A Bayesian approach to predict solubility parameters
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Solubility is a ubiquitous phenomenon in many aspects of material science. While solubility can be determined by considering
the cohesive forces in a liquid via the Hansen solubility parameters (HSP), quantitative structure-property relationship models
are often used for prediction, notably due to their low computational cost. Herein, we report gpHSP, an interpretable and ver-
satile probabilistic approach to determining HSP. Our model is based on Gaussian processes (GP), a Bayesian machine learning
approach that provides uncertainty bounds to prediction. gpHSP achieves its flexibility by leveraging a variety of input data,
such as SMILES strings, COSMOtherm simulations, and quantum chemistry calculations. gpHSP is built on experimentally
determined HSP, including a general solvents set aggregated from literature, and a polymer set experimentally characterized
by this group of authors. In all sets, we obtained a high degree of agreement, surpassing well-established machine learning
methods. We demonstrate the general applicability of gpHSP to miscibility of organic semiconductors, drug compounds and
in general solvents, which can be further extended to other domains. gpHSP is a fast and accurate toolbox, which could be
applied to molecular design for solution processing technologies.

1 Introduction

Solubility directly impacts a wide range of phenomena such as the miscibility of liquids, the compatibility
and stability of polymers, and the adsorption of solids on surfaces.[1] The fast and accurate prediction of
solubility would benefit fields as diverse as organic semiconductors, paint coating, pharmaceuticals, food
industry, and cosmetics. As a consequence, a deep understanding and modeling of solubility are of general
interest. Predicting solubility is challenging since it depends on the interaction between solute and solvent,
along with various other physical and chemical properties.

Current models combine physical description to reproduce experimental observations up to a certain de-
gree. However, simulating all the several parameters involved in describing solubility is currently unfeasible.
Therefore many approaches are data driven and come from the Machine Learning (ML) field, aiming at
finding statistical relationships between information and experimental results to produce a predictive model.
Herein we suggest gpHSP, a state-of-the-art Bayesian approach for modeling solubility.

Drug discovery has led efforts in the computational prediction of molecular solubility, notably because it is a
determining physicochemical factor in the discovery process.[2][3] For example, an accurate prediction of the



miscibility would guide the selection of new potential drug compounds, avoiding thus an exhaustive (virtual)
screening.[4, 5, 6] Recently, with the growing interest in sustainable energy conversion, studies in the clean
technology sector started to emerge. Kim et al. reported the usage of free energy of solvation as a proxy
descriptor to predict the solubility of organic electrolytes of flow battery electrolyte solutions.[7] The vast field
of organic electronics technology also greatly benefits from an improved accuracy in describing solubility, from
organic light emitting diodes (OLEDs), organic transistors, and organic solar cells.[8] Recently, the impact
of solubility on the performance of polymers and small molecule in solar cell devices was studied.[9][10]
Miscibilties between mixture of materials can ultimately drive device performance. [11]

One physical theory that attempts to model solubility are solubility parameters. Hildebrand and Scott
first introduced the Hildebrand Solubility parameter as a numerical estimate to the degree of interaction
between compounds. This concept was further refined by Hansen [1] with HSP, where the Hildebrand value
is divided into three components: (i) dispersion forces, dd, (ii) hydrogen bonding, dh, and (iii) polarity,
o0p. The motivation for HSP was to quantify similarity in solubility and non-solubility patterns between
materials. These three components define a 3-D coordinate space called the Hansen space (see Figure 1(a)),
where solubility between a solvent and a solute can be determined by the relative energy difference (RED)
of the system:

RED = %, R2 = 4(Add)? + (Adp)? + (ASh)?, (1)
0

here R, is the Euclidean distance in Hansen space and Ry the interaction radius, a value experimentally
measured for the substance being dissolved. When RED < 1 there is high likelihood of both compounds to
mix, and when RED > 1 they are unlikely to mix. Intuitively RED captures the notion that the compound
in Hansen space has to be contained in the Hasen sphere of the solute. Figure 1 illustrates this concept.
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Figure 1: (a) Schematic representation of the Hansen space and how distance in this 3-D coordinate space
can be used to determine solubility between a solvent and a solute. Note that R, is the Euclidean distance
in Hansen space, and Ry the interaction radius experimentally measured for the dissolved substance. (b)
Solubility of oIDTBr as a function of dispersive, polar and hydrogen bond parameters based on experimental
measurements. Inset: Hansen sphere of oIDTBr as calculated by HSPiP, red voxels correspond to solvents
outside of the sphere and blue inside and hence soluble.

