
 1

OMMProtocol: A command line application to

launch molecular dynamics simulations with

OpenMM

Jaime Rodríguez-Guerra Pedregal,1* Lur Alonso-Cotchico,1 Lorea Velasco-Carneros,2 and

Jean-Didier Maréchal.1*

1 InsiliChem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
2 Biofisika Institute (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, Universidad del País

Vasco / Euskal Herriko Unibertsitatea, 48940 Leioa, Spain

ABSTRACT

OpenMM is a free and GPU-accelerated Molecular Dynamics (MD) engine written as a layered

and reusable library. This approach allows maximum flexibility to configure MD simulations and

develop new molecular mechanics (MM) methods. However, this powerful versatility comes at a

cost: the user is expected to write Python scripts to run a simulation. OMMProtocol aims to fill

this gap by stitching OpenMM and additional third-party modules together, providing an easy way

to create an input file to configure a full multi-stage simulation protocol, from minimization to

equilibration and production. OMMProtocol is LGPL-licensed and freely available at

https://github.com/insilichem/ommprotocol.

https://github.com/insilichem/ommprotocol

 2

Introduction

Structural biology and physical chemistry have been using computer simulation for decades now.

One of the most popular methods is Molecular Mechanics (MM) and its maximum applicative

expression, classical Molecular Dynamics (MD). Nowadays, there are numerous well-established

software suites to perform MD simulations like Amber,1 CHARMM,2 Gromacs,3 NAMD4 or

TINKER.5 However, novel packages keep appearing. Those novel implementations mainly take

advantage of new hardware improvements and more particularly the availability of general

purpose graphic processing units (GPGPUs) at consumer level prices, which allow significant

speedup of the software performance through massive parallelization at a cheap cost. While the

traditional actors of the MD field have been implementing GPU acceleration for years now, a

new project has been attracting significant attention: the OpenMM toolkit.6

Built for both multiplatform performance and development flexibility, OpenMM provides an

open-source layered library that allows easy reutilization in external software. It also counts with

a thriving environment of satellite packages, like MDTraj7 for trajectory analysis, ParmEd8 for

advanced handling of structures and parameters or PDBFixer9 for structure sanitization. Despite

its versatility, OpenMM lacks a command-line executable. While it is true that OpenMM

contains a high-level Python interface to setup MD simulations, it also expects the user to write

or modify Python scripts.10 In fact, the OpenMM team offers some tools to ease the script

preparation process, like an online input creator11 or the more recent openmm-setup12 local web

app. However, they still require running a Python script. The project openmm-cmd13 does offer a

command-line interface, but it was last updated in 2014 and only wraps the OpenMM app

module with command line arguments.

 3

Here, we present OMMProtocol, a Python 2.7/3.5+ application which combines OpenMM,

MDTraj, ParmEd and openmoltools in a straightforward executable to easily configure and

deploy OpenMM-based MD simulations.

Methods

OMMProtocol is built around three main ideas: (1) Only a single, readable file should be needed

to easily setup a full, GPU-accelerated, reproducible MD simulation without programming skills;

(2) Users from other MD suites should be able to use it without disrupting their existing

workflows; (3) Reported data should be well-labeled and properly named without user

intervention.

The protocol file. The name OMMProtocol stands for OpenMM Protocol. This means that, in

addition to the initial conditions of the structure (topology, coordinates, velocities, periodic box

vectors…) and the treatment of the simulated universe (forcefield parameters, integrators,

temperature, barostat...), the user can specify the different stages of the protocol, like

minimization, equilibration, simulated annealing, or production. Each stage can override most of

the global parameters (number of steps, temperature, constrained atoms if any, format of the

output files…), which confers maximum flexibility when designing a protocol. Since each

protocol is a plain-text YAML11 file, the same file can be shared and edited for other

calculations: only the structure files (topology and positions, most of the time) need to be

modified (see figure 1). All the available keys are reported in the accompanying Technical

Documentation. For advanced users, the Jinja12 templating engine has been implemented, which

can greatly simplify protocols involving highly-similar stages (equilibration, for example).

