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Abstract: Is chemistry discoverable or can it only be invented? – this is the question of a 

computer scientist and a philosopher of science when looking at application of artificial 

intelligence methods for developing new chemical entities and new chemical transformations. 

This study confirms that, at least today, chemistry is, in part, discoverable from past history of 

chemical research – the accumulated chemical data contains hidden rules of chemistry, which 

can be exploited to discover new reaction pathways. This is shown using a stochastic block 

model approach, trained on chemical reaction data obtained from Reaxys®.  
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Today a very large and rapidly growing amount of chemical knowledge is available through 

online databases. Reaxys (1) alone contains over 40 million reactions and in excess of 105 

million compounds (2). Yet, this is only a fraction of the possible chemical space: it is estimated 

that 1060 drug-like molecules are synthetically accessible (3, 4). Modern high-throughput 

screening can test “only” in the order of 106 molecules in the lab (5), leaving a large gap for 

which tools are required to guide experimentation (4). Without algorithmic use of chemical 

knowledge, capable of navigating within the whole of known chemical space, our efforts would 

continue to be limited as illustrated by the fact that in medicinal chemistry, as an example, few 

heavily used reactions have dominated the chemical landscape with no additions to this set in the 

past twenty years (6).  

Machine learning and retrosynthetic algorithms so far have not provided the desired solution. 50 

years after their development classical retrosynthetic methods have not been able to firmly 

establish themselves in use (7). Recent proliferation of electronic data and computational 

resources has seen a rapid growth in the application of machine learning and artificial 

intelligence to reaction prediction. At present this approach is, however, plagued with sparsity of 

chemical knowledge and poor data quality (8–10), potentially making accurate predictions of 

reaction outcomes mathematically impossible (11).  

Abstracting complex data sets into networks is a well-established approach in trying to study 

trends underlying complex data. Chemical data has, for example, been converted into networks 

and used for planning of synthesis routes (8, 12–15) or as an analytical tool to study the structure 

of chemical knowledge (16–19). This lead us to formulate a hypothesis for algorithmic use of 

chemical knowledge, which has not been explored in chemical science to date: the structure of 

chemical networks by itself contains information about chemistry ‘rules’ and appropriate 

mathematical treatment of the structure of chemical networks can give insights into yet un-

discovered phenomena, such as new reactions without being adversely affected by poor or 

incomplete reaction data, such as errors in reporting, propagated into the databases or errors in 

abstracting the data from primary publications into the databases. 

A way to circumvent the problem of inaccuracies present in reaction data is presented by 

Stochastic Block Models (SBMs), used in this study, which had been shown to be useful in 

community detection: understanding the community structure of a network allows interpretation 
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of the network, and binary interaction data has been shown to be sufficient to identify missing 

and spurious observations, as well as future dynamics (20–23).  

Here we show that by taking a sub-set of observations of the chemical space we are able to 

predict reactions between species that have not been observed yet. In removing all chemical data 

other than the most fundamental interactions between species we are able to circumvent many of 

the problems around incomplete or erroneous reaction data plaguing other approaches. Using 

Markov chain Monte Carlo algorithms we then predict “missing” reactions, first in a test case, to 

demonstrate its performance before applying it to two case studies (30). In a previous study we 

investigated the use of network representations of chemical data obtained from Reaxys (termed 

“Network of Organic Chemistry” or “NOC”)  in planning efficient synthesis routes from 

limonene to paracetamol (15). This formed the basis of this study in a network containing 

161,760 chemical species (30).  

We trained the algorithm on the sub-set of reactions known by a specific date and checked 

whether the algorithm would correctly distinguish between randomly generated node 

connections and the reactions that were actually discovered in the following decades (30). Such 

time-split validation is not a fully random test but one that resembles the actual challenge more 

closely (24). 

A standard metric in the machine learning community to classify the performance of prediction 

algorithms is the area under the receiver operating characteristic (ROC) curve (AUC). It can be 

interpreted as the probability that a randomly chosen missing reaction (a true positive) is 

assigned a higher score than a randomly chosen pair of unconnected vertices (a true negative) 

(22). Upon successful model selection (see Fig. S1, S2, and supplementary text) all AUC values 

after the year 1890 take values around 0.9, indicating excellent performance of the algorithm, 

Figure 1. Thus, the probability that a randomly chosen positive will rank higher than a randomly 

chosen negative is 90%. 