The performance of the HSP model has previously been demonstrated on large spectrum of technologies
[12][13]]9][14][15]. While it is possible to calculate HSP via molecular dynamics techniques and structure-
interpolating group contribution methods (GCMs),[16][17] these methodologies explore discrete molecular



interaction models and require knowledge of the corresponding interaction parameters to obtain thermody-
namic properties. To address this limitation here we introduce gpHSP, a theoretical model based on Gaussian
processes (GP) regression, which is an interpretable and probabilistic model. We demonstrate that gpHSP
does really well in many applications where solubility is key. Notably, gpHSP includes molecular properties
that impact solubility, such as the shape and size of molecules, the electrostatic forces, the molecular struc-
ture, and the o-profile. The latter is the distribution function of a molecular surface segment having a specific
charge density.[18] These profiles can be calculated by averaging the screening charge densities from surfaces
created with the COSMO solvation model.[19] This profile represents a description of polarity properties in
molecules. We also show its predictive capabilities when only partial information is included in the model.
We show the model outperforms common ML baselines while also providing uncertainty estimates on the
predictions.

In what follows, we begin with discussing the computational framework designed to predict the Hansen
Solubility Parameters, and detail each of the components of the model. Then we present results obtained with
gpHSP and benchmark it against three well-established machine learning algorithms. Before summarizing
and drawing our conclusions, we enumerate domains where the model could be applied. Finally, the code is
made available on GitHub. !

2 Computational framework for the HSP prediction

From the structural information to the prediction of the HSP, a computational framework was designed to
account for information from multiple sources. The overall workflow is depicted in Figure 2, and each of the
four components (i.e., molecules, simulation, feature engineering, and predictive model) is briefly detailed
hereafter.
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Figure 2: Schematic of the computational framework utilized for molecular simulation, building features
and predicting the Hansen solubility parameters.

2.1 Molecules

Four sets of molecules were used to train and validate gpHSP: (1) The solvents set contains 193 molecules with
experimentally determined HSP from several sources. [20, 21, 22, 23] The sizes of these molecules range from

1Code repository to build models and predict, along with datatsets can be found at https://github.com/aspuru-guzik-
group/gpHSP.
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two to 85 heavy atoms. (2) The polymers set consists of 31 polymers and co-polymers with experimentally
determined HSP used for model validation. The corresponding computational set utilizes oligomers with up
to five monomer units. The chains are capped at a molecular weight of 1500. (3) The Hansen Solubility
Parameters in Practice (HSPiP) set[24] contains around 8,000 organic chemicals common to a wide array
of contexts, (4) which is augmented with a drug-like set contains 64 drug-like molecules[25, 26]. Section
S1 in the Supporting Information outlines the format in which we provide these datasets and their source
for experimentally determined data. Furthermore we will elaborate on the methodology for experimentally
characterizing HSP.

Experimental characterization

HSP are typically in M Pa®% units, and if not specified we will report them in order of éd, dh, and Jp.
Experimental HSP determination is usually done in two steps, measuring patterns of solubility and non-
solubility against a set of desired solvents and then Hasen coordinates inferred via software such as HSPiP or
via statistical methods such as fitting Gaussian distributions. Experimental data can be collected by inverse
gas chromatography, intrinsic viscosity, solubility measurements or surface tension. Due to the optical
properties of organic semiconductors in the range between ultraviolet and infrared, solubility determination
via absorbance measurement is the preferred method of measurement. The foremost is the classical approach
by Hansen [1] which assumes a set of solubility/non-solubility assessments on a set of solvents. A more
systematic approach is the binary solvent gradient method developed by Machui et al.,[9] which measures
solubility /non-solubility between the various degrees of mixtures of a set of solvent. The inset in Figure
1(b) shows measurements between a solute and four solvent (one for each line) at various degrees of mixing.
Alternatively, another fast and reliable strategy is to measure the concentration of dissolved material in
solvent mixtures after limited periods of several minutes.[27] Furthermore, visual inspection can be used to
detect remained unsolved material particles in solution.[14][28]

