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Abstract

The phase space of possible supramolecular materials is enormous, as they can, in
principle, be built from any combination of organic building blocks. Here we have de-
veloped an evolutionary algorithm (EA) that can assist in the efficient exploration of
chemical space for supramolecules, helping to guide synthesis to materials with promis-
ing applications. We demonstrate the utility of our EA to porous organic cages, pre-
dicting both promising targets and identifying the chemical features that emerge as
important for a cage to be shape persistent or to adopt a particular cavity size. We
identify that shape persistent cages require a low percentage of rotatable bonds in their
precursors (<20%) and that the higher topicity building block in particular should use
double bonds for rigidity. We can use the EA to explore what size ranges for precursors
are required for achieving a given pore size in a cage and show that 16 A pores, which
are absent in the literature, should be synthetically achievable. Our EA implementa-
tion is adaptable and easily extendable, not only to target specific properties of porous
organic cages, such as optimal encapsulants or molecular separation materials, but also

to any easily calculable property of other supramolecular materials.

Introduction

Porous molecular materials are an emerging class of porous materials, which, unlike network
solids such as zeolites, polymers and metal-organic frameworks (MOFs), lack extended chem-
ical bonding and are instead built from discrete molecular units. !> Porosity in the solid-state
can be achieved for porous molecular materials through either extrinsic porosity, where the
molecule is unable to pack so as to fill all void space, or through intrinsic porosity, where
the molecule itself has an internal cavity. Examples of the latter include molecular cages,
which in addition to an internal cavity, have multiple entry and exit windows,? belt-like
molecules, such as cucurbiturils and cyclodextrin, or bowl-shaped molecules, such as cal-

ixarenes. Typically, in order to maximise the porosity in the solid-state, the relatively rare



feature of ‘shape-persistency’ is being sought; the molecule must retain its intrinsic cavity in
the absence of any stabilising solvent. Recent efforts have afforded record-breaking surface
areas of 3786 m? g~ ! for a boronate cage, with a molecular diameter of ~3 nm,* and 3,425
m? g~ for a triptycene-based building block with extrinsic porosity.®

Potential applications of porous molecular materials include as encapsulants,® in cataly-

811 and as sensors. 123 Most promising are applications in molec-

sis,” molecular separations,
ular separations, where some molecules have been found to be effective for gas separation, !
separation of aromatics,? separation of alkanes/alkenes®!* and chiral separations.!! Several
of these applications occur in solution rather than in the solid-state, a unique possibility due
to the molecular nature of the material. More recently, an intriguing new application has
been reported - the use of molecular cages to form porous liquids. '°

Porous molecular materials still only number in their hundreds, compared to, for exam-
ple, the many hundreds of thousands of MOFs reported.'® Computation has been playing a
significant role in the discovery of new porous molecular materials.'” Evans et al. screened
the Cambridge Structural Database to identify possible porous molecular materials from
previously reported crystal structures.® Using machine learning, they identified that a large
molecular surface area was a predictor of high crystal porosity. For molecular cages, one
of the challenges of a priori prediction is the emergent behaviour in the reaction outcome
from the molecular precursors. Simple changes to the precursors can double the mass of
the product, changing its molecular topology and consequently its properties, for example
losing any potential porosity through loss of shape persistency.'® We have previously out-
lined the 20 most likely topologies for molecular cages, split across four families, which are
distinct based on the number of precursor reactive end groups.? Furthermore, the potential
for computational prediction of the reaction outcome by comparing the relative energy of the

2021 or considering their reaction pathways has been shown.?? Recently,

different assemblies
we tested this hypothesis on a larger scale in a combined robotic and computational screen-

ing, where 33 new porous organic cages were discovered.? This demonstrated the value



of computation; the topological outcome could be predicted where there were sufficiently
large thermodynamic driving forces, and further, formation energies of the cages could be
correlated with the likelihood that a molecular cage as successfully formed on the robotic
platform. Calculations can therefore prevent synthetic effort being wasted on unpromising
reactions, and also, through further computational property calculations, allow full scale-up
and characterisation to only go ahead on the most promising materials.

At the solid-state level, it has been shown that the low energy polymorphs and therefore
crystal packing of porous molecular materials can be predicted using crystal structure predic-
tion techniques originally developed for pharmaceuticals.?* 2" Most recently, this approach
has been used to calculate energy-structure-function maps and thus guide the discovery of
targeted properties in extrinsically porous triptycenes.® For intrinsically porous molecular
materials, there have been many computational studies demonstrating the possibility of pre-
dicting separation performance in both the crystalline and amorphous solid-state, through,
for example, calculation of the pore network, sorption uptake and diffusion barriers for kinetic
separations. 10112829 T all cases, a consideration of the flexibility of the porous molecular
host has been shown to be critical, particularly in understanding the sorption of guests
that look too large to diffuse through the systems from inspection of static crystal structures
alone.?" Recently, we have demonstrated the potential for rapid property screening of porous
molecular materials through a molecular analysis of the molecules alone, without considering
the bulk structure or influence of crystal packing.3! This approach allowed us to discover
a promising previously reported material, noria, whose potential for Xe/Kr separation we
then validated.

The phase space of hypothetical porous molecular materials is enormous, given they are
formed from building blocks of organic molecules. Most porous organic cage systems to
date have been synthesised using dynamic covalent chemistry (DCC), where the reversible
nature of the reaction allows error correction towards high symmetry, discrete structures.