When comparing the algorithm to the results obtained for benchmark graph theoretical 

algorithms the SBM-based approach continues to perform remarkably well (Figure 1). The 

SBM-based approach clearly outperforms all tested metrics. It is worth pointing out that amongst 

the benchmark algorithms only the preferential attachment approach manages to exceed an AUC 
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of 0.5, thus all other metrics fare, at times significantly, worse than using chance alone in 

predicting missing reactions. 

 

 

Figure 1: The AUC for the SBM-based link prediction approach compared against a number of 

local similarity-based approaches. AA stands for Adamic-Adar, Jac. for Jaccard index, SBM for 

stochastic block model, PA for preferential attachment, SP for shortest path, and CN for 

common neighbours. 

 

In a significant number of publications the reported data is unreliable, meaning the data cannot 

easily be used for prediction, unless rigorous statistical analysis is employed (25). A 

consequence of the lack of statistical treatment of the data by, for example, the “conventional” 

metrics, is that they are liable to over fitting. If the data used contains erroneous entries this is a 

problem when using it to predict new, unknown reactions. One of the big advantages of the 

SBM-based approach in comparison is its ability to trade off noise versus genuine statistical 

features of the data (26–28). 

Looking at the results for the SBM-based approach shown in Figure 1 we conclude that the link 

prediction algorithm performs very well on the network investigated, being able to recover a 

remarkably large share of true positives very quickly with a very low rate of false positives. 

Performance of a certain SBM is always dependent on the network it has been fit to and whether 
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it can describe that class of networks well. Thus, comparison of it to other methodologies fitted 

to other networks in other publications is not straightforward. Comparing it to the AUC curves 

reported in (22) it seems to outperform the results shown. In the absence of AUC curves, 

comparing accuracy of the algorithms, the algorithm used here outperforms the results shown in 

(21) (plots of the accuracy of the algorithm here tested can be found in Fig. S3).  

It can be concluded that, given the data available, the algorithm employed here seems to not only 

perform very well but also to outperform the results shown in literature and is indeed able to 

predict reactions correctly. This has been verified using time split validation on historical 

networks. 

We then applied this methodology to the conversion of limonene to paracetamol as our group is 

interested in converting terpenes into useful products in order to valorize paper waste through a 

circular economy approach. The first task was to design a set of potential edges that, if correct, 

would provide more efficient synthesis routes from limonene to paracetamol. Testing all 

combinatorially-possible transformations in this network would require ranking of more than 26 

billion transformations, many of which would be irrelevant for this system. From our previous 

study (15) we know that the synthesis can be carried out in five steps. Taking the set of 

molecules involved in the four- and five-step routes allowed us to ensure that any discovered 

transformation was relevant. 

Since our goal was to rely on a minimum of chemical insight, all molecules lying on a four-step 

route were recombined to generate the list of all mathematically possible new transformations. 

Our network contained 27 four-step paths involving a total of 25 distinct chemical species. This 

meant that there were a total of 519 edges possibly connecting a given pair of the 25 species that 

had not been discovered yet. These were ranked according to their likelihood ratios (30). The 

earlier study applied heuristics to determine which reaction products were chemically desirable. 

Applying these for consistency left a total of 355 edges. Finally excluding all transformations not 

resulting in a path executable in four steps or less left a total of 116 edges of interest. The 16 

most highly scoring of these can be found in Figure 2 and 3. Closer investigation revealed that at 

least 15 of the 116 transformations (and 52 of the 355 transformations) were correct predictions, 

known to Reaxys but not contained in this dataset. A selection can be found in Figure S4. 
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Figure 2: First part of reaction predictions, showing filtered ranks 1-8. Only the main reactant 

and product are shown. 

