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Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range
of benefits, but these systems have been little studied because of their experimental and computational
complexity, and because of the very large number of possible combinations of 2D building blocks. The
simulation of the interface between two different 2D materials is computationally challenging due to the lattice
mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing
density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and
machine learning techniques in order to rapidly determine the interlayer distance between two different 2D
heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our
work provides an excellent proof of concept by quickly and accurately predicting a structural property (the
interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials.
This work paves the way for rapid computational screening of the vast parameter space of van der Waals
heterostructures to identify new hybrid materials with useful and interesting properties.

I. INTRODUCTION

An ongoing challenge in material research is the design
of materials with desired physical and chemical prop-
erties. To overcome this challenge, the application of
machine learning (ML) is gaining momentum as a fea-
sible tool that can significantly accelarate the material
discovery process.1,2 There has recently been an increas-
ing interaction between first principles physical theories,
chiefly density functional theory (DFT), and various ML
frameworks. The DFT computations have been applied
to the generation of computational material data for vast
material databases, such as AFLOW,3 with ∼ 1.7 mil-
lion structures, and MaterialsProject,4 with ∼ 620, 000
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structures. This data is then fed into the ML algo-
rithms for the rapid prediction of material properties,
such as the dielectric constant,5 superconducting critical
temperature,6 thermal and mechanical properties,7 elec-
tronic structure,3,8 and hydrogen storage capacity.9

In the past few years, there has been a ris-
ing interest in the LEGO-like creation of hybrid 2D
heterostructures10 for various applications in photo-
voltaics and photonics.11–15 A recent data mining study
reported the existence of 1,825 2D materials that could
be exfoliated from known experimental inorganic com-
pounds, and this set can make ∼1.7 million bilayer struc-
tures (with n 2D materials, the number of possible bilay-
ers is n(n − 1)/2 + n = n(n + 1)/2). The number of
possible trilayers, tetralayers, etc. increases very rapidly
and quickly becomes an intractable problem for DFT to
explore. Is there an efficient method to rapidly predict
the properties of these structures without having to per-
form expensive first principles calculations? Here we an-
swer this question by applying various machine learning

1



(ML) models for the prediction of the structural and elec-
tronic properties of layered van der Waals (vdW) materi-
als, specifically bilayer materials that are constructed by
layering different 2D materials. The success of the ML
approach using a small training set could potentially save
a significant amount of time and computational cost, and
ultimately experimental effort.

In 2D materials, the interlayer van der Waals (vdW)
forces are essential to maintain the equilbrium struc-
ture. The key structural quantitiy that indicates the
strength of the vdW force in these materials is the in-
terlayer distance, and a related energetic quantity is the
layer binding energy. For DFT to be able to accurately
predict these two quantities, it be should be corrected by
incorporating a vdW correlation potential to the DFT
correlation potential.17,18 To this end, various forms of
the vdW correlation have been proposed and applied to
2D materials, many of which displayed impressive accu-
racy, such as the Tkatchenko-Scheffler (TS) method19,20

and the SCAN+rVV10 method.21 The DFT databases,
such as the aforementioned AFLOW and MaterialsPro-
ject databases, include structures that have been calcu-
lated without considering the vdW interaction potential.
For example, there are a number of calculations pub-
lished on the online portals of these databases that have
wrong relaxed c lattice parameter, such as MoS2-WS2 in
which c = 22.37 Å, which is extremely large compared
to the lattice parameter in other hybrid bilayers such as
graphene—boron nitride, which is 3.3 Å.22 This is a re-
sult of the use of non-dispersive correlation potentials.
Therefore, an essential prerequisite is the construction of
a data set of hybrid 2D vdW materials using a dispersion-
supported DFT method.

Hybrid 2D heterostructures have recently attracted at-
tention as potential vertical p-n junctions, in which the
charge carriers move in the direction perpendicular to
the plane of the 2D layers. Several vertical p-n junctions
have been reported recently.11–15 The 2D materials that
have been investigated for p and n doping include MoS2,
MoSe2, WSe2. With the growing number of semicon-
ducting vdW materials, the number of possible hybrid
bilayers that achieve p-n band alignment is increasing,
and the prediction of the band gap of these bilayers us-
ing ML models would greatly support the search for new
atomically thin p-n junction materials for optoelectronics
applications.

A critical problem, however, in the application of
DFT to hybrid vdW structures is the problem of cre-
ating lattice-matching interfaces between noncommensu-
rate 2D materials. The application of DFT for study-
ing hybrid 2D materials necessitates that the supercell
describing the interface between two materials (whether
parallel or perpendicular to the plane of the 2D materials)
must have commensurate supercells of the two materials.
One approach that is commonly adopted to this prob-
lem is to search for supercells that minimise the strain
in each of the incommensurate monolayers. This is not a
trival problem and often necessitates quite large strains

of the order of a few percent in order to keep the size of
teh supercell reasonable. The use of ML largely bypasses
this problem since DFT calculation are only performed
on the isolated individual layers and a small subset of
bilayers to generate the training and test sets for the ML
phase.