If we consider the most commonly used chemistry for cage synthesis, imine condensation,



then inspection of only the online Reaxys database of previously reported molecules,®? finds
on the order of 10° total aldehyde and amine precursors. If you combine these into two-
component cages in all possible topologies, then you already have 107 potential host molecules
to consider. For this reason, we have developed an evolutionary algorithm (EA) for the
prediction of molecular materials, and demonstrate here its application to the discovery of
porous molecular materials. EAs are inspired by biological evolution, where candidates are
evaluated for their ‘fitness’, which determines their likelihood of proceeding to a subsequent
generation. At each generation, several candidates will undergo random mutations and
pairs of candidates will ‘reproduce’, with their chromosomes undergoing crossover. EAs,
such as genetic algorithms, have been widely applied in chemistry, including for structure
prediction®? or determination and in drug discovery.?! EAs efficiently search disparate regions
of multidimensional phase space with multivariable optimisation and are particularly well
suited to problems where a computationally cheap calculation can be used to determine a
candidate’s fitness, as can be the case for porous molecular materials.

Evolutionary methods have been developed both for experimental35—37

and computa-
tional ¥ 4% materials discovery and optimization. To date, very few evolutionary approaches
have been employed for the study of supramolecular materials, as this involves multiple ob-
stacles, such as (i) the huge diversity in chemical bonds and flexibility in regards to electronic
and structural properties, (ii) the need for a framework for the assembly and the correct gen-
eration of the supramolecular structure, and (iii) the lack of cheap and accurate descriptors
that link structure with the potential properties of the final material in many cases.

In this work, we report on the extension of our previously reported software, the supramolec-
ular toolkit (stk),%® which can assemble a variety of supramolecular materials, including
porous cages, and then automate their property calculation. stk is written in python and
makes use of utilities within the RDKit cheminformatics libraries.?* Within stk, each EA

individual is defined as a Python object, which allows for the labelling and tracking of its

compositional (e.g. precursors, atoms, bonds) and structural (e.g. cavity size, diameter, to-



tal energy) properties throughout the evolutionary run. Whilst here we develop the EA for
the discovery of cages, it is easily extendable to other supramolecular materials in the future.
We focus on the molecular prediction of cages, having previously demonstrated the utility
of this approach for property prediction,®' and as this significantly decreases the calculation
cost of the fitness function compared to solid-state calculations. After first showing that our
approach can efficiently rediscover a previously reported cage, we then apply the software
to two distinct case studies: (i) targeting elusive shape persistent cages and (ii) targeting
a specific pore size, 16 A, which has not been previously synthetically reported. This will
show the utility of our software, which could easily be targeted at specific properties, such
as encapsulation or molecular separation, in the future for porous molecular materials, or

extended to the broader field of supramolecular materials.

Workflow of the EA

The overall structure of our EA is shown in Figure 1A. The seed population of starting
porous organic cages is obtained by assembling molecular structures selected from a database
of chemical precursors. The assembly of two-component organic cages is briefly described
in the following section, but follows the procedure that we described for our supramolecular
toolkit (stk),® which assembles supramolecular materials, including porous organic cages.
Here we describe the extension of stk to the exploration of chemical space using an EA.
Each organic cage (or individual) chromosome can be uniquely defined by a set of three
variables (or genes): two building blocks (BB) and a topology, as shown in Figure 1B. The
chromosome representation is of fixed length; this cannot be increased or decreased during
the EA run.

Once all the individuals in the initial population have been generated, each cage in the
population has its fitness value evaluated (as described below). The individuals are ranked

according to their fitness value and, depending on the specific selection algorithm, a set



B Chemical Topologies

Database A

Initialize seed
population of
chromosomes
Fitness / '
calculation N
T Random Selection |

! i
Rank & . \‘ v v
selection age
Chromosome - BB#2 Topology

Assembly of k ASSEMBLY
new offspring '

Ay

Figure 1: (A) Overall workflow of the EA for porous organic cages. k represents the number
of offspring individuals that temporarily extend the population size at each generation. (B)
Definition of the cage chromosome, which is composed of three genes, BB#1, BB#2 and a
topology. Both BBs are randomly selected from a chemical database, whereas the topology
is selected from a list of feasible topologies depending on the topicity of the BB. The cage is
then assembled into a molecular cage structure.

of parent structures is chosen. New offspring structures are generated starting from the
selected parents by applying the genetic operations of crossover and mutation, shown in
Figure 2A and B. Both genetic operations modify the chromosome of a molecular cage by
the substitution of its constituent genes. In the case of crossover, the genes of two parent
cages are mixed to generate two new offspring, for example by switching BBs or topologies.
For mutation, one of the existing genes is replaced by a new random one from a database of
BBs or a list of topologies, respectively. The newly generated offspring structures have their
fitness value calculated and they are used to replace the worst performing individuals from
the current population, thus maintaining a constant population size. As shown in Figure 1A,
this cycle continues until a convergence criterium is met or the EA reaches the maximum
number of allowed generations. Specific convergence criteria could be the appearance of a

particular individual in the current population or that the top 5 cages remain unchanged for



20 generations, suggesting that the EA run has reached a plateau.
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Figure 2: (A) Example of a mutation operation on a hypothetical two-component cubic
parent cage, where BB1 is randomly replaced with a new tri-topic BB from the original
chemical database. Alternative mutation types would involve exchange of the other BB or of
the cage topology. (B) Example of a crossover operation on two hypothetical parent cages,
where by mixing their genetic information (BBs), two new offspring are generated. Both (A)
and (B) do not display real cages, but instead hypothetical assemblies where the chemical
BB are simplified by sticks with the correct topicity. (C) Molecular similarity analysis for a
specific molecule against the building blocks present in a chemical database. By employing
Dice similarity, we select the most chemically similar molecules to our target molecular
candidate. On the bottom we show the top 4 molecules with their corresponding ranking
and Dice similarity (D. S.) value.
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Chemical databases In our EA, the BBs selected for the generation of the initial seed
population (and during the mutation step) come from a chemical database. Since this work
focuses on the generation of porous organic imine cages, our initial database only contained
aldehydes and amines and, in order to restrict the size of the chemical space to be explored,
we only allowed for tri-topic aldehydes and di-topic amines. Our database was generated
by mixing the free eMolecules database®® (containing around 18M molecules) and a selected

portion of the proprietary Reaxys database? (5K di- and tri-topic aldehydes and 60K di-



and tri-topic amines). We removed all charged molecules, any molecule containing metals
and any instances where the reactive amine was actually an amide, as this functionality will
prevent imine condensation occuring. The final database contained 153 trialdehydes and
39,203 diamines. When considering two-component imine cages in one possible topology,
the size of the chemical space amounts to around 6M possible combinations. In the future,
it would be possible to use custom databases or enumerate hypothetical libraries for a given
search or material class, or to screen the library first to remove more chemically complex
molecules that are the least promising for materials synthesis.