Expanding the search set to five-step paths will require evaluation of more than 20,000 

transformations. Clearly further heuristics are required to decide which transformations might 

merit a closer investigation. A first question is which transformations would be of value 

chemically. Obviously of interest here would be a transformation that turns a less reactive 

functional group into a reactive one as it increases the molecule’s “synthetic value” by opening it 

up for further transformations. In our case study a transformation pattern found repeatedly is the 

conversion of a less reactive group into a highly reactive amine, as is the case in the reactions 40, 

62, or 110 shown in Figure 3. 
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Figure 3: Second part of reaction predictions, showing filtered ranks 9-16, 18, and 31. Only the 

main reactant and product are shown. 

Of similar value would be a transformation making a promising, new feedstock accessible. A 

number of proposed transformations are suggesting the use of thymol, which can be sourced 

sustainably, as reactant. Transformations that use thymol are reactions 3, 18, 21, 38 and 57 (the 
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first three can be found in Figure 2 and the last two in Figure 3), which also represent 

transformations deemed most probable by the algorithm. 

Finally, we can ask if a transformation significantly increases the size of the accessible chemical 

space. In (15) we have shown that addition of a single key transformation can dramatically 

increase the number of synthesis route options. Clearly, such a transformation could be a highly 

valuable target to pursue. Here the insertion of a nitrogen atom between benzene ring and 

carbonyl group (though in some cases a further transformation is required to obtain a carbonyl 

group) is a transformation that is repeatedly found (c.f. ranks 8, 26, 44, and 48) and would result 

in 74 additional routes of interest (30), rendering it a potential target for closer investigation. 

The results of this algorithm are dependent on the edges that are being tested. If the initial set 

contained no viable transformations, then even the most highly-ranked transformation will still 

not be feasible. Thus, the test set was expanded considering all molecules involved in the five-

step synthesis routes. This yielded 21,080 different transformations that were ranked (30). 

Applying the ring-count heuristic drops this to 14,474 transformations and applying all the same 

initial heuristics reduces the count to 2,585 transformations. At least 38 of these (and 540 of the 

14,474 transformations) were already known to Reaxys. Results can be found in Figures S5-42. 

Comparing these results to those in Figure 2 and 3, the highly ranking transformations from the 

four-step set continue to score highly in the five-step set (Table S4), showing that the method 

efficiently separates likely from unlikely transformations. 

Finally, we consider whether a given transformation appears thermodynamically feasible. A very 

large positive change in Gibbs free energy of reaction (Δ𝐺𝑅
∘ ) might be used to discount a 

suggested transformation initially. Doing so for the top three-ranking transformations yields Δ𝐺𝑅
∘  

of 124 kcal mol-1, -139 kcal mol-1, and -148 kcal mol-1 (30). The first transformation thus has a 

very large positive Δ𝐺𝑅
∘making it highly non-spontaneous under the assumptions used perhaps 

providing reason to discount it. The other two reactions do not have this problem. 

Clearly the energy analysis is heavily impacted by the assumptions around reaction 

stoichiometry, solvent choices, or temperature, possibly impacting the calculation significantly. 

What this thus cannot provide is a hard and fast classification into feasible and unfeasible 

reactions. What it does provide are data points for initial scoring of predictions. Given the large 

amount of data returned by the link prediction, metrics are required which can be used to decide 
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which reactions to focus on and which to perhaps save for a later stage. Undoubtedly there will 

be approaches yielding greater fidelity or insight into the feasibility or required processes. These 

will, however, require a greater investment of time and thus may not be suitable for this early 

stage of analysis. 

In conclusion, by 2011 Bayer had halted two-thirds of its target validation programs because in-

house experimental findings did not correspond with published literature (10). Unreliable data 

and sparsity of chemical data are serious problems which, at this stage, almost all data-driven 

applications in chemistry are struggling with. One of the great strengths of the statistical 

approach applied here is its ability to differentiate structure from noise in a principled way. 