Here, we use DFT for the calculation of the hybrid bi-
layer vdW structures. Using this data, we apply four ML
models for the prediction of the interlayer distance and
the band gap. We find that the considered ML models
yield predictions of the interlayer distance and the band
gap with reasonable accuracy.

II. COMPUTATIONAL DETAILS

A. The first principles approach

We have selected our 2D structures from the large col-
lection of 2D materials in the “2D atlas”.23 We have used
VASP24 to calculate the atomic and electronic structures
using the generalized gradient approximation based on
the PBE parametrization,25 and accounted for the vdW
interaction by adding the Tkatchenko-Scheffler vdW cor-
relation potential.20 We applied a k-point space of 8×8×1
for unit cells, and 3× 3× 1 for supercells, and an energy
cutoff of 400 eV. The energy minimization tolerance is
10−6 eV, and the force tolerance is 10−2 eV/Å. For the
267 bilayers in the data set, we calculate the interlayer
distance d as the equilbrium distance separating the two
layers (that is, the minimum distance between the two
layers), and the band gap. Note that the application of
VASP for the geometries provided in the “2D atlas” by
Miro et al.23 induces a small strain on the individual lay-
ers. However, the presence of small planar strain have
insignificant effects d and the band gap.26

For our training set, we perform DFT calculations for
the bilayers assembled from 53 monolayer structures, as
shown in Table I. In selecting these monolayers, we have
focussed on structures that satisfy the following two cri-
teria: (1) It possesses trigonal symmetry, and (2) do not
suffer from lattice distortions arising from covalent inter-
action with the adjacent layers. For example, we remove
the CdX and ZnX monolayers (X= S, Se, Te) because of
the significant layer distortions they exhibit when stacked
with other layered materials.

B. The bilayer data set

For two different 2D materials, their unit cells are
mostly incommensurate (that is, they have different val-
ues for the a lattice parameter). Therefore, we seek to
construct the bilayers such that they are approximately
commensurate; that is, for each of the two monolayers,
we increase the number of monolayer images for each
monolayer until the difference in the lattice constant of
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TABLE I. The 53 monolayers. Note that the “1T” prefix
denotes the 1T plymorph of transition metal dichalcogenides
(TMDCs). The TMDCs without this prefix are of the 2H
polymorph.

BoronNitride NbSe2 Silicene TaS2

CdO NbTe2 SiliconCarbide TaSe2

GaS NiS2 1T-HfS2 TaTe2

GaSe NiSe2 1T-HfSe2 TiS2

Graphene NiTe2 1T-HfTe2 TiSe2

HfS2 PdS2 1T-MoS2 TiTe2

HfSe2 PdSe2 1T-MoSe2 WCl2

HfTe2 PdTe2 1T-MoTe2 WS2

InS PtS2 1T-NbS2 WSe2

InSe PtSe2 1T-NbSe2 WTe2

MoS2 PtTe2 1T-NbTe2 ZnO

MoSe2 ReS2 1T-ReS2

MoTe2 ReSe2 1T-WS2

NbS2 ReTe2 TaCl2

each monolayer supercell is < 2%.26 We wrote a Java pro-
gram that automates the search of approximately com-
mensurate supercells, where the number of images of ei-
ther monolayer does not exceed 5. For simplicity, the
twist angle adopted here (that is, the angle by which
one monolayer lattice rotates with respect to the other)
is 0. The number of bilayers we choose from this set is
267. These bilayers will be used for the prediction of the
interlayer distance.

For the prediction of the band gap, we have to take into
consideration that 33 out of the 53 monolayers are metal-
lic. This makes the band gap zero for a large number of
bilayers, which yields a very skewed data set that is prob-
lematic for machine learning. Therefore, we exclude all
bilayers that are formed from metallic monolayers. Out
of the set of 267 bilayes, the number of bilayers formed
from these 20 monolayers is 49.

The application of DFT methods with vdW correlation
correction for layered materials has been demonstrated
to yield accurate results for the interlayer distances and
the binding energies.17,27 We use the TS method which
accurately predicts the values of interlayer distances com-
pared with the available experimental values as well as
the benchmark Random Phase Appriximation (RPA)
method,27 as shown in Figure 1. In this figure, we com-
pare between the values of the c lattice parameter for the
11 2D materials in Ref.27, predicted using the TS vdW
correlation, RPA and the experimental values (obtained
from Ref.17). These values are for pristine bulk mate-
rials, not hybrid materials, however. The choice of the
right method for hybrid multilayered materials is still an
open problem, and is currently the subject of an ongoing
theoretical investigation.