The 3D coordinates of each molecule within the chemical database were obtained start-
ing from SMILES codes by using the ETKDG?? algorithm as implemented in RDKit, which
allows for the efficient generation of reasonable conformations of small molecules. Differ-
ently from other recent applications of EAs for computational chemistry and materials dis-

41,424754.54 we do not allow for the chemical modification of the original precursors

covery,
during the EA search. In our implementation, the mutation step can only perform a sub-
stitution of one of its two building blocks of a cage with a completely new one from the
chemical database. From an experimental point of view, we believe that this approach helps
us to circumvent a common problem in EAs, where chemically infeasible candidate struc-
tures are generated that can not be synthetically accessed. BBs included from Reaxys have
been previously synthetically reported and all cage structures built here can hypothetically
be synthesised in a one-pot imine condensation reaction. Within this work, we do not in-
vestigate the synthetic accessibility of the final candidates, instead we allow any possible
combination of the precursors available from the original database. However, synthetic ac-
cessibility can be addressed in the future by including synthetic rules or scoring in the EA’s
fitness function and refining the original chemical database or using a custom database.

By completely substituting one of the three genes of a chromosome, a mutation step

strongly modifies the chemical/structural properties of a cage, possibly losing all the evolu-

tionary advantage that has been developed up to that specific generation in a EA run. For



this reason, we developed the similarity mutation, as shown in Figure 2C, where the current
gene (or building block) within a cage is replaced by the most similar BB from the database,
as calculated with Dice similarity.®®® Applying the similarity mutation multiple times to
the same molecule yields the next most similar molecule in the list every time. For example,
running the similarity mutation for the molecular target in Figure 2C will lead to molecule
#1 if run a single time, to molecule #2 the second time, and so on. In a usual EA run, we
alternate between the random and similarity mutation, as we have found that this specific
combination leads to a faster convergence of the run, allowing an efficient exploration of the

overall chemical space.

Cage assembly

In this work, we investigate the family of molecular cages built by a combination of a tri-
topic and di-topic BBs, where the BBs are combined in a 2:3 ratio.?’ Within this family, for
simplicity, we will only focus on cages with two different topologies, shown in Figure 3, the
Tri*Di® topology that relates to a tetrahedron and the Tri®Di'? topology that relates to a
cube. The superscripts from the nomenclature represent the number of precursor molecules
with the specific topicity (Tri for tri-topic or Di for di-topic) included in the assembly. For
example, the Tri*Di® molecule consists of four tri-topic and six di-topic building blocks. The
nomenclature was recently suggested by us?’ and we refer to that work for a more detailed
explanation. By considering the two topologies defined above, the complete chemical space
we are exploring increases to around 107 possible molecular cages.

The cage structures were assembled using our stk software, as previously described.?"
In brief, a molecular cage is generated by placing the tri-topic BBs on the vertices of the
topology, whereas the di-topic BBs are placed on the topology edges, which connect two
adjacent vertices. Once the BBs are placed on the hypothetical topology, the relevant atom
groups are then linked through imine bonds, which replace the existing functional groups

of the original BB (e.g. aldehydes and amines). The newly formed bonds and the atoms

10



Tri*Dif Tri®Di'2

Figure 3: Schematics of the Tri*Di® and Tri®Di'? topologies. Tri-topic and di-topic chem-
ical precursors are represented by blue and purple sticks, respectively.

directly linked to them are initially relaxed while constraining the remaining atoms within
the molecular cage. Following this, the geometry of the whole molecular cage is optimised.
Finally, we employ high-temperature molecular dynamics (MD) to probe the flexibility of the
optimized individual and its tendency to retain its original cavity - also known as its “shape
persistency”. In this step, for each candidate, we perform the MD simulation and extract
a series of conformers along the trajectory. We then geometry optimize all the extracted
conformers and select the lowest energy conformer, which represents the best guess of the
experimental geometry upon desolvation (more information on this step can be found in the
supporting information). In all stages of the geometry optimisation, we employ the OPLS3
force field,? which we have previously shown effectively predicts the structure of flexible

porous imine cages. 2’

Fitness function

Once each individual in the current population has been generated and geometry optimised,
the evaluation of the fitness function allows for their ranking. The higher the fitness value
of a candidate, the higher its rank within the current population. During an EA run, we
should observe an increase in the maximum and average fitness values. We have developed
a generalisable multi-objective fitness function, which can be used for a series of optimi-
sation problems for porous organic cages, and is easily modifiable and extensible to other

supramolecular materials.
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Our fitness function, shown in equation 1, can be specified from a series of five parameters
that we believe are important for the design of reasonable candidate porous organic cages.
We chose each parameter after a detailed analysis of the structures of the porous organic
cages recently synthesized in the literature.?2%°7 The parameters allow for the evaluation
of the candidate’s porosity, flexibility, degree of symmetry, thermodynamic feasibility and
structural strain. Each parameter, which will be addressed in the next section, defines the
penalty that is going to be applied to the fitness value of each candidate, the larger the
penalty, the lower the final fitness function of the candidate. These various contributions
can be combined inside the fitness function by using a series of coefficients (a,b,c,d, e in
equation 1), so that the same general fitness function can be tuned for a variety of different
applications or targets. More details on the specific implementation of the fitness function

can be found in the supporting information. The fitness function is calculated as:

fitness = (aPore + bWindow + cAsymmetry + dEperBond + eStrain)™! (1)