Therefore, assessments about the relative likelihood of a given transformation compared to a set 

of other transformations can be made while dealing with the noise in the data in a statistically 

rigorous manner. By eliminating as much peripheral data from the evaluation process as possible 

the application of SBMs to the network allows the elimination of as many error sources as 

possible. Though the results are influenced by the researcher’s choices of transformations to be 

tested, the method is able to efficiently separate likely from unlikely transformations. This allows 

both a thorough scan of broad areas of chemical space to find a high-likelihood set for in-depth 

investigation, as well as, the evaluation of a more well-defined set to evaluate chemical intuition 

against statistical insights. This work presents the first application of these methods to reaction 

prediction and, we believe, makes an important contribution to the field of reaction prediction. 

We hope this will help to ground reaction prediction in a rigorous treatment of statistical data and 

help to address some of the problems that have plagued the field thus far. 
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Materials and Methods 

Experimental Design 

The sample size was determined by the area of chemical interest. A specific conversion 

(limonene to paracetamol) was to be investigated thus every molecule that could be reached 

within one reaction from any molecule on any path not longer than four steps connecting the two 

molecules was included to form the network. The basis here was the corpus of reactions obtained 

from Reaxys® under the R&D Collaboration Agreement with Elsevier. Reaxys aims to abstract 

the corpus of organic chemistry journals. It was decided to exclude any reaction which was 

incomplete, i.e. did not have any reactants or any products listed in Reaxys. Other than that no 

data was excluded. Heuristics were developed for which results to look at in detail, however, all 

results were used to calculate likelihood ratios. All statistical tests were completed a total of four 

times. The actual reaction prediction was not repeated. The tested hypothesis was that the SBM-

based approach would be able to outperform other graph theoretical metrics and could be applied 

to reaction prediction. No prior assumption had been made about the most suitable SBM 

configuration. The SBMs were used as implemented in graph-tool. 

 

Network Assembly 

The study presented in (1) on the synthesis of limonene to paracetamol was used as a starting 

point to assemble a network for analysis. It had found 1068 five-step routes to connect limonene 

to paracetamol involving 47 unique chemical species. These 47 species were used as query 

species as they concisely describe the chemical space of interest. Using the Reaxys API all 

reactions using a given species as reactant were downloaded and saved. This was repeated for the 

remaining 46 species. Subsequently all reactions were downloaded that listed one of the 47 

species as product. All duplicate and incomplete reactions, i.e. reactions that had either no 

products or no reactants declared in Reaxys, were then removed from the set using a script. 

 

The obtained sanitized data was used to assemble a network using graph-tool (2) in Python2.7, 

excluding all multi-step reactions. The network was assembled in working through the raw data 

set and adding each species which is not contained in the network yet as a node and labelling it 

with its Reaxys ID. Then an edge is added from each reactant in that reaction to each product in 

that reaction. Each edge is labelled with its publication year to screen the graph. This allowed to 

decrease the network's size by stepping back in time. This resulted in a network of 178,122 

nodes and 401,258 edges prior to removal of parallel edges. This was used as base for the 

analysis of alternative stochastic block models. For the link prediction study itself it was decided 

to reduce the size of the network further for performance reasons. To achieve this a wiring 

scheme was adopted registering only the heaviest reactant and the heaviest product. Thus for 

each reaction only the heaviest product and heaviest reactant were added to the network (each 

again labelled with its Reaxys ID) and then an arrow was drawn connecting that reactant to that 

product which was again labelled with its publication year to allow screening. This yielded a 

much more condensed representation of chemistry now numbering 161,760 chemical species and 

132,539 reaction edges. 

 

Analysis of Alternative Stochastic Block Models 

Graph-tool (2) implements a non-parametric, microcanonical version of stochastic block models 

described and derived across a series of papers (3–8). These models are fit to the data using 

Bayesian inference. The details of the implementation will not be reproduced here as they can be 
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found in detail in the cited papers. In the papers Peixoto derives SBM configurations capturing 

nested blockmodels, degree-correction and overlapping blocks thus in a first step we carried out 

model comparison to find the most suitable configuration for this problem. In order to test the 

different configurations of the SBM derived by Peixoto across (3–8) and implemented in graph-

tool it was necessary to reduce the total network size to limit the otherwise excessive runtime of 

some configurations. Thus, the network was screened to represent the state of publications in 

1930. The obtained network contained 9,452 nodes and 19,448 edges upon removal of all 

parallel edges. 