Independent of the experimental methods, the determination of HSP from solubility values is usually done by
one of the following two methods: (1) use the HSPiP software to transfer the related solvents to the Hansen
space and to separate the data into soluble and non-soluble regions, which allows the user to create a solubil-
ity sphere.[1] New coordinates are determined in reference to other known solvents and their HSP.[29] (2) Use
the Gaussian behavior of solubility in the Hansen space to extract the HSP directly from solubility data.[30]
For illustration purposes, Figure 1(b) depict the Gaussian fits to solubility measurement for the organic semi-
conductor oIDTBr in Figure 1(b). The choice of method can introduce variability, based on the same input
data, method (1) leads to HSPs of (19.54,4.29,2.87)M Pa®%, and method (2) to (19.64,4.88,2.91)M Pa®">.
Table S1 in the Supporting Information has eight different measurements for PSHT. We further explore the
role of measurement uncertainty in the Results and discussion section.

2.2 Simulation

The simulation of the theoretical properties of the molecular systems were obtained at various level of theory,
including force field [31], semi-empirical [32, 33, 34], and ab initio methods [35, 36, 37, 38, 39, 40]. Section S3
of the Supporting Information contains the statistics used to assess the quality of the geometry optimization
methodologies used herein.

For the solvent set, the structures generated from a SMILES string were initially optimized with the UFF[31]
force field, as implemented in RDKit.[41] Structures were then relaxed in the gas phase using the PM7
semi-empirical method as implemented in OpenMOPAC[32]. Then electronic structure was calculated at
the BP86[36, 37]/SVP[37] level of theory using the Orca quantum chemical package.[35] o-profile of the
relaxed structures were finally computed with the COSMOtherm13[42] software using BP86/SVP C30 1201
parameterization.[43]

For the polymer set, we generated initial structures using the Polymer Modeler in Nanohub [44], and relax
the geometries with LAMMPS.[45] From these initial structures we further refined the geometry via a semi-



empirical quantum chemistry calculation. The rationale behind this approach is to balance computational
cost and accuracy. To assess the level of theory to be used for optimization we compared relaxed structures
obtained with PM7,[33] AM1,[46] DFTB+,[34] with high accuracy B97-D[38]/Def2-TZVPD[39] level of the-
ory. We perform this test on five oligomers consisting of one up to five monomer units. The Gaussian09
software package [40] was used for the DFT calculations. To assess the quality of each approach we look
at the distribution of differences between bond lengths, bond angles, and dihedrals angles, when compared
to the higher level of theory. As shown in Table S2, DFTB+ was found to be the method of choice for
geometry optimization at a fraction of the QM computational cost, with PM7 in second. While DFTB+
was more accurate we experienced more convergence problems with the software and so we utilized PMT.
Consequently all the polymers hereafter are optimized at that level. Once the structures of the polymers re-
laxed, single point energy calculations at the BP86/SVP level of theory (Orca) were performed to determine
dipole moment, polarizability, and the COSMO cube file. This file was then processed by COSMOtherm to
provide further physicochemical properties such as: o-profile, hydrogen bond donor/acceptor ability, cavity
surface and volume. The o-profile of the relaxed structures were computed with the COSMOtherm13[42]
software using BP86/SVP C30 1201 parameterization.[43]

2.3 Feature Engineering

For HSP prediction we utilize information that we deemed to be physically relevant to this problem at hand,
namely the shape and size of the molecules, the electrostatic forces, the o-profile and the molecular structure.
Details on each of these features are discussed in this section.