Porosity For porous molecular materials, the material’s overall porosity can be linked to
both intrinsic and extrinsic porosity. As already defined in the introduction, here we only
investigate porous organic cages from a molecular perspective, not addressing the effects of
packing multiple cages in the bulk. We have previously demonstrated that consideration
of only the molecular structure can be effective even for screening for molecular separation
applications of these materials.?! Here, we only consider the intrinsic porosity of a single
cage and try to predict if the cage molecule will retain its internal cavity or tend to collapse.
We perform a cavity analysis on the lowest energy conformer and compare the candidate’s
internal pore size to a pre-defined ideal pore size, the Pore parameter in equation 1. The
larger the deviation of the current pore size from the ideal size, the larger the applied penalty
to the current candidate.

In a similar way, we can compare the window size of the candidate, calculated through

12



the use of the software pywindow,”® against an ideal window size, the Window parameter
in equation 1. The cavity diameter is defined as two times the distance between the center
of mass of the molecule and the closest atom (i.e. the diameter of largest sphere that can fit
in the centre of the host molecule), whereas the diameter of a window is determined by the

largest circle that can fit in the window.

Symmetry The vast majority of organic cages experimentally synthesised in the literature
exhibit a high level of symmetry.?2%%7 We therefore try to evaluate how symmetric the
lowest energy conformer extracted from the MD simulation is by comparing the size of all
its chemically identical windows. The sum of all the windows’ pair differences represents
the asymmetry of the individual, Asymmetry parameter in equation 1; more asymmetric
cages are penalized to a greater extent and will have a lower final fitness value. A detailed
explanation of this procedure can be found in the supporting information. In the case
studies discussed within this work, we aim at minimizing the asymmetric penalty observed
in cages. However, highly unsymmetrical assemblies could be employed in advanced chemical
applications and thus the EA could be run so as to seek to maximise asymmetry of the cage

molecule, which could be useful for applications such as porous liquids. *°

Formation energy per bond With this parameter we address the thermodynamic fea-
sibility of the molecular cage by calculating the formation energy per bond (EperBond)
required to assemble the lowest energy conformer of the cage individual. This has recently
been shown by us to correlate to the synthetic accessibility of the porous organic cage.??
For this step, we calculate the formation energy of the cage and divide it by the number of
bonds created during assembly from the BBs. The calculation of the formation energy per
bond can be performed at different levels of theory, but in our experience, classical mechan-
ics (e.g. OPLS3) does not provide enough accuracy to correctly identify the best candidate
among a series of molecular cages. In our previous work,?® we showed that this task is

still very challenging even when the energies are calculated at higher levels of theory (e.g.
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Density Functional Theory). For these reasons, we decided to not consider this parameter
in the fitness functions used in the following case studies. However, we still believe that a
thermodynamic feasibility study will have to be performed on the best candidates obtained
from the EA final population, when directly interested in the synthesis of the hypothetical

candidates.

Strain The strain parameter allows us to define how strained the final assembly is, as we
believe that more strained structures are less likely to be experimentally formed. In our
implementation, the Strain of each individual can be calculated in two different ways. The
first approach considers the root mean square deviation of atomic positions between the core
of the BBs optimized in the gas phase and its final geometry in the assembled, optimized
molecular cage. The “core” here refers to the BB without the functional groups, which react
during the imine condensation reaction. The second approach allows us to compare the
deviation of a specific geometrical property of the final cage with the average value obtained
from experimental systems. For example, we can compare the deviation of the imine dihedral

angle with the average dihedral that would be obtained from cages in the literature.

Results and discussion

In this section, we will first introduce the optimization of our EA, in which we define a smaller
mock chemical space to run multiple EA setups and select the best performing one in the
search of the global minimum. We then employ this setup for two different case studies, by
using slightly different fitness function parameters in each case. We discuss the trends and
insights that can be extracted from the EA runs and suggest how this approach could be

used to accelerate materials discovery for porous organic cages.
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EA optimization: CC3 rediscovery

In our current implementation of the EA, the user can choose between different types of func-
tions for the initial population generation or for the genetic operations of selection, crossover
and mutation. For example, when creating a new population of individuals, the user can de-
cide to randomly sample BBs from the chemical database to generate the required number of
cages. Alternatively, the user can employ a diverse initialization, where a random selection of
BBs from the database is alternated with the selection of dissimilar BBs (calculated via Dice
similarity), assuring that different areas of the chemical space are explored. Similarly, the
user can choose among five different selection functions for selecting molecules for the next
generation, such as only selecting the fittest candidates at each iteration, or using roulette
wheel (with or without elitism) or universal stochastic sampling.?*%° Details about all the
possible functions can be found in the stk documentation. %!

When facing this excess of functions and options, it can be difficult to know which settings,
or combinations of settings, will lead the EA to have better or worse performance. To address
this question, we ran the EA with 360 different input files, where each input file contained
a distinct combination of functions available within our EA implementation. For each input
file, 2500 individual runs of the EA were completed. We have run each setup multiple times
as EAs are stochastic algorithms and the generation by which the global minimum is found
is dependent on the initial population. Since the initial population and mutation operations
are random - the generation by which the global minimum is found is given by a distribution
of values. A run was considered complete whenever the global minimum structure was
obtained or whenever 100 generations were reached. Each run employed a fitness function
developed for the re-discovery of Covalent Cage 3 (CC3),5% a well-known example of a highly
symmetric TriDi® imine cage, with a pore size of 5.72 A and average window sizes of 3.91
A when OPLS3 optimized.