 

Two ways of comparing different SBM parametrisations in a statistically meaningful way are 

used: maximising the posterior likelihood and sampling across the posterior likelihood 

distribution. Both allow to establish the significance of the results by calculating the likelihood 

ratio for two candidate models. The first maximises the posterior likelihood of a given model and 

its parameters by applying the information theoretic Minimum Description Length (MDL) 

criterion (9). In minimising the description length, Σ, the posterior likelihood is maximised and, 

in effect, Occam's razor is implemented: The simplest model out of all models of equivalent 

explanatory power is preferred as it chooses the model that most compresses the data thus 

preventing overfitting (3, 4, 8). Using this approach the most probable partition could be found 

for each version of the stochastic block model and the obtained minimum description lengths 

(MDLs) could be compared. Since the model with the minimum description length is the most 

efficient representation of the data Σ allows for a principled way to carry out model selection and 

to discriminate between two alternative models. 

 

To determine which of two candidate models (model 1 and model 2, say), describes the data 

better and to evaluate the degree of confidence in the preference, the joint posterior probability 

𝑃({𝒃𝑙}, ℋ|𝑨) (where ℋ is the model class being used, 𝑨 denotes the adjacency matrix, and 𝒃𝑙 is 

the partition of blocks in level 𝑙) of each model can be compared via their ratio Λ1 (8): 

Λ1 =
𝑃({𝒃𝑙}, ℋ1|𝑨)

𝑃({𝒃𝑙}′, ℋ2|𝑨)
 

Λ1 =
𝑃(𝑨, {𝒃𝑙}|ℋ1)

𝑃(𝑨, {𝒃𝑙}
′|ℋ2)

×
𝑃(ℋ1)

𝑃(ℋ2)
 

Λ1 = exp(−ΔΣ) 

where ΔΣ = Σ1  − Σ2 is the difference in description length and it is assumed that both model 

classes are equally likely a priori, meaning that 𝑃(ℋ1)  =  𝑃(ℋ2). Thus, using Λ1 is identical to 

using the MDL criterion, but allows for quantification of the degree of confidence with Λ1 < 1, 

indicating a preference for ℋ2 and partition {𝒃𝑙}
′. 

 

In real world networks it is often the case that many fits of an SBM have a roughly equal 

posterior likelihood (8, 10). Thus these models are equally valid and should also be taken into 

account. Therefore the second approach samples across the entire posterior likelihood 

distribution instead. Employing a Bayesian framework this can be achieved by simply taking all 

model fits and weighting them according to their posterior probability. The entire model classes 

should be compared by evaluating the so called model evidence by summing over all hierarchical 

partitions (8): 
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𝑃(𝑨|ℋ) = ∑ 𝑃(𝑨, {𝒃𝑙})

{𝒃𝑙}

 

Using this the posterior odds ratio can be computed (8): 

Λ2 =
𝑃(ℋ1|𝑨)

𝑃(ℋ2|𝑨)
 

Λ2 =
𝑃(𝑨|ℋ1)

𝑃(𝑨|ℋ2)
×

𝑃(ℋ1)

𝑃(ℋ2)
 

Which, again assuming no a priori preference on the models, reduces to the Bayes factor and 

establishes a degree of confidence in the outcome. If a given threshold is exceeded it is possible 

to reject one model in favour of the other (8, 11). 

 

To find the minimum description length the function minimize_nested_blockmodel_dl (or 

minimize_blockmodel_dl in the case of the non-nested model) was used in graph-tool. 

 

The MDL was found for each of the configurations given in Table S1. This was repeated three 

times. The mean of these values was then found. Their standard deviation was used as an 

estimate for the error in the results. 

 

Using these results the configuration with the smallest MDL, which corresponds to the preferred 

configuration, was determined. In order to calculate the statistical significance of this preference 

Λ1 was calculated for all other possible configurations compared to the preferred configuration. 