To perform the DFT calculations for bilayers, one has
to find the most optimal stacking configuration for the
bilayer. With respect to stacking, there are two groups of

FIG. 1. Comparison between the c lattice parameter for the
11 2D materials in Ref.27, predicted using the TS vdW cor-
relation, and the experimental values.

AA AB AB'

FIG. 2. The three stacking configurations, AA, AB and AB’,
which were used for obtaining the lowest energy configuration.
For boron nitride, we also added the AA’, which is similar to
AA but in which an N on one layer is faced by a B on the
other layer.

bilayers: those with commensurate lattices (and thus the
simulation cell is constructed from the unit cells of the
two monolayers) and those with incommensurate lattices.
For the commensurate lattices, we obtain the equilibri-
ums stacking by performing a geometry relaxation for
three stacking configurations: AA, AB and AB’. These
configurations are displayed in Figure 2 The structure
with lowest energy is then taken as the equilibrium stack-
ing configuration. For the incommensurate unit cells,
such as the boron nitride—silicon carbide bilayer, which
is formed from 5 × 5 boron nitride unit cells and 4 × 4
SiliconCarbide unit cells, sliding one monolayer over the
other in such large bilayers does not significantly affect
the binding energy, and therefore we do not search for
equilibrium stacking configurations in incommensurate
bilayers.

We display the number of bilayers in which each mono-
layer is a component in Figure 3. This figure shows which
monolayers are over- or under-represented in the data set.
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Here, the InSe monolayer is only present as the bilayer
InSe—InSe, and MoTe2 is the most connected (it exists
in 27 bilayers).

A useful method for visualizing high dimensionality
data, such as the present data sets, is to apply the t-
distributed Stochastic Neighbor Embedding (t-SNE)28

algorithm for generating a 2D plot that clusters the data
into groups that are labeled by the values in the out-
put vector. Figure 4 shows a two-dimensional t-SNE
projection mapping of chemical space of 267 hybrid 2D
materials. t-SNE is a non-linear dimensionality reduc-
tion algorithm used for exploring high-dimensional data.
It maps multi-dimensional data to two dimensions suit-
able for human observation. Due to the selection of large
number elements as building blocks, we see that materi-
als explore vast chemical space without forming several
well-defined clusters. However, we identified three broad
regions with specific character: sulphides, tellurides, and
CNSi (graphene, carbides, nitrides, and silicenes). On
average sulphide materials have a low interlayer distance
of 2.1 − 2.7 Å. Tellurides typically have the highest at
3.2−3.8 Å. Two extreme materials PtS2-PtS2 and PdTe2-
WTe2 are marked accordingly.

C. The descriptors vector

The key to implementing a successful machine learn-
ing model is the descriptors. Fragment-based descriptors
have demonstrated superior performance in enhancing
the accuracy of ML models for the case of molecules29

and crystals.30 In this work we adopt the approach of
Isayev et al.,30 the Property-Labelled Materials Frag-
ments (PLMF), modified for 2D materials and is com-
posed of 1529 descriptors. In the PLMF approach, a
crystal structure is represented as a graph, with ver-
tices decorated according to the reference properties of
the atoms they represent and nodes are connecting topo-
logical neighbors according to the Voronoi tessellation.
The adjacency matrix of this graph determines the global
topology for a given system, including interatomic bonds
and contacts within a crystal. The final descriptor vector
to the Machine Learning (ML) model is obtained by par-
titioning a full graph into smaller subgraphs, that we call
fragments by the analogy with fragment-based descrip-
tors in cheminformatics. Every fragment starts from a
node (an atom and its properties) and captures a path
in the graph through a collection of bonded atoms. See
Ref.30 for technical details.

After constructing the monolayer descriptors, the next
critical problem is the representation of each bilayer using
the monolayer data. That is, is it possible to use the
monolayer descriptors to describe the bilayers? Given
that the interaction between the monolayers in a bilayer
is of a dispersive nature, it does not affect the structure
of either of the constituting monolayers. Therefore, it is
possible to use the monolayer descriptors to describe the
monolayers in the bilayer.

Using the monolayer descriptors, another question is:
how to construct the bilayer descriptor vector? An intu-
itive choice would be to create a descriptors vector which
doubles the size of the PLMF vector, and composed of
the descriptors for the two monolayers. The problem in
this approach is that it is sensitive to the swapping of
the bilayers; that is, the descriptor vector for the bilayer
A-B, made from monolayers A and B, will be a different
vector from that of the bilayer B-A, even though the two
bilayers are physically identical.