To allow for the consecutive execution of 900,000 EA runs (360 x 2,500), we defined

a smaller chemical space, for which we could pre-generate and optimize all the possible
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molecular cages. The fitness value of each individual was then pre-calculated with the
fitness function targeting the CC3 cage (pore size and window size used in equation 1).
This means that for each EA run, the entire search space was loaded into memory and
no calculations needed to be performed. Using this setup, 100 EA generations could be
completed in approximately 1 s. It also meant that the individual with the largest fitness
value, the global minimum CC3 could be found ahead of time. The selected mock chemical
space contained 142 trialdehyde BBs and 350 diamine BBs selected randomly from the initial
chemical database, as well as the BBs for CC3. For this mock chemical space, we assembled,
optimized and calculated the properties of all the possible Tri*Di® cages, which amounted
to a total of 49,700 individuals.

In each EA run, we explored an initial population of 25 individuals, allowing 20 possible
crossover operations and 5 mutations per generation for up to 100 generations. This means
that in a EA run which successfully reaches 100 generations, 2500 possible individuals are
explored, corresponding to only the 5% of the total chemical space. As shown in Table S2,
the different EA setups have a probability of finding the CC3 cage that ranges between 0 and
59% of the times (over the 2500 runs). The best performing setups show a huge improvement
when the EA is compared to randomly picking BBs from the chemical database, which only
gives a probability of 5% of finding the global minimum. Among the best performing setups,
we chose the one including the diverse initial population as we believe that this type of
initialization function will perform even better with the large chemical space used for the
following case studies. All the functions used for the EA setup can be found in the supporting
information.

The fitness function for this investigation employed the coefficients a = 10,b = 10,c¢ =
1,d = 0,e = 0 from equation 1, where we defined ideal pore and window diameters of 5.72
and 3.91 A, respectively. We wanted to put a strong emphasis on the pore and window sizes
in order for the global minimum to precisely match the properties of the OPLS3 optimized

CC3 cage. We also gave some importance to the level of symmetry of the cage, whereas
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we did not include any contribution for the energy and geometrical strain (both d and e are
equal to 0).

Figure 4 shows the distribution of the fitness value for the 49,700 molecular cages ob-
tained, plotted as a function of molecular similarity with the BBs used for CC3 (triformyl-
benzene and cyclohexane diamine). Molecular similarity is calculated by means of Dice
similarity through the use of Morgan Fingerprints with a standard radius of 1 within RD-
Kit.?1%3 The plot clearly shows that the individual with the highest fitness value is CC3,
located on the top-right point of the plot (Figure 4A). No other solution exhibits such a
high fitness value, confirming that the fitness value was tightly linked to the global minimum
structure (CC3). However, a few other individuals have medium fitness values (dark-orange,
larger dots). For most of those cases, at least one of the BBs shows high Dice similarity with
the CC3 BBs (Figure 4B and C). Both B and C cages have very similar (equivalent to the
first decimal place) pore and window sizes compared to CC3, but show overall lower fitness
value due to a decreased level of symmetry. Cage B is obtained by mixing a cyclohexane
diamine and a substituted (-OH) triformylbenzene, whereas for cage C, triformylbenzene is
mixed with a different diamine. Some interesting cages still exhibit a medium fitness value
even if their precursors are very different to the ones employed for CC3 (Figure 4D). In this
case, one BB is highly functionalized compared to the CC3 diamine, but this functionalisa-
tion is external to the cage-core, and thus barely effects the window and size parameters that
we used for the fitness function. The use of chemically different BBs does however lead to a
more flexible cage with a slightly larger pore, window sizes and overall lower fitness value.

This example highlighted the efficiency of our EA implementation. The EA search is
clearly more efficient than a brute force approach, as only a small fraction of all the possible
solutions is selected for computational investigation. However, we stress that although EAs
are among the best performing methodologies to probe these vast spaces, the restricted length
of each EA run and its stochastic character, do not allow for a comprehensive exploration of

the solution space. Solutions will generally be high fitness local minima from very complex
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Figure 4: Fitness value distribution of the 49,700 Tri*Di® cages obtained for CC3 re-
discovery runs plotted against the molecular similarity of the cage BBs to CC3 BBs. Cages
with higher fitness values are represented with darker and larger dots (purple), whereas low
fitness value is defined by small yellow dots. CC3 is shown as A on the right of the figure,
along with three examples of cage individuals with medium (B - D). For the molecular cages,
C, N, O and H atoms are displayed by light gray, blue, red and white, respectively. Non-polar
H atoms are hidden.

multidimensional surfaces, and are very unlikely to be the global minimum.*> By aiming to
accelerate the discovery of new materials, we are not only interested in the global minimum
for a fitness function, but instead any high-fitness solution is a candidate for experimental
realisation. We show in the next two case studies how high-fitness candidates, which do not
necessarily represent the global minimum, can be used to extrapolate design patterns for

new materials.

Case study 1: Target shape persistency

As already discussed in the introduction, finding porous organic cages that are ‘shape per-
sistent’ is a challenging task. Shape persistency, which is the tendency of a porous cage to

retain its original cavity upon desolvation, strongly correlates with the rigidity of the assem-
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bly. From the analysis of the cages generated in the previous section, we calculated that
only approximately 2% of the total cages were shape persistent (further details regarding
how we assess shape persistency are in the supporting information). This scarcity of shape
persistent cages is a problem, a research team can spend more than 1 year synthesizing and
characterizing a molecular cage, only to then discover that the assembly is not shape per-
sistent,'® making the material discovery process inefficient. With this case study, we show
how the EA can be employed for a very quick screening of potential candidates, by directly
assessing their shape persistent character. We explore our full chemical space to investigate
the shape persistent character of porous organic cages with two possible topologies, Tri*Di®
and Tri®Di'? (approximately 12M possible combinations). Here we use a fitness function
with the coefficients a = 5,0 = 1,¢ = 10,d = 0,e = 0, where in this case the strongest
evolutionary pressure comes from the asymmetry parameter, while the pore and window size
(ideal diameter of 5 A) play a minor role.