Molecular fingerprints

To construct the notion of similarity between molecules we utilize molecular fingerprints (FP). Although
several varieties of FPs exist, we used Morgan [47] and MACCS. In a general sense, FPs are fixed length
vectors that encode the absence or presence of specific molecular environments. We choose Morgan FP since
they can represent a wide variety of molecular environments. We set the radius to 8 and the size to 2048.
In MorganFP, for a given atom molecular patterns up to connectivity distance of 8 (radius) are identified,
indexed and hashed to a vector of size 2048. These FP can be binary when only indicating presence or
absence, or counted, when counting the number of occurrences of a pattern. Meanwhile, MACCS FP are more
specific and concise, they are a 166-length binary vector that encodes mainstay molecular patterns such as the
presence of S-S bond or rings of size 4. Computing FPs is straightforward with the RDKit chemoinformatics
python module. In order to improve the effectiveness of this representation, we do dimensionality reduction
of the fingerprints, utilizing a gradient boosted tree feature selection scheme, reducing the fingerprint to a
lower dimension where most of the variability of the data is found.

o-profile

The o-profile is the probability distribution of a molecular surface segment having a specific charge density.[18]
These profiles can be calculated by averaging the screening charge densities from surfaces created with the
COSMO solvation model.[19] The profile provides a description of polarity properties in molecules.

Previously o-moments, the first Taylor expansion coefficients of the o-profile, were utilized as a compact
representation to predict HSP.[48] In this case we are utilizing the entire profile; in our datasets we found
that all o-profiles can be constrained to a 61-length continuous vector. Each vector can be interpreted as
signal, as such we normalize each vector to unit length. Since most profiles have a similar structure, we
subtract the mean signal of all profiles to contrast the differences between profiles. When the vector is
normalize the Euclidean distance between profiles can be interpreted as the cosine distance which indicates
similarity among profiles. This formulation can be seen as the discrete version of COSMOtherm’s measure
of similarity for o-profiles. We also tested a 6-component non-negative matrix factorization (NMF) as an
alternative way to represent in a compact form the o-profile. NMF finds a basis where most profiles can be
reconstructed from 6-dimensional weight vectors.



Eletrostatic

Additional electrostatic descriptors are obtained from the electronic structure calculations. In particular
the magnitude of the molecular dipole moment and the polarizability results from single points energy
calculations in ORCA. From COSMOtherm we also use the hydrogen bonding moments, in particular the
first moment for the donor and acceptor part. These moments are descriptions of the o-profile calculated
only on hydrogen bonding acceptors and donors atoms. Additionally we also utilize the norm of the o-profile
as a proxy for the magnitude of the polarity properties of a molecule.

Shape and Size

Since the shape and size of the molecules studied herein can vary significantly, in term of number of atoms
(from 5 to 85 heavy atoms per molecule), and in terms of spatial orientation, we looked into quantifying
theses measures. Molecular weight relates to the size of a molecule: the bigger the molecules the more atoms
it has. For shape we could have utilized more complex data such as 3D fingerprints [49], but instead we
decided on two summary statistics relating to the COSMO solvation surface. COSMO Surface Area and
Volume provides indirect information about the shape of a molecule based on the space it occupies (volume)
and it’s arrangement (area).

2.4 Gaussian process regression
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Figure 3: Schematic of prediction with Gaussian processes. On the left we combine several types of informa-
tion to build our feature vectors in our training set, on the right we highlight the composition of the kernel
function combining these different information sources. Each type of feature is highlighted with a color.
Predictions with their uncertainty bounds represent a Gaussian distribution.

Our model aims to be interpretable, not only predicting accurate solubilities, but also leveraging different
types of data sources along with the experimental data on HSP. The model, referred to as gpHSP, is based
on Gaussian processes regression.

GP Regression is an established probabilistic framework in the field of Machine Learning to build flexible
models, while furnishing uncertainty bounds on predictions [50, 51] and resilient to overfitting. A GP repre-
sents a family of smooth functions that are determined by a mean function and a covariance function. These
two functions are optimized and fitted to a set of training data, and samples from a GP represent possible
functions that could model the data at hand. Uncertainty predictions can be obtained when integrating all
functions from a GP and calculating their spread, while the predictions will be the mean of all functions.
GPs are distinct because of their associated covariance functions (i.e. the kernel). A covariance function is
specified and optimized to learn a smooth function that utilizes the similarity of data points for prediction.