We approach this problem by the two following ap-
proaches:

Bilayer representation 1 (BR1): For each bilayer A-B,
we create two data records: one record has A’s descrip-
tors followed by B’s descriptors, and the other with B’s
descriptors followed by A’s descriptors. This method of
representing multiple representations of the same data
item has been previously applied in the context of organic
molecules.31 Using this representation, for the prediction
of d, the data set has a total of 482 = 267×2−52 records
(52 records are subtracted, instead of 53, because we have
removed the PdS2—PdS2 bilayer from the data set due
to the appearance of covalent interaction between the S
atoms of the adjacent layers), while for the prediciton of
the band gap it has 78 = 49 × 2 − 20 records. Bilayer
representation 2 (BR2): Instead of creating a descriptors
vector that is double the size of the monolayer descriptor
vector, we add the values of the descriptors in both mono-
layers. This method is intrinsically invariant to changes
in the order of the monolayers, and can, in principle, be
applied to supercells with more than two layers. Using
this representation, for the prediction of d, the data set
has a total of 267 records, while for the prediciton of the
band gap has 49 records. Owing to the small number of
records in BR2 for the band gap prediction, we do not
perform machine learning on this set.

With 1529 fields, it is crucial to drop the number of de-
scriptors using a dimensionality reduction algorithm. For
this purpose we apply the least absolute shrinkage and
selection operator (LASSO) algorithm on the dataset.32

Since LASSO is a supervised dimensionality reduction
algorithm, it cannot be applied to the set of monolayer
descriptors. Instead, we apply LASSO on the bilayer
data set in the BR2 against the interlayer distance d. In
order to obtain the optimal number of descriptors using
LASSO, we vary the value of α in LASSO, then apply
the LASSO fitting which yields a number of descriptors,
and then use the descriptors to predict using the support
vector machine (discussed below). We choose the value
of α which yields the lowest R2 value.

D. The machine learning models

The dataset of bilayers constitutes a highly nonlinear
prediction problem. We construct four ML models to
learn the functions d and the band gap, which we describe
below.

4



FIG. 3. The number of bilayers in which each monolayer (along the x-axis) is a component.

FIG. 4. The t-distributed Stochastic Neighbor Embedding
(t-SNE) plot for the data set of 267 structures based on the
value of the interlayer distance.

Feedforward Neural Network (NN)33: NNs simulate
the operation of the human brain. They can capture the
highly nonlinear associations between input and output
variables and can adaptively learn highly complex rela-
tionships. In an NN, an input layer receives the numbers
in the descriptor vector. This layer is connected to a
number of hidden layers, each layer being composed of
a number of neurons, and finally the last hidden layer
feed to an output layer whose number of neurons is the
size of the output vector. Each neuron operates on the
data it receives from the preious layer using an activation
function which mimics the activation process in biologi-
cal neurons, and a weight coefficient at the link between
each two neurons. Each neuron collects its input from
all of the neurons in the previous layer, and so forth up
to the output layer. That is, each neuron j receives the
following quantity from neurons i: pj(t) =

∑
i oi(t)wij ,

where wij is the weight connecting neurons i and j, and
oi is the output of neuron i.

These NNs work by using various learning algorithms

that update the values wij , the simplest being the back-
propagation learning algorithm. In this algorithm, wij

are updated according to the formula

wij(t+ 1) = wij(t) + η
∂C

∂wij
+ ξ(t)

where η is the learning rate, C is the loss function, ξ(t) is
a stochastic term, and t is the propagation step. For the
activation function associated with each neuron, there are
several choices available. Of interest to the presnt work is
the logistic sigmoid which is given by alogistic(z) = 1

1+e−z ,
where z is the quantity received by the neuron. We
use the Keras34 python platform to implement the NN
model. The network we have used for BR1 represenation
has 35 × 2 = 70 input nodes, 5 nodes in a single hidden
layer, and one output node. In the BR2 representation,
the hidden layer has 35 input nodes. The sigmoid activa-
tion function is used in the hidden layer, while the linear
activation function is used for the input and output lay-
ers. The learning rate is 0.03.

Support Vector Machine (SVM):35,36 This is a super-
vised learning model which was first introduced as a
classification model,35 and then modified for regression
problems.36 The SVM classifier performs the classifica-
tion of the data set from selected subsets of samples,
called support vectors, in which the characteristic infor-
mation on class distinction is compressed. In the lin-
ear support vector regression problem which we utilize
in the present work, the aim is to find the linear function
f(x) = wx + b that approximates the output vector y
with weights vector w such that the primal function J(x)
is minimized, which is given by

J(β) =
1

2
wTw + C

N∑
n=1

(ηn + eta∗n) ,

given the cosntraints |yn − (βx+ b)| < ε + ηn and
|(βx+ b)− yn| < ε + η∗n for some small ε and positive
variables ηn and eta∗n, for all n, where n is denotes the
data record, and N is the total number of records, ηn and
eta∗n are known as slack variables which must be greater
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than zero. Both C and ε are input parameters to the
model.

Relevance Vector Machine (RVM):37,38 This is a sparse
version of the support vector machine which attempts to
amend several of the shortcomings of SVM,38 such as
non-probabilistic predictions, low sparsity, and the pres-
ence of the two fitting parameters C and ε which require
cross validation. The RVM was introduced to enhance
the sparsity of SVM and introduce a probabilistic weight-
ing of the model weights based on Bayes’ rule, assuming
a Gaussian distribution of weights.