 4

Figure 1: OMMProtocol files are formatted in YAML. Configuration keys can be specified in any order, but they

have been grouped in this figure for convenience. Section A contains the structural data of the system to be

simulated: the topology key is always required. Section B groups options related to file output. Section C controls

the hardware to be used. Section D and E specify the conditions of the simulation. Finally, section E lists all the

stages to be simulated in this protocol. Each entry, marked with a starting dash, can override any of the global

options specified in sections B-E. Usually, only constraints, minimization, temperature and simulated steps will be

modified here, since every other parameter is normally constant during the full protocol.

Input and output compatibility. In addition to PDB/PDBx files, OpenMM can open files

coming from Amber, Gromacs, Desmond and CHARMM suites. While these formats are very

different in syntax and contents, OMMProtocol provides a single interface to handle them all

with a clear order of precedence (see figure 2). The core of this interface is the topology

container, on top of which the user can choose to load coordinates, velocities, box vectors, or

forcefield parameters, if needed. Additionally, if the default OpenMM compatibility is not

enough, ParmEd’s automated loaders will be called to parse the file into something that

OpenMM can understand. When it comes to write results, OpenMM is compatible with several

types of trajectory and checkpoint formats. OMMProtocol integrates those found in ParmEd and

MDTraj and adds two custom ones. To handle this diversity, the possible output files are

categorized in trajectory, restart and log reports. For more details, please see ESI tables 1 and 2.

All the generated files are named after the protocol name and originating stage for easy

identification during the analysis.

 5

Figure 2: Order of precedence of input files. In OMMProtocol, three main data are required to run a simulation:

topology, coordinates and forcefield parameters. The main file is specified with the topology key. In addition to the

topology information, this file can also provide coordinates and box vectors (like in PDB files) or forcefield

parameters (like Amber’s PRMTOP). If one of the three main data is missing, it must be provided in its separate,

corresponding key. This strategy can also be used to override information provided by files specified in lower

categories of precedence. For example, if a PDB file is chosen as the topology source, its original coordinates can be

overridden with a different PDB file in the positions key.

Constraints and restraints. Custom forces are one of the most popular OpenMM features.

However, applying a given force to a subset of atoms is not very user-friendly and one must

provide the specific atom indices as enumerated in the topology file. Users would expect to use

simple keywords like “protein”, “solvent” or “backbone” to select parts of the system.

OMMProtocol uses MDTraj’s domain-specific language (DSL) to apply constraints, positional

restraints or distance-based restraints to a subset of atoms.

Results

OMMProtocol can be easily installed through conda packages and self-contained wizards in

Windows, MacOS and Linux, which will provide the needed commands. To launch a simulation,

 6

the user just needs to run ommprotocol simulation.yaml from the terminal, where

simulation.yaml is the input file. Additionally, basic trajectory analysis can be performed

afterwards with the accompanying ommanalyze executable, if desired. More details can be found

in the accompanying Supporting Information.

Conclusions

With OMMProtocol, both beginners and experts can start to benefit from the stellar OpenMM

performance right away, without worrying about programming skills or implementation details.

As a result, unattended simulations can be set to reach longer timescales in less time, both for the

computation itself and the input preparation. Nowadays it is routinely used in our research group,

where several publications have been directly benefitted.14,15 It is LGPL-licensed and freely

available in GitHub (https://github.com/insilichem/ommprotocol).

ASSOCIATED CONTENT

Supporting Information. The following files are available free of charge.

• ommprotocol-supporting (PDF). Supplementary details on OMMProtocol

implementation and usage.

• ommprotocol-technical-documentation (PDF). Installation instructions and Python API

documentation.

• ommprotocol-src (ZIP). Snapshot of the source code at the moment of submission.