A popular choice of covariance function is the sum of radial basis functions (RBF), also known as a squared
exponential, along with a noise kernel as follows:

l|z* —x| 2

K(z*,2) = Ae™ 22~ + Apoisel (2)

This covariance function has three optimizable parameters - the noise variance A,,,;se which allows to quantify
the inherent noise in the data, the RBF lengthscale ¢, and variance A which control the spread of the Gaussian
function. A large ¢ indicates the model is more smooth and global, while a smaller ¢ parameter indicates
the model utilizes more local information. The ||z* — z|| part is used as a distance measure between two
data points. This can be substituted for other distance or similarity measures. A good sanity metric when
looking at GPs is to check that A > A, ,ise, which would indicate the model is based on signal rather than
noise. Alternatively, predictions of GP can be interpreted as weighted averages of the training data, where
the weights are probabilistic in nature. A schematic of how GP combine different types of information for
prediction in the solvent case is outlined in Figure 3. The complete equation for the solvent covariance
function is:

_ e —a)?

262
K(.I‘*, x)small = AnoiseI + E Afeaturee feature
i€ features (3)

features = {Molpp, o-profile, electrostatic, shape/size}

Eq 3 has nine hyperparameters, which control how distances between observations of data are interpolated
and smoothed. These parameters are optimized with gradient descent to improve agreement with data and
model flexibility. It is also important to note that GPs are inherently robust to overfitting since the training
procedure penalizes more complex models (higher-rank kernels).

Due to different physics that underlie small molecules and polymers, we built an independent model for
the polymers set. Due to the disparity between size of datasets between solvent and polymer sets, we also
decided for a more simple model that leverages all types of data while the polymer model utilizes only two
types of data sources, amounting to five hyperparameters. These last features were selected via automatic
relevance detection (ARD) techniques on GP. In this step each feature is given a individual lengthscale and
so when the model is optimized, more relevant features will have larger coefficients which can be selected
against lower valued features. This methodology could easily be adopted for other applications where a
model might need to incorporate additional information due to the underlying physical phenomena that is
being modeled.

Due to the small size of both datasets and to avoid overfitting, we used leave-one-out cross-validation (LOO-
CV), where we train our model on all data points except one, and predict its value. This is done for all data
points. All reported predictions are always obtained on untrained data.

3 Results and discussion

We assess the performance of our approach on the collected experimental values described in section 2.1.
We further compare the quality of the prediction against well-established methods, from simple and effective
models to state-of-the-art models. In all the reported results, statistics on the error distributions are provided.
Comparisons are made only on experimental values since they are the only source of ground truth.

The methods reported include: (i) Lasso, which is an L;-penalized form of linear regression, (ii) Kernel
Ridge regression (KernelRidge)[52] which is a form of L?-penalized linear regression utilizing kernels, and
(iii) Regularized Greedy Forest (RGF),[53] considered as a state-of-the-art method in ensemble and tree



regression. Because of the low number of data points and high dimensionality of the feature vectors, we
decided to not include neural networks.

To measure the effectiveness of each method we report on mean absolute error (MAE), standard deviation of
absolute error (AE o) root mean square error (RMSE), Pearson correlation coefficient (r) and the coefficient
of determination (R?). While MAE, AE o, RMSE give an idea of the error distribution, r and R? inform
on the quality of fit of each model. r is a measure of how linearly dependent the experimental and predicted
values are, while R? is a measure how well the model can capture the inherent variation of the experimental
data. R? can range from —oo to 1, from an infinitely-model to exact prediction. When R? = 0 the model
can predict as well as the mean value of the data, therefore positive values are desired. All these statistics
give an overall idea of the type of error that can be expected from each method. Results are summarized in
Table 1.