Random Forest (RF):39 This is an ensemble learning
method for classification, regression and other tasks, that
operate by constructing a multitude of decision trees at
training time and outputting the class that is the mean
prediction of the individual trees. The training in RFs is
based on feature aggregating40 method. Given a training
set x with output y, bagging repeatedly (B times) selects
a random sample from x and y with replacement of the
training set and fits decision trees to these samples. Once
the training is finished, the prediction function operates
by averaging the predictions from all the individual re-
gression trees. The number of trees and the maximum
tree depth are input parameters to the model.

The objective of ML is to build accurate prediction
models. The quality of the model is determined by the
ability of the model to predict the outcomes for cases
which the model never encountered before; that is, how
accurately can the model infer the outcomes based on its
learning. This can be measured by splitting the data set
into two parts: the training set, on which ML algorithm
will be performed to build the ML model, and the test
set, which will be used to test the quality of the model.
The accuracy of the prediction is judged by using one
of several loss functions. Here we use the following loss
functions to assess the accuracy of the training:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (1)

MARE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi∣∣∣
Yi

(2)

R2 = 1−
∑n

i=1(Yi − Ŷi)∑n
i=1(Yi − Ȳ )

, (3)

where MSE is the mean square error, MARE is the mean
absolute relative error (%), R2 is the coefficient of deter-
mination, Yi are the original test set outcomes (in our
case, the DFT-calculated interlayer distances for the bi-
layers), Ŷi are the predicted test set outcomes, and Ȳ is
the average of the original test set outcomes. The sig-
nificance of R2 is that it expresses the proportion of the
variance in Yi that can be predicted from the descriptor
vector, and is an important measure of the ML model
quality. However, its values are dependent on the size of
the data set, and therefore we adopt the three quantities

together, R2, MARE and MSE, to gauge the accuracy.
For the case of the band gap prediction, we do not use
the MARE because some of the values obtained are zero.

Thus, for each of the four models in this work, we train
the model on 80% of the data set and use the remaining
20% as the test set. We construct the test set by applying
the k-means clustering41 to the data set (the set of bi-
layers in BR2), which yields 6 clusters by the Silhouettes
analysis.42 Then, we randomly choose 20% of each clus-
ter and build our test set. In the NN model, the learning
iteration stops when the MSE is below 0.03 (for BR1)
and 0.05 (for BR2). Then we compare the accuracy of
the models based on the R2, the MSE and MARE values.

Each of the four models involved in this work requires
the tuning of a number of parameters to ensure optimal
performance. We tune the NN parameters manually, and
we use the GridSearch algorithm provided by the Python
scikit-learn library (GridSearchCV) to tune the param-
eters of the SVM and RF models. GridSearchCV cal-
cualtes the best parameter combination by performing a
cross-validated grid-search over a parameter grid. The
parameters which we optimize for the SVM are: the C
and γ, while those of the RF are: number of estimators
and maximum depth.

III. RESULTS AND DISCUSSION

A. Prediction of the interlayer distance

Using the LASSO algorithm, we find that the optimal
number of descriptors for predicting d is 35 per bilayer.
We summarize these descriptors in the Supporting Infor-
mation.

The accuracy of the prediction of a ML model depends
primarily on the quality of the descriptors vector. We
find a clear demonstration of this in our comparison be-
tween the quality of predictions based on BR1 and BR2.
We display the MSE, MARE and R2 values for the fit-
ting performed on each of the ML models in Tables II
and III for both bilayer representations, BR1 and BR2.
Comparing the R2, MSE and MARE values of the test
sets, it can be seen from Tables II and III that the SVM
and RVM models exhibit a higher accuracy in BR1 than
BR2, while the RF and NN models in BR2 have a higher
accuracy than in BR1. Using the BR1 representation
(Table II), the RF and SVM models in BR2 are both
exhibiting the highest accuracy of the ML models tested
in this work, with R2(RF) = 0.82, R2(RF) = 0.83, and
MSE(RF) = 0.024, MSE(RF)= 0.023. Such difference
in accuracy between BR1 and BR2 can be attributed to
the fact that the addition of the describtor values in BR2
leads to the ambiguity with respect to the identity of the
monolayer descriptors added.

Figure 5 displays the correlation between the predicted
and the DFT-calculated d values for the bilayers in the
test set using the four ML models and using BR1. In
order to understand the variation in the errors in the
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TABLE II. The R2, mean square error (MSE), in Å, and mean
absolute relative error (MARE) (%) for each of the four ML
models applied to the BR1 bilayer respresenation.

BR1 R2 MSE MARE %

Train Test Train Test Train Test

RF 0.96 0.82 0.005 0.024 1.8 3.9

SVM 0.90 0.83 0.012 0.023 1.8 4.1

RVM 0.87 0.79 0.017 0.028 3.4 4.5

NN 0.84 0.82 0.020 0.025 3.5 4.0

TABLE III. The R2, mean square error (MSE), in Å, and
mean absolute relative error (MARE) (%) for each of the four
ML models applied to the BR2 bilayer respresenation.