All the other parameters (such as selection functions and population size) are equiva-
lent to the ones used for the CC3 rediscovery, with the only difference being the convergence
criteria. An EA run was considered to have reached convergence whenever its top 5 can-
didates remained unchanged for more than 20 generations. This setting allows us to avoid
the continuation of a EA run whenever a stable plateau is observed and the probability of
finding better performing candidates is very low. Due to the stochastic nature of EAs, we
ran this setup 3 different times.

In Figure 5, we show the evolutionary progress plots for the three different EA runs
performed for this case study. All of the runs converged in less than 100 generations (34,
62 and 50 generations for A, B and C, respectively). The total fitness plots (black) show
that the average fitness value of the population, in general, increases as a function of the
generation number. The best candidates within the population consistently display a much
higher fitness value compared to the average. The middle plots (red) show that the best

individuals quickly reach the target value of 5.0 A, even if the pore size penalty is much
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weaker compared to the asymmetry penalty. This likely reflects the abundance of cages with
suitable pore sizes, versus those with low asymmetry values. The weak penalty for pores that
are not at the target value is the likely reason why a larger variation is observed in the average
pore diameters compared to average asymmetry between generations, as the pore size does
not significantly affect the fitness value. The right plots (green) show that the asymmetry
parameter converges steadily towards 0 (when all the cage windows are equivalent in size).
Both the asymmetry of the best individual and of the population average are very low at
the end of the EA runs.

It is of interest whether a certain topology dominates when targeting a specific cage
property. Figure 6 shows the percentage of the two topologies in the populations for the three
different runs. All three runs show a strong preference for the Tri*Di® topology, suggesting
that this topology offers better control of the asymmetry when dealing with smaller cages
(pore diameter of 4-11 A), and thus offering better shape persistency. A non-negligible
percentage of Tri®Di'? is only observed in run B, where around 20% of the individuals in
the final population possess the Tri®Di'? topology.

Figure 7 shows the top 5 cages obtained for each EA run with their corresponding pore
diameter and asymmetry value. In the supporting information we provide the properties
of the individuals selected for the last EA generation, and the structures of the top five for
each run. The three different EA runs converged towards three different local minima, where
for each run, multiple interesting BBs and therefore cages were explored. From Figure 7, it
can be seen that the best performing individuals are characterized by a combination of good
pore size and a symmetric core. For all three runs, the top five cages are Tri*Di® individuals
with pore diameters that fall within 0.5 A of the target pore size of 5.0 A. All cages share
a very similar shape to that of CC3, typically with some external functionalisation. Some
of the external functionalisation or heteroatom substitution on the rings may increase the
complexity of the synthesis, however, these hypothetical cages could be simplified prior to

any synthesis attempts. We only observed Tri®Di'? individuals for two of the runs, at rank
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Figure 5: Evolutionary progress plot for three different EA runs A, B and C, where shape
persistency was targeted in Tri*Di® and Tri®Di'? cages. For all plots the z-axis is the num-
ber of generations and the y-axis is as labelled at the top. The plots on the left (black) show
the behaviour of the average (triangles) and best (circles) fitness value for the individuals
for each generation. The middle plots (red) display the behaviour of the best (circles) and
average (triangles) pore size for the individuals for each generation. The black dashed line
defines the ideal pore size (5.0 A). The right plots (green) display the behaviour of the best
(circles) and average (triangles) asymmetry for the individuals for each generation. Lower
values of asymmetry represent more symmetric structures.

#16 and #19 within the runs (total of 24 candidates in a generation). This suggests that
Tri*Di® cages are preferred when looking for rigid cages with smaller (5 A) pore diameters.

To conclude this case study, we analysed the emerging patterns for the molecular prop-
erties of the BBs for the individuals in the population. In Figure 8, we plot the behaviour of
the percentage of rotatable bonds, double bonds, and the size of the BBs. The percentage
of rotatable bonds and double bonds of a molecule was calculated as the ratio of the bonds

of interest over the total number of bonds in the molecule. In all three runs the percentage
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Figure 6: Percentage of different topologies observed during the different EA runs A, B and
C. The Tri*Di® and Tri®Di'2 topological contributions are represented as blue and green
bars, respectively.

of rotatable bonds converges towards ~17% for both di-topic and tri-topic BBs, although
there is considerable noise in this value. All three runs display a difference in the percent-
age of double bonds between the di-topic and tri-topic precursors, with the number for the
tri-topic molecules being significantly larger (about 30% compared to 15%). The difference
in the percentage of double bonds between the di-topic and tri-topic BBs highlights the
more important role that double bonds have on tri-topic precursors in imparting rigidity,
and thus shape persistence, to the cage. The mean distance between the reactive end groups
(i.e amine nitrogen to amine nitrogen distance in a diamine and average aldehyde carbon to
aldehyde carbon distance in a trialdehyde) is shown on the right-hand side of Figure 8. This
measure defines the approximate size of the BB and gives us an idea of how the size of the
precursors is progressing as the EA moves towards the best solutions. For the di-topic BBs,
the distance converges on a value of ~3.5 A, which is the typical distance between nitrogens
in the 1,2-diamines that dominate in the runs and in the reported syntheses of Tri*Di® cages

of this size in the literature. The mean distance for the tri-topic BBs is larger, at ~5 A.
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5.3 A, 0.03 5.3 A, 0.03 5.4 A, 0.01 5.4 A, 0.04

Figure 7: Top five candidates found within the last generation of each of the three EA runs
for case study 1, where we targeted shape persistency in individuals with high symmetry and
pore diameters of approximately 5.0 A. The cages are ordered from left to right in decreasing
rank number (#1 is on the left) and for each individual we provide the pore diameter and
asymmetry value. C, O, N, F and H atoms are shown in grey, red, blue, light blue and white
respectively.