Dataset ‘ Target Approach MAE AE o RMSE r R?
gpHSP 0.68 0.76 1.02 0.84 0.69

sd KernelRidge 0.80 0.92 122 0.75 0.56

Lasso 0.91 1.11 1.44 0.63 0.39

RGF 1.10 1.21 1.64 0.50 0.21

gpHSP 1.93 2.08 2.83 084 0.71

Solvents s KernelRidge 2.46 2.77 3.70 0.72 0.50
n=193 | P Lasso 280 332 434 060 031
RGF 2.26 2.37 327 0.79 0.61

gpHSP 1.57 1.83 241 091 0.83

sh KernelRidge 2.25 2.22 3.16 084 0.70

Lasso 2.66 2.38 3.57 0.79 0.62

RGF 1.96 2.02 2.81 087 0.77

gpHSP 0.38 0.44 0.58 0.76  0.56

od KernelRidge 0.51 0.38 0.63 0.70 0.48

Lasso 0.73 0.53 0.90 0.27 -0.06

Polymers gpHSP 1.82 2.03 2.72 0.76  0.58
0 =31 op KernelRidge 2.58 2.36 3.50 058 0.30

Lasso 2.71 2.31 3.55 0.56 0.28

gpHSP 1.88 1.93 2.69 0.85 0.62

oh KernelRidge 2.22 2.26 3.17 0.69 047

Lasso 2.88 2.97 4.13  0.37 0.10

Table 1: Comparison of multiple models predicting HSP. Shaded cells represent the best model for a given
property and dataset. Predictions are compared against reported experimental HSP. All statistics are com-
puted via LOO-CV.

Overall gpHSP outperforms all other baseline methods in the regression metrics. In particular, R? is high
in all settings (R? > 0.5), which indicates a strong goodness of fit. Figure 4 displays a comparison between
the experimental and predicted results for all HSP. It can be observed that the fits obtained with gpHSP are
in good agreement with experiments, although there are cases where the prediction has a large error but on
average the error is lower than the other baseline methods.

3.1 Interpretation of parameters and uncertainty

A key feature of gpHSP (and GPs in general) is the uncertainty predictions, which are represented as a
gradient in the scatter plots (Figure 4). Points with the largest error tend to have a large associated uncer-



od

Solvents with gpHSP

- Ideal fit

14 16 18 22

20
8dexp(MPa®3)

Polymers with gpHSP

R?=0.56
r=0.76
MAE =038
RMSE = 0.58

19.0 . //?6 °
o’
o 185 3
3 o -
3 -
18.0 o 000 &% &
B o .
”D
175 »
-
-4
17.0 e
-
I —=- Ideal fit
5 1.0 175 180 185 190 195 200
6 exp(MPa®?)

057

Mean

i

030
Min

Uncertainty
51

Uncertainty
461

R2=0.71
r=0.84
MAE = 1.93
RMSE = 2.81

Max

- Ideal fit

5 20
%)

8hexp(MPa®

R?=058 e
r=0.76 -
MAE =1.82 e
RMSE = 2.72 e

Ideal fit

5.0 75 100

SPexp(MPa®?)

125 150 175

MAE = 1.88

- ldeal fit

75

100 125
6hexp(MPa®)

15.0

75 200

064
Min

121
Min

Figure 4: Prediction performance as scatter plots of experimental vs gpHSP predictions for solvents molecules
(top row) and polymers (bottom row) on each parameter. The coloring matches the uncertainty bar. Error
statistics are shown in the top right corner.

tainty. There are also some cases of accurate predictions with high uncertainty. Intuitively, uncertainty is a
measure of how different a data input is related to all previously observed inputs. When doing prediction on
real-world data, by looking at the predicted uncertainty bounds and comparing them to the known bounds
one can quantify how confident the model is and where more data might be more important to be measured.
By looking at the regression performance of different types of features we can interpret how correlated each
parameter is to each source of information (see tables S4 and S5 in the Supporting Information for a full
tabulation of the statistics). In particular, we notice that molecular structure tends to outperform other
forms of information. §d and dh can be predicted quite well just using MACCS information, while it per-
forms quite poorly with §p. For dp, binary Morgan FP works best, which might indicate that more complex

molecular patterns are required to correlate HSP with dipolar intermolecular forces.