 

Seeing as an exact evaluation of the model evidence is not tractable approximations have to be 

used (8) which are implemented in graph-tool. Thus, during a first step the description length of 

the SBM is minimised to initialise the Markov chain. Subsequently 200,000 sweeps were carried 

out using graph-tool’s MCMC algorithm to sample the posterior density, recording the 

description length at each step. At the end by subtracting the average description length from the 

entropy (calculated using the Bethe approximation) the model evidence can be evaluated (8). 

This was carried out for the configurations of the SBM recorded in Table S1. 

 

This algorithm was run three times for each configuration to find a mean and standard deviation. 

Seeing as the above method returns the log-likelihood, Λ2 could be calculated by subtracting the 

two values for the two hypotheses being compared and raising the answer to the base of 𝑒. 

 

Link Prediction 

Fitting a generative model to data makes a statement about the mechanisms that generated a 

network. Thus, in so far as the model is a good description of the data, it is possible to make 

generalisations and predictions about what has not been observed. This means that it is possible 

to use SBMs to determine the probability of a non-observed edge to be missing from the network 

(12). This can be particularly useful if a given network observation is incomplete, or contains 

errors or noise. 

 

We are interested in network 𝐺, denoted by adjacency matrix 𝑨 and a set of edges 𝛿𝐺, denoted 

by 𝛿𝑨. It is assumed that the edges denoted by 𝛿𝑨 are missing, or spurious for that matter. When 
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trying to establish the probability of one of these edges to be missing the quantity of interest is 

the posterior of 𝛿𝑨, 𝑃(𝛿𝑨|𝑨).  This posterior can be written as follows (12, 13): 

𝑃(𝛿𝑨|𝑨) ∝ 𝑃(𝛿𝑨|𝑨 + 𝛿𝑨) ∑
𝑃(𝑨 + 𝛿𝑨|{𝒃𝑙})

𝑃(𝑨|{𝒃𝑙})
{𝒃𝑙}

𝑃({𝒃𝑙}|𝑨)  

In above equation 𝑃(𝑨 + 𝛿𝑨|{𝒃𝑙}) is the marginal likelihood of the network with the potentially 

missing edges added and 𝑃(𝑨|{𝒃𝑙}) that of the observed network. 

 

Considering alternative choices of missing edges, {𝛿𝑨𝑖}, as equally likely a priori allows to 

replace 𝑃(𝛿𝑨|𝑨 + 𝛿𝑨) as simply ∝ 1 in above equation (12). Thus it is possible to compute the 

posterior up to a normalisation constant. If, however, comparing the relative probability between 

a set of missing edges, {𝛿𝑨𝑖}, via their likelihood ratio this constant is irrelevant (12): 

Λ𝑖 =
𝑃(𝛿𝑨𝑖|𝑨)

∑ 𝑃(𝛿𝑨𝑗|𝑨)𝑗

 

 

To do this in practice a set of edges of interest, not currently contained in the network, was 

defined. For these the likelihood was to be calculated. This set was denoted as "missing edges".  

 

Having chosen an SBM configuration as outlined in the previous section, the description length 

of the SBM was minimised to fit the SBM to the network as a starting point. Next the MCMC 

algorithm implemented in graph-tool was run for 10,000 sweeps, collecting the log-likelihood of  
𝑃(𝑨+𝛿𝑨|{𝒃𝑙})

𝑃(𝑨|{𝒃𝑙})
 for each edge of interest after each iteration. The result was appended to a vector 

containing all previous log-likelihoods for that edge collected so far. 

 

The gathered data was post-processed to calculate the average likelihood, in terms of log-

likelihoods, across the sweeps for each edge in the samples. In order to find the denominator to 

calculate the likelihood ratio the log-likelihoods of all edges were then summed. Subtracting the 

summed log-likelihoods from the log-likelihood of the edge of interest yielded the log-likelihood 

ratio. Taking 𝑒 to the power of the answer of those calculations finally yielded Λ𝑖  for edge 𝑖.  
 

Comparing the resulting likelihood ratios for each edge allows to determine how much more 

likely a given edge is to exist than another edge. The results of these calculations, however, are 

not absolute judgements on the probability of existence of a given edge but a relative one, 

comparing its likelihood to that of another edge, a fact that also applies to the methodologies of 

(10) and (14). 