BR2 R2 MSE MARE %

Train Test Train Test Train Test

RF 0.73 0.83 0.035 0.021 4.5 3.7

SVM 0.99 0.67 0.001 0.041 0.6 5.0

RVM 0.84 0.73 0.021 0.034 3.8 4.7

NN 0.88 0.90 0.016 0.012 0.7 2.7

various bilayers, we display in Figure 6, for each mono-
layer, the average and standard deviation of the MARE
values obtained for the bilayers in which the monolayer
is a component, comparing the predictions by the four
ML models using BR1.

(a) (b)

(c) (d)

FIG. 5. Comparison between the interlayer distances in the
bilayers obtained using DFT, and those using (a) NN, (b) RF,
(c) RVM and (d) SVM. All values are in Å.

An interesting feature in Figure 6 is that the presence
of some monolayers in bilayers lead to high errors in the
prediction of d, irrespective of the ML model used. It

TABLE IV. The summary statistics of the interlayer distances
predicted for the 1431 bilayers constructed from the 53 mono-
layers (values in Å), the MARE for predicting d in bilayers
made from identical monolayers (pristine bilayers).

NN RF RVM SVM

Mean 3.005 3.025 3.035 3.016

Standard deviation 0.280 0.239 0.273 0.260

Minimum 2.095 2.122 1.753 2.018

5% percentile 2.541 2.624 2.578 2.586

50% percentile 3.015 3.023 3.042 3.022

95% percentile 3.461 3.401 3.436 3.424

Maximum 3.676 3.717 3.796 3.740

Pristine bilayer MARE 3.988 2.936 3.750 1.981

can be observed that CdO, TiTe2, are common to all
four ML models in terms of having the largest prediction
errors. ReS2, PdTe2, are common to RF, SVM and RVM
models. In addition, in all four models, the accuracy of
predicting the non-metallic monolayers graphene, boron
nitride and silicon carbide is in the order, from highest
to lowest error: silicon carbide, graphene, boron nitide.
GaSe, TaS2, and boron nitride are common to the four
models in terms of having lowest prediction errors.

The values displayed in Figure 3 might be a contribut-
ing factor in influencing the accuracy of predicting the bi-
layer properties (such as in the case of under-represented
or over-represented monolayers). However, the trends of
errors displayed in Figure 6 show that the accuracy of
the models are somewhat independent from the counts
in Figure 3.

Using the four ML models developed thus far, we run a
prediction of the interlayer distances for all of the possible
1431 bilayers based on BR1, and display the results in
Table IV. The NN predicts the minimum mean value of
the four models, and the minimum d predicted by the
RVM model is the lowest of the four minima (1.753 Å).
The SVM gives the most accurate prediction for presitine
bilayers (1.981%), followed by RF (2.936%).

Table V shows that, in the set of bilayers with lowest
d, all models have bilayers with Pt and Pd atoms. We
analyse the respresentation of the Pd and Pt atoms in the
5% percentile groups. The NN and SVM models have a
lower representation of Pd than the RF and RVM models
(that is, the number of Pd atoms in the NN and SVM
predictions is 36 and 33 vs. 41 and 39 Pd atoms in the
predictions by the RF and RVM, respectively), while all
four models have almost the same represenation of Pt-
based bilayers (24, 25, 25 and 23, in NN, RF, SVM and
RVM, respectively). As for the 5 bilayers with the high-
est d, all models predict that WTe2—WTe2 belongs to
this group. In the predictions of the RF and RVM mod-
els, there are 3 bilayers that have the WTe2 monolayer,
and this is not the case in the other models. However,
in the 95% percentile of bilayers, the number of WTe2
monolayers is largest in the RF model (18 bilayers) while
there are 10, 12 and 13 in the NN, SVM and RVM mod-
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Neural network Random Forest(a) (b) RVM SVM(c) (d)

FIG. 6. For each monolayer, the average (blue) and standard deviation (orange) of the MARE for its bilayer data using the
(a) NN, (b) RF, (c) SVM and (d) RVM models for prediction.

TABLE V. The bilayers with the smallest 5 and largest 5 predicted d values. All values are in Å.