The second most predictive feature is related to the electrostatics of each molecule. In particular for dp, the

o-profile performed the best, while with dd and §h the electrostatic properties perform better.

These trends can also be observed in the hyperparameters of each kernel. In all cases, structural properties
tend to have higher variances and length-scales. Something to notice is that the kernel hyperparameters take
into account the joint predictive power of all features combined, instead of independent predictive power as

in our initial analysis.

From the hyperparameters, dd appeared to be more dependent on molecular structure, while dp depends
on the electrostatic properties. For each target, the information provided by the o-profile is diminished,
indicating that electrostatic properties are preferred, for predictive power, over the o-profile.
The size and shape feature shows a limited prediction ability. With dd, the variance of this kernel component
is 0.0, indicating that it does not contribute to the overall prediction. The amount of non-negative entries
in a fingerprint is typically related to the size of a molecule, so we hypothesize that shape/size features are

redundant.



3.2 What is an acceptable error?

To determine the acceptable error in the RED = % relation (see Equation 1, and Figure 5), one needs to

0
have a close look at the solute-solvent distance, R,, and at the Hansen radius, Ry.

R, depends on the HSP of two materials. Since the latter are predicted values, and the distance will require
a non-linear combination of six values, the distribution of error in distances can be rather complicated. To
better understand how this error is propagated, we computed all possible distances between solute and sol-
vents in the general solvents set for experimental and predicted HSP. The difference between experimental
and the predicted distances is illustrated in Figure S9, we can expect a mean error of 2.58 with standard
deviation of 2.38. In the worst scenario the distance difference is 20.26.

To contextualize the aforementioned numbers, we look at Ry, which strongly depends on general solubility
properties of the solute, especially in terms of crystallinity and molecular weight. Typically for compounds
with identical Hansen solubility parameters, a similar solubility trend to the surrounded solvents is expected,
but the absolute solubility can differ enormously. Ry is normally experimentally characterized, and reported
values range from 3.5 to 16.8 and higher, depending on the solute.

It should be noted that there is also uncertainty in the experimental data. Results are significantly depen-
dent on solvent selection, total number of solvents and HSP-accuracy of solvents. Additionally the choice of
experimental method and data evaluation can influence the outcome of the experiment [9, 15, 14, 54, 27]. For
example, for a single solute, the semiconducting polymer P3HT, several HSP can be found in literature as
illustrated in Table S1. For P3HT the reported HSP have a standard deviation of (0.42,1.03,1.54) M Pa®5
which is comparable to the error obtained with our GP-based model.

By fixing a value of Ry and applying the RED formula to true and predicted values of HSP, we can ask how
likely are we to accurately report a pair as soluble or not soluble. As seen in Figure 5, we consider a range
of Ry values from commercial polymers and look at accuracy scores for each type of prediction. Overall we
obtain an average accuracy above 80%, but the accuracy on each individual task (soluble or not) will vary
greatly based on Ry. Lower values tend to be less soluble with a random solute and so accuracy for RED < 1
is low and RED > 1 is high. This trend is inverted for higher values of Ry. This is also a symptom of large
modeling error at the extreme values of each property.

Considering the average modeling error in distances is 2.58 we can expect most predictions used with RED
to be accurate. Even so, there is still room for improvement to lower the modeling error. This is particularly
true when comparing solvents with low and high values of Ry.

3.3 Domains of Application

In addition to the aforementioned comparisons with experimental values, we have applied gpHSP to several
domains in order to create datasets where HSP might be useful while highlighting potential applications.
HSPiP has aggregated a set of around 10,000 compounds which are commonly used for solutes/solvents,
with a subset of 8,800 organic compounds. Each compound has an associated CAS-ID and common name.
Using this information we retrieved smiles strings from PubChem [55] and filtered on the subset of organic
molecules. We make this data available in a comma separated file, including all relevant information needed
to do predictions, including the o-profile and calculated properties.

The upper bound to obtain the properties of a molecule in this set is 5 hours on a single core, with an
median time of 12 minutes. When employing only partial information such as FPs, gpHSP takes less than
a second to compute the properties of a molecule. What is more, the performance of gpHSP is on par with
the baseline methods trained on all the data. Therefore, our approach can be easily utilized for filtering in
high throughput virtual screening framework in any material effort.

