).

Assuming the difference in USR’s scores (a factor of 10.16/8.8 ≈ 1.155)
translates to the difference in the score that PHoS would get on Shin et al.’s
dataset, we would expect PHoS to achieve a score of 18.598/1.155 ≈ 16.10.

Based on the estimate of our systems’s performance (16.10) versus the mea-
sured performance of ROCS (15.9) in the Shin et al. study, we expect that if
we did have access to the ROCS and OMEGA software, we would find that this
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Table 1: Mean performance on Cleves-Jain dataset, single con-
formation: EF2% for PHoS (with various parameters) vs. USR.
The best overall mean was PHoS with partial charge, 18.598.
USR overall mean was 10.159. The best result in each target is
in bold. Partial charge and atomic number are self-explanatory.
Total degree is the number of bonds each atom has, aromatic is
a flag that indicates whether an atom is in an aromatic ring or
not, hybrid represents the hybridization type of each atom (S,
SP, etc.), and 1-param represents single-parameter persistence
calculated on the Euclidean distance between atoms.

Target partial charge atomic no. total degree aromatic hybrid 1-param USR
a 19.064 15.374 14.144 14.144 15.989 14.144 10.402
b 21.138 14.553 11.545 11.301 16.504 11.951 5.339
c 23.867 16.952 23.198 8.253 22.306 7.807 9.544
d 32.593 12.914 15.989 17.834 16.604 11.684 16.521
e 15.21 20.281 19.267 15.21 13.182 11.154 11.098
f 35.84 27.569 19.299 13.785 33.083 19.299 16.458
g 32.449 12.168 17.239 17.239 16.224 11.154 9.08
h 49.688 14.196 27.379 18.253 28.393 12.168 11.098
i 13.182 11.154 15.21 13.182 14.196 11.154 10.089
j 6.79 10.097 6.964 10.097 8.182 5.919 7.622
k 6.093 6.441 11.49 6.615 6.093 6.441 7.622
l 13.33 13.034 11.849 23.698 9.183 7.702 6.484
m 15.278 21.181 14.583 20.486 21.181 15.625 7.946
n 7.639 6.944 7.292 10.417 9.028 7.639 9.674
o 12.204 11.356 11.45 11.921 14.136 8.01 9.519
p 7.902 5.569 4.139 4.064 5.72 5.644 4.643
q 27.108 19.692 26.085 20.459 14.066 13.043 16.031
r 7.655 23.162 11.188 12.759 27.873 12.759 16.797
s 9.484 10.573 14.149 10.106 9.173 5.131 6.034
t 17.239 14.196 29.407 18.253 26.365 26.365 14.125
u 19.444 25.0 20.139 19.792 19.792 13.889 7.946
v 15.96 23.94 17.456 17.456 18.454 10.474 9.429
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Figure 10: Comparison of EF2% results on DUD-E dataset, us-
ing `2 distance and matching distance (with slice resolution 30),
using box and whisker plots, with circles representing outliers.
Both methods used filtration resolution of 100. The best mean
value across all targets was achieved with matching distance on
partial charge, with a mean single conformation EF2% of 9.92.
The best mean result for the `2 distance was an EF2% of 9.66
using total degree, which counts the number of bonds attached
to each atom.

initial version of PHoS has mean performance approximately equal to that of
ROCS, with many open options for improving performance in future studies.

Finally, we compared the two distance pseudometrics used in PHoS. In Fig-
ure 10, we compare the difference in accuracy, and in Figure 11 we examine the
relative times for comparisons using the two methods. Neither one has been
extensively optimized, but it is clear that while the matching distance obtains
slightly better accuracy, the `2 distance will be the likely choice as we scale to
larger datasets in the future.

4.5 Discussion

It is important to note that while the results of Shin et al.’s study (and the
original USR paper [7]) present summary means of results across all targets,
we found the results of both PHoS and USR varied substantially across targets
in both the DUD-E and Cleves & Jain datasets. We believe this variation
deserves greater study, regardless of the computational methods used. What
is it, exactly, that makes one method work well with one target, and poorly
with another? PHoS has greater variance and range than USR, though the
bottoms of both ranges are typically comparable, so there are many queries for
which PHoS does much better than the mean, and in fact PHoS has more (and
higher) high-performing outliers across targets than USR does. If we can better
understand what makes PHoS perform so well on these high-performing outliers,
we may be able to leverage that understanding to further improve PHoS.
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Figure 11: Comparison of the query runtimes (note the log
scale) against DUD-E dataset, using matching distance (with
slice resolution 30) and `2 distance, using box and whisker plots,
with circles representing outliers. Both methods used filtration
resolution of 100. While 0th (connected components) compar-
isons dominate the overall expense for the matching distance,
there are many outliers in all columns. Meanwhile the `2 dis-
tance runtimes are far lower, and show little variation across
columns.

Additionally, we noted that in both the Cleves & Jain dataset and the DUD-
E dataset, different choices of the second parameter (e.g. partial charge, mass,
etc.) led to considerable difference in the score for PHoS on different targets.
Naturally, we wondered if there could be some way to combine more than one
of these parameters, which could be more effective than any one of them alone.
This will be an area of future work.

Note we did not study the performance on a database with more than one
conformer per compound. At this stage, the results would have been uninter-
esting since they would only have consisted of testing each conformation for one
molecule against all conformations of another, and choosing the closest. We be-
lieve there are more interesting possiblities for multi-conformation comparison
that do not amount to treating each conformation as a separate compound, but
will have to defer that point to future work.

5 Conclusions

We have introduced PHoS, a new tool for ligand-based virtual screening based
on multi-parameter persistent homological signatures of molecules, with drug
similarity determined by distances in metric spaces of topological signatures. We
believe the experimental evidence strongly shows that this new application of
multiparameter persistent homology has great potential for helping researchers
and pharmaceutical companies find new drugs faster.
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In the future, we hope to continue this work by improving the computa-
tional efficiency of the tool to make it practical for users with databases with
between 10-100 million compounds. The current work serves as a baseline im-
plementation against which future algorithmic improvements can be judged. We
also plan to further analyze the wide range of performance on different protein
binding pocket targets (between approximately 3x and 36x more effective than
chance, depending on the target). Finally, we will continue to improve the accu-
racy of the method by combining information from multiple types of topological
signatures or taking better advantage of multiple conformations.
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