NN RF RVM SVM

smallest 5 PtS2—PtS2 2.095 PtS2—PtS2 2.122 PdS2—PdS2 1.753 PtS2—PtS2 2.018

PdS2—PdS2 2.126 PdS2—PtS2 2.159 PdS2—NiS2 2.008 PdS2—PdS2 2.122

PtS2—PtSe2 2.161 PdS2—PdS2 2.175 PtS2—PtS2 2.063 PdS2—NiS2 2.211

PdS2—PtS2 2.217 PdSe2—PtS2 2.224 PdS2—NiTe2 2.087 PdS2—NbS2 2.273

PdSe2—PtS2 2.224 PdSe2—PdS2 2.241 PdS2—NbS2 2.150 PdS2—T1-NbS2 2.278

largest 5 GaSe—WTe2 3.627 MoTe2—MoTe2 3.626 MoTe2—TaTe2 3.658 WTe2—T1-MoTe2 3.654

WTe2—WTe2 3.638 MoTe2—PdTe2 3.673 PdTe2—TaTe2 3.704 ReTe2—WTe2 3.655

PdTe2—BoronNitride 3.648 MoTe2—WTe2 3.693 WTe2—WTe2 3.760 MoTe2—PdTe2 3.680

PdTe2—Graphene 3.661 ReTe2—WTe2 3.704 MoTe2—PdTe2 3.768 WTe2—WTe2 3.725

GaSe—WCl2 3.676 WTe2—WTe2 3.717 MoTe2—WTe2 3.796 MoTe2—WTe2 3.740

els. This monolayer is also absent in the 5% percentile
(except that there is 1 bilayer in the 5% percentile of the
RVM model).

As for the chalcogenide atom in TMDCs, the Te atom
is the primary vdW repellant, because much more of the
Te-based monolayers are in the 95% percentile (52, 54,
48, and 50 bilayers predicted by NN, RF, SVM and RVM,
respectively) compared with those in the 5% percentile
(8, 13, 11 and 14 bilayers predicted by NN, RF, SVM
and RVM, respectively). On the contrary, the presence
of the S atom acts as a vdW attractor (it exists in 65,
67, 66 and 68 bilayers predicted by NN, RF, SVM and
RVM, respectively in the 5% percentile, compared with

0, 1, 2 and 1 bilayers predicted by NN, RF, SVM and
RVM, respectively in the 95% percentile). The Se is al-
most boarder-line: it exists in 35, 26, 34 and 24 bilayers
predicted by NN, RF, SVM and RVM, respectively in the
5% percentile, compared with 12, 14, 16 and 16 bilayers
predicted by NN, RF, SVM and RVM, respectively in the
95% percentile.

B. Prediction of the band gap

For the band gap prediction, we applied the BR1 bi-
layer represenation. Using the LASSO algorithm, we
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obtained 11 significant descriptors per bilayer (which is
much less than the 35 descriptors obtained per bilayer
for the d prediction). Those descriptors are listed in the
Supporting Information. However, before we discuss the
prediction results of the ML models, we discuss the band
gap values obtained using DFT.

Some functionals within DFT are known to underes-
timate the band gap by a considerable amount.43 For
example, it predicts a bandgap of ∼ 4.5 eV for hexago-
nal boron nitride, while its experimental band gap is ∼ 6
eV.44 To overcome this problem, hybrid functionals that
mix the DFT exchange with an exact exchange compo-
nent have been demonstrating impressive agreement with
experimental band gaps.45 However, the present imple-
mentations of hybrid functionals are very costly to run.
In the present work, we restrict ourselves to the applica-
tion DFT for the prediction of the band gap, showing that
the success of ML models to predict such quantity using
DFT should indicate a similar success in the prediction
of band gaps calculated using more accurate functionals,
such as hybrid functionals.

The DFT band gap value for the boron nitride bilayer
is 3.935 eV for the AB’ stacking configuration, which is
close to the value of 4.01 eV obtained for same stack-
ing (though using a different vdW method) reported in
a recent work.46 The equilibrium stacking reported in
Ref.46 is the AA’ stacking, whose band gap is 4.341 eV.
However, using the TS vdW method, the lowest energy
stacking configuration is AB’, and is only 3 meV lower
in energy than AA’. To ensure consistency, we adopt the
minimum energy stacking of the TS method.

The band gap of each of the bilayers corresponds
to a specific band gap alignment of the two con-
stituting monolayers. While the alignments yield a
band gap that is smaller than that of the monolay-
ers, as is typically the case in semiconducting inter-
faces, the following 8 bilayers have a zero band gap:
HfS2—MoTe2, HfS2—WTe2, MoSe2—TiS2, MoTe2—1T-
HfS2, 1T-HfS2—WTe2, TiS2—WSe2, TiS2—ZnO, and
TiSe2—WTe2. These bilayers are interesting because
they exhibit a special kind of type III band alignment,47

where two semiconducting interfaces form a metallic
structure across the vdW vacuum. We will explore
these structures in detail in a future contribution. We
display the band alignment for two of them, namely
HfS2—MoTe2 and MoSe2—TiS2, in Figure 7(a,b). Here,
the conduction band minimum (CBM) of one layer (HfS2

in Figure 7(a) and TiS2 in Figure 7(b)) and the valence
band maximum (VBM) of the other layer (MoTe2 in Fig-
ure 7(a) and MoSe2 in Figure 7(b)) are aligned, leading
to a zero band gap in an interface between two semicon-
ductors.