AUTHOR INFORMATION

Corresponding Author

* jaime.rodriguezguerra@uab.cat, jeandidier.marechal@uab.cat.

https://github.com/insilichem/ommprotocol

 7

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval

to the final version of the manuscript. The software was written by J. R-G. P. and tested by all

authors.

Funding Sources

We are thankful for the support given by the Spanish MINECO (project CTQ2017-87889-P) and

the Generalitat de Catalunya (project 2017-SGR-1323). Support of COST Action CM1306 is

kindly acknowledged. Research grants to JRGP and LAC (Generalitat de Catalunya & European

Social Fund, 2017FI_B2_00168 & 2017FI_B2_00064), and LVC (UPV-EHU, PIF17/22) are

also acknowledged.

Conflict of Interest: none declared.

ACKNOWLEDGMENTS

We want to thank Elisabeth Ortega-Carrasco and Sergi Pérez Labernia for helping introduce GPU

computing in our research group. Jason Swails, Peter Eastman and John Chodera are also

acknowledged for their help and assistance on the questions arisen during the development of

OMMProtocol.

ABBREVIATIONS

MM, molecular mechanics; MD, molecular dynamics; GPGPU, general purpose graphic

processing unit; GPU, graphic processing unit; DSL, domain-specific language; LGPL, lesser

general public license; ESI, electronic supporting information

 8

REFERENCES

(1) Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the Amber biomolecular

simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 198–210.

(2) Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won,

Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.;

Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.;

Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.;

Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M.

CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614.

(3) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E.

GROMACS: High performance molecular simulations through multi-level parallelism from

laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.

(4) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;

Skeel, R. D.; Kalé, L.; Schulten, K. Journal of Computational Chemistry. 2005, 1781–1802.

(5) Pappu, R. V.; Hart, R. K.; Ponder, J. W. Tinker: a package for molecular dynamics

simulation. J. Phys. Chem. B 1988, 102, 9725–9742.

(6) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.;

Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.; Brooks, B.

R.; Pande, V. S. OpenMM 7: Rapid development of high performance algorithms for

molecular dynamics. PLOS Comput. Biol. 2017, 13, e1005659.

(7) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.; Hernández,

C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MDTraj: A Modern Open

Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–

1532.

(8) Swails, J. M. ParmEd http://parmed.github.io (accessed Feb 13, 2018).

(9) Eastman, P. pdbfixer https://github.com/pandegroup/pdbfixer (accessed Feb 13, 2018).

 9

(10) Beauchamp, K.; Bruns, C.; Chodera, J.; Eastman, P.; Friedrichs, M.; Ku, J. P.; Markland,

T.; Pande, V.; Radmer, R.; Sherman, M.; Swails, J.; Wang, L.-P. 2. The OpenMM

Application Layer: Introduction http://docs.openmm.org/latest/userguide/application.html

(accessed Feb 13, 2018).

(11) McGibbon, R. T. OpenMM Builder http://builder.openmm.org (accessed Feb 13, 2018).

(12) Eastman, P. OpenMM Setup https://github.com/pandegroup/openmm-setup (accessed Feb

13, 2018).

(13) McGibbon, R. T. OpenMM CMD https://github.com/rmcgibbo/openmm-cmd (accessed

Feb 14, 2018).

(14) Drienovská, I.; Alonso-Cotchico, L.; Vidossich, P.; Lledós, A.; Maréchal, J.-D.; Roelfes,

G. Design of an enantioselective artificial metallo-hydratase enzyme containing an

unnatural metal-binding amino acid. Chem. Sci. 2017, 8, 7228–7235.

(15) Villarino, L.; Splan, K.; Reddem, E.; Gutiérrez de Souza, C.; Alonso-Cotchico, L.; Lledós,

A.; Maréchal, J.-D.; Thunnissen, A.-M.; Roelfes, G. An Artificial Heme Enzyme for

Cyclopropanation Reactions. Angew. Chemie 2018.