The most common use of HSP in a pharmaceutical context is in predicting how materials will interact
when combined in multi-component formulations[56], often many of these components are biological (e.g.
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Figure 5: a) Histogram and a Kernel Density Estimation of the distribution of error between predicted and
real Hansen distances. In the corner summary statistics are reported, b) Plots of expected average accuracy
on each solubility task as a function of Ry. Exemplary compounds and values are shown below on the x-axis.

metabolites, membranes) or material (e.g. keratin, nails).

Although HSPiP contains around 8,000 drug-like molecules according to Lipinski’s rule of five [57], we
examined drug molecules of interest from recent work. For example, HSP have been utilized to assess
pharmacokinetic properties of drugs [26], determining the most probable absorption sites for each drug and
the corresponding metabolite by looking at miscibilities between these two. Hossin et al. looked at predicting
nail-drug interactions by comparing drug and nail HSPs [58].

One other domain of applicability for the HSPs is in the determination of relative miscibilities in organic
materials blends [59], where the interaction parameter of Flory-Huggins x; ; can be highly employed.[60,
61, 62] Following the Flory-Huggins theory, the interaction parameter for solute:solvent mixtures, can be
estimated via the following relation:

v

X1,2 = lerf,((sﬂ — 0T3)? (4)
where 0T;2 = 6d;® 4+ 6p;2 + 0h;> is the total solubility parameter, R the gas constant, T the absolute
temperature and vy 2 is the geometric mean of the solute:solvent molar volumes. In organic photovoltaics
applications, the interaction parameters x; ; plays a crucial role in controlling phase behavior (miscibility)
at the equilibrium microphase structure of at least two semiconducting materials with different energy level
alignments that maximize charge separation, recombination, and transfer.[63, 64, 65] gpHSP could be an
crucial tool in the optimization of organic photovoltaics and light emitting devices, which relies on con-
trolling this nanoscale morphology based on the interaction parameter.[66, 67, 68] Indeed, gpHSP could be
incorporated to a closed-loop approach [69] for a fast screening of potential candidates based on solubility
before sending lead blend candidates to an autonomous platform for device optimization.[70] Also, gpHSP
finds applications in the design of structural materials, such as optoelectronics, sensors, biocatalysis, and
thermal and electromagnetic shielding. [71, 72, 73]

4 Conclusion
In conclusion, we presented gpHSP, a probabilistic and interpretable predictive model for HSPs. This model

is trained on experimental and theoretical data, and is validated with regression metrics. Our work demon-
strates higher predictive power over several baseline models, and can leverage several types of information.
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If using only topological information, prediction takes less than a second, significantly reducing the timeline
of trial-and-error approaches to material synthesis and device fabrication of organic blends. Additionally, it
avoids over-fitting and requires a low number of hyperparameters. We computed and predicted properties
for several settings where gpHSP might be used: organic photovoltaic and semiconductor design, quantifying
drug interactions and polymer blends.

One important venue for improvement is the availability of large, high quality, open source HSP databases.
Current data sources are scattered and as seen previously will have an inherent experimental error. New
advances in automated measurements might pave the way for reduced error and high-throughput data col-
lection.

Future directions of this work lie in improving the GP model by, e.g., incorporating more relevant infor-
mation (temperature/pressure, mixture blends), more powerful GP frameworks and further development of
how theory can be extended with measurable uncertainty bounds. On the modeling side, there are several
new advances in GPs that could be leveraged such as utilizing heteroscedastic noise models, corregionalized
kernels for correlating results from multiple data sources or the use of deep GPs, which offer more powerful
Bayesian-based models, but require more data. Finally, the ability to associate predictions with not just
point estimates but also uncertainty bounds could be incorporated into HSP theory to provide probabilistic
estimates of solubility, and frame this theory in a probabilistic language.

All in all, the authors recommend gpHSP as a toolbox to predict solubility. The code is available and
open-source to be used and extended 2.
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