Case study 2: Target pore size

In this case study, we explore our full chemical space with the EA to find Tri*Di® porous
organic cages with a cavity diameter of 16 A. We have selected this cavity size as we found
a clear absence of this pore size in the previously reported experimental pore sizes of 116

9.2:6465 T part, this absence is likely related

cages from the literature, as shown in Figure
to the limited number of larger pores in general - once you are targeting pores of a larger
size, it becomes increasingly likely that your cage will collapse. The largest reported cage is

that from Zhang et al., which we calculate to have an internal spherical cavity of 21.9 A in

diameter.? We carried out a similar analysis of cavity size on the shape persistent organic
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Figure 8: Analysis of the average molecular properties of the di-topic and tri-topic BBs for
the individuals in each population of case study 1. For each EA run, we investigated the
change in the percentage of rotatable bonds (left), percentage of double bonds (middle) and
mean distance between reactive end groups (right). Di-topic BBs are represented by blue
markers, whereas tri-topic BBs by orange markers.

cages from the mock space generated in the CC3 rediscovery section (a total of 5772 cages),

as shown in Figure S1. Similarly to Figure 9, there is large peak in the range between 0

- 6 A, with no cages showing pore sizes larger than 24 A. This suggests that synthesising

organic cages with shape persistent pores above 24 A would be very challenging, and would

require novel precursor design. The fitness function used for case study 2 employed the

coefficients a = 10,b = 0,¢ = 5,d = 0,e = 0, where the ideal pore diameters matched 16.0

A. This specific set of parameters was chosen in order to give a clear advantage to the pore

size diameter, making it the driving force for the evolutionary pressure. All the other setup

details are equivalent to the ones from the previous case study.
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Figure 9: Distribution of pore diameters for 116 porous organic cages previously experimen-
tally reported in the literature. There is a general absence of molecules with a pore diameter
of 16 A, or larger.

The plots in Figure 10 show that for runs A and C, the EA converged in less than 100
generations (48 and 62 generations, respectively). The middle plots (red) indicate that in
the first two cases, a constant increase is observed in the average value of the pore size within
the population and the best cage found during the run has a pore size of approximately 16
A, as requested. For run C, the initial population had much larger pore sizes on average
and as a result the generation number does not lead to significant changes in the pore size.
The plots on the right (green) correspond to the behaviour of the asymmetry parameter.
While generation by generation the value of this property is rather random, there is a clear
downward trend (towards more symmetric cages) over the course of the EA in all three cases,
reflecting the evolutionary pressure placed on this parameter. We note that there is some
conflict between attempting to generate cages with a large pore size and minimizing the
asymmetry. As the asymmetry factor is calculated as the sum of the differences between all
the topologically equivalent windows within a cage, it is clear that as the size of the cage
increases (larger pore diameter and window diameter are correlated), we would expect the
asymmetry factor to increase as well. This means that as the individuals are approaching
the 16.0 A target diameter, finding cages with lower asymmetry becomes progressively more

challenging.
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Figure 10: Evolutionary progress plot for three different EA runs, A, B and C, where we
targeted Tri*Di® porous organic cages with a cavity of 16.0 A. The plots on the left (black)
show the behaviour of the average (triangles) and best (circles) normalized fitness value for
the individuals for each generation. The middle plots (red lines) display the behaviour of the
best (circles) and average (triangles) pore size for the individuals for each generation. The
black dashed line defines the ideal pore size (16.0 A). The right plots (green lines) display
the behaviour of the best (circles) and average (triangles) asymmetry for the individuals for
each generation.

Figure 11 shows the top five cages obtained for each EA run, with their corresponding pore
diameters and asymmetry values. In the supporting information, we provide properties of the
individuals in the last EA generation and structures of the top 5 candidates in each run. Run
C found a series of minima containing a boronate tri-aldehyde BB, whereas both run A and
B share many cage individuals containing a triphenylamine. For the most part, however,
the individuals are constructed from different precursors, with the most common feature

being their similar size. As with the previous case study, identified candidates could be
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Figure 11: Top five Tri*Di® candidates found within the last generation of each of the three
EA runs (A - C) of case study 2, where we targeted the best individuals with pore diameters
of 16 A. The cages are ordered from left to right in decreasing rank number (#1 is on the
left). Underneath each cage we provide their pore diameter in A and the asymmetry value.
C, O, N, H, B, S, F, and CI atoms are represented as grey, red, blue, white, pink, yellow,
purple and cyan sticks, respectively.

simplified, for example removing unnecessary functionalisation to make synthetic realisation
more facile. Figure 12 analyses further the emerging features of the BBs over the runs. The
percentage of rotatable bonds for both di-topic and tri-topic BBs is very similar to that of
the previous case study that sought smaller shape persistent cages, although slightly smaller
at ~14% compared to ~17%, but again there is a lot of noise in these values suggesting this
is not the sole critical consideration. Similarly, the percentage of double bonds in the BBs
has decreased slightly for the tri-topic BBs by about 5%, and increased very slightly for the

di-topic BB, although the values vary across the runs (~17 - 22%), suggesting no strong
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changes in these characteristics of the BBs for targeting shape persistency in larger rather

than small pores.
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Figure 12: Analysis of the average molecular properties of the di-topic and tri-topic BBs for
the individuals in each population of case study 2. For each EA run, we investigated the
change in the percentage of rotatable bonds (left), percentage of double bonds (middle) and
mean distance between reactive end groups (right). Di-topic BBs are represented by blue
markers, whereas tri-topic BBs by orange markers.