Next, we discuss the ML predictions of the band gap,
displayed in Table VI and Figure 8. Even with such a
small data set, the values of R2 are quite reasonable for
all four ML models, and the MSE values for the test sets
are close to those in Tables II and III. The RF and SVM
models have the highest prediction accuracy, based on

H
fS
2

M
o
T
e
2

FIG. 7. The band alignment in the (a) HfS2—MoTe2 and (b)
MoSe2—TiS2 bilayers. These bilayers exhibit III alignment in
which the CBM of one layer (HfS2 in (a) and TiS2 in (b)), the
VBM of the other layer (MoTe2 in (a) and MoSe2 in (b)) and
the Fermi energy are all aligned, leading to a zero band gap
in an interface between two semiconductors. Note that the
VBM of TiS2 hybridizes with the MoSe2 states. The energy
is shifted such that E−EF = 0, where EF is the Fermi energy.

TABLE VI. The R2 and mean square error (MSE), in eV, for
the prediction of the band gap by each of the four ML models
applied to the BR1 bilayer respresenation.

R2 MSE

Train Test Train Test

RF 0.96 0.90 0.028 0.040

SVM 1.00 0.90 0.000 0.040

RVM 0.98 0.83 0.014 0.070

NN 0.90 0.88 0.063 0.047

the R2 = 0.9 value and the MSE = 0.04 value for each
of the two models. However, the fact that R2 = 1.0 for
the training set prediction of the SVM alerts us that this
model is over-fitted, and might not perform as well for
bilayers outside of the present data set.

Figure 8 displays the correlation between the values
of the band gap obtained by DFT and those obtained
by each of the four ML models. The SVM and RVM
models have the highest accuracy in predicting the zero
band gaps, as shown in Figure 8(c) and (d) (there are 3
such band gaps in the test set of 14 records), while the
RF model is the least accurate in this respect. However,
SVM and RVM greatly underestaimate the band gap of
boron nitride—MoS2, which is 1.867 eV by 0.6 eV and
0.7 eV, respectively. RF and NN, on the contrary, predict
it within an error of 0.3 eV and 0.2 eV, respectively.

We analyze the prediction of the band gap for all of the
possible 20× 21/2 = 210 bilayers, based on the BR1 rep-
resentation, in Table VII. It can be seen that NN, RVM
and SVM all predict a negative value for the band gap
as the minimum in the set, and this is unphysical. This
minimum value is only −0.15 eV, however, and is most
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(a) (b)

(c) (d)

FIG. 8. Comparison between the band gaps distances in the
bilayers obtained using DFT, and those using (a) NN, (b) RF,
(c) RVM and (d) SVM. All values are in eV.

TABLE VII. The summary statistics of the band gaps pre-
dicted for the 210 bilayers constructed from the 20 semicon-
ducting monolayers (values in eV).

NN RF RVM SVM

Mean 0.556 0.879 0.552 0.881

Standard deviation 0.402 0.378 0.396 0.403

Minimum -0.150 0.066 -0.150 -0.047

5% percentile 0.088 0.315 0.090 0.270

50% percentile 0.472 0.888 0.468 0.925

95% percentile 1.329 1.491 1.325 1.431

Maximum 3.923 3.337 3.923 3.925

likely because the bilayer is metallic. This is analogous
to the test and training sets here the ML models predict
bandgaps of 0.1 eV where DFT returns a metallic result.
The maximum band gap, which is that of the boron ni-
tride bilayer, is correctly predicted by the NN, RVM and
SVM models but not the RF model.

The distribution of the prediction data varies greatly
with the ML model, as can be seen in the mean and
percentile values. This is unlike the situation in Table
IV, where those values were very close across the models.
Such volatility can be seen in the values of the standard
deviation in Table VII compared to Table IV. This can
be attributed to the small size of the data set that was
used to train the models for band gap prediction.

IV. CONCLUSION

In the present work we have demonstrated how ma-
chine learning approaches can be effectively used to pre-
dict structural and electronic properties of van der Waals
heterostructures. More specifically, we have used DFT
calculations to 53 monolayers and a small subset, 267, of
possible bilayers to train machine learning approaches to
predict the interlayer spacing and bandgap for bilayers
built from all possible 1431 combinations of the mono-
layers.

The use of property labelled materials fragments30 as
descriptors for the monolayers proves to be very effective,
yielding prediction R2 of 0.83 and 0.90 for the interlayer
spacing and bandgap respectively.

Hybrid materials built from 2D monolayers are gain-
ing attention as novel materials with tunable properties.
The current bottle-neck to exploring the possibilitie these
materials have is the vast parameter space of possible
combinations. While electronic structure calculations are
required to answer this question, even the most efficient
available methods such as DFT are too time-consuming.
The current results show great promise for a combined
DFT/machine learning approach to solve this problem.
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