As would be expected, the size of the BBs required to target a large pore (16 A) shape
persistent porous organic cage has considerably increased compared to the previous case
study of a small pore cage (5 A) The mean distance between end groups here is 9 - 11 A for
tri-topic BBs and 6 - 9 A for di-topic BBs (compared to ~5 and 3.5 A in case study 1). It is
also interesting to see that each of the runs evolves towards slightly different size BBs (hence
the range of values quoted), suggesting that there are multiple different solutions for shape

persistent cages of 16 A from the database of BBs we explored. It is likely this is due to
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the interplay between the size of the two BBs, where a larger di-topic BB could compensate
for a small tri-topic BB than an alternative solution. We believe that this is an encouraging
sign that porous organic cages with an internal cavity diameter of 16 A are synthetically

achievable, despite the absence of synthetic reports to date.
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Conclusions

We have developed an evolutionary algorithm for the prediction of molecular materials with
desirable properties through a multivariable optimisation. Here, we have applied this to
the field of porous molecular cages, where the enormous phase space of possible molecules
makes an efficient sampling of the phase space crucial. In our flexible implementation, a
crossover operation is performed by switching the BBs of two candidate molecules or their
topology, and a mutation operation is performed by switching in a new BB from the library.
We found that our exploration of hypothetical cages was far more efficient when we included
the possibility for mutation to a molecularly similar BB, rather than losing a large portion
of the chemical information of a cage in a single mutation step. After demonstrating the
effectiveness of our software for the rediscovery of a known cage, CC3, we then carried out
two case studies to demonstrate our EA’s utility.

Our two case studies allowed us to not only generate both specific targets, but further
to explore the emerging trends of candidates with the desired properties, so we can identify
key chemical features for a given property. We have identified that shape persistent porous
organic cages require BBs with a very low percentage of rotatable bonds (<20%), and high
percentages of double bonds, with tri-topic BBs in Tri*Di® cages requiring a higher percent-
age (25-30%) than the di-topic BBs (15-20%). The best candidate from each of the two case
studies is shown in Figure 13. Although there is no guarantee that the predicted compounds
can be synthetically realised, we believe that our approach can be used to extract interest-
ing structural motives from the high-fitness individuals of the last generations, which are
worthwhile to study experimentally. Similarly, the targets could be simplified, for instance
removing unnecessary external functionalisation to increase the ease of synthesis. In our
first case study, we targeted cages that were shape persistent, with a small intrinsic inter-
nal cavity. The evolutionary pressure for symmetric small pore cages meant that Tri*Di®
topology cages were strongly selected for, and all bore a visual similarity to the CC3 series

of cages, and were built using di-topic BBs with the typical nitrogen-nitrogen separation of
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a 1,2-diamine.

Case study 1: Case study 2:
Target shape persistency Target 16 A pore size

Figure 13: Top cage individuals from the two different case studies. Both cages are displayed
with a transparent yellow sphere, which approximately defines the size of its internal cavity
(~ 5 and ~16 A). The external functionalisation of the diamines is not essential for the high
scoring of the molecules and could be removed for ease of synthetic realisation.

In our second case study, we targeted a cage with a cavity of 16 A diameter, as we
found that this was a cavity size absent in previously synthesised cage molecules. The best
candidates among Tri*Di® cages typically chose a large tritopic building block, for instance
the boronate structure shown in Figure 13. In general, the high-scoring cages contained large
building blocks with mean distances between end groups of 9 - 11 A for tri-topic BBs and 6
- 9 A for di-topic BBs. The range of different solutions found in different runs suggests that
there are multiple different solutions for a shape persistent 16 A pore, and that this should
encourage attempts to experimentally explore this target. For these case studies and for
future use of our EA, narrowing down the size range and other properties of BBs required to
synthesise supramolecules with a given property provides the opportunity for online libraries
of BBs to be data-mined for such criteria, or for such BBs to be designed.

The evolutionary algorithm we have included into our supramolecular toolkit, stk, is

designed to be flexible. The fitness function can be adapted for new design challenges by
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adding additional parameters to be optimised. For porous cages, the next obvious step would
be to use our EA for targeting specific properties, such as encapsulation of a particular
guest, by, for example, seeking to maximise the host-guest binding energy, or improving
the separation performance by optimising window size or the diffusion barrier. If a given
precursor is known to have a desirable property, such as fluorescence, which could be used
for sensing, then the EA could be used to find a BB partner that forms a cage molecule
of desired structure. Any designed molecules could also be used as a first step for crystal
structure prediction, in order to produce optimal packing and properties in the solid-state.
The EA can easily be applied to alternative molecular materials - indeed stk can already
automatically assemble linear polymers, covalent organic frameworks (COFs), and small
molecules built from multiple BBs. These supramolecules could then be explored with the
EA if a fitness function for them is defined.

In the future, we also wish to extend the EA to make the predictions more facile to
synthetically realise. Already, by using a database of known BBs and combining them in
what would equate experimentally to a one-pot synthesis, we increase the likelihood of the
candidates being synthetically achievable. Of course, much of the Reaxys and eMolecules
databases feature molecules of high chemical complexity, this could be countered by including
a score of synthetic accessibility®® or a synthetic chemist’s scoring®” as part of the fitness
function, or by developing a target library specifically designed for the synthesis of a given
class of materials. As artificial intelligence is set to revolutionise materials discovery, there
is the potential to couple our EA with machine learning (ML),% through either using the
EA to provide training data for a ML algorithm or to maximise both the computational
efficiency of a property calculation, whilst using the EA to effectively sample the enormous

phase space of molecular materials.
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