 

Testing Accuracy of Link Prediction Algorithm 

In a first step the accuracy of the link prediction algorithm for the network in question was tested 

by screening the network introduced previously and testing whether the algorithm would be able 

to correctly distinguish some of the reactions discovered during a future period from random 

edges if presented only with past data. This is of course not a fully random test where random 

edges have been deleted but one that resembles the actual challenge more closely (15). 

 

A list of years was taken and the network screened to the state in each of these years. First all 

nodes (i.e. species) that were not in the network at that point in the past were filtered out, also 

removing all edges attached to these nodes. All edges that were to be discovered only later were 
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deleted and written to a separate list. Then a random selection of these edges was chosen as a test 

set (taken as true positives if showing up in the result set), called "chosen true edges" for the 

purposes of this chapter. Then ten times as many random edges which, to date, have not been 

discovered (taken as false positives if showing up in the result set) were added, called "chosen 

false edges". The likelihood ratios of all edges in that list were found. 

 

To do so the network without the test set was fitted to the degree-corrected, non-overlapping, 

nested blockmodel and the description length minimised using the function implemented in 

graph-tool. Then 10,000 sweeps were carried out using the MCMC algorithm implemented in 

graph-tool, collecting the log-likelihood of 
𝑃(𝑨+𝛿𝑨|{𝒃𝑙})

𝑃(𝑨|{𝒃𝑙})
 for each edge in the test set as outlined 

under “Link Prediction”. The log-likelihoods were then averaged and the likelihood ratios for the 

different edges found.  

 

Upon ranking the edges in order of decreasing likelihood ratio magnitudes it was possible to 

evaluate the performance of the algorithm using, for example, Receiver Operating Characteristic 

(ROC) curves. An ROC plot plots the true positive rate against the false positive rate (i.e. 

benefits vs. costs) (16). This is done by ranking the edges in order of decreasing likelihood 

ratios. Working downwards through the list in the direction of decreasing likelihood ratio, all 

edges of greater likelihood ratio than the current cut-off are taken to be the result set. At each 

point the true positive rate is found by dividing the number of edges from "chosen true edges" 

that are found in the result set by the total number of "chosen true edges". Similarly, the false 

positive rate is calculated by dividing the number of edges in "chosen false edges" discovered in 

the result set by the total number of edges in "chosen false edges". Thus, a set of coordinates, 
(𝑓𝑝_𝑟𝑎𝑡𝑒, 𝑡𝑝_𝑟𝑎𝑡𝑒), was obtained and plotted on the axes. 

 

This procedure illustrates what share of incorrect predictions has to be accepted in order to 

discover a given share of true positives contained in the set of tested edges. If edges are picked at 

random from the entire test set this results in an ROC curve following the 𝑥 = 𝑦 line, thus giving 

a convenient graphical comparison. 

 

The area under the curve (AUC) combines the results of this procedure into a single figure along 

which to compare performance. This, conveniently, also equates to the probability that the 

methodology ranks a randomly chosen positive instance higher than a randomly chosen negative 

instance (16, 17). 

 

The assumption that all "random" edges in the top scoring section of the result set are truly false 

positives is not technically correct. It would be possible that the reason they are scoring highly is 

because they are indeed missing edges. As a consequence, the improvement over chance 

determined by the algorithm is thus, technically, a lower boundary on the performance of the 

algorithm. 

 

Though calculating and plotting an ROC curve reveals information about how the algorithm 

performs for different thresholds it does not necessarily answer the question of where the best 

threshold lies. One way of finding this point is by calculating the accuracy, which is defined as 

follows (16): 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

This is the number of correct classifications divided by the total number of classifications. As 

already outlined for calculating the ROC it is straightforward to calculate the number of true 

positives. The number of true negatives was taken to be the number of edges from the list 

“chosen false edges” that were found in the set of edges with a likelihood ratio lower than the 

chosen threshold. It is possible to calculate the accuracy, for a range of thresholds, and compare 

which threshold returns the highest accuracy, assuming that everything above the threshold is 

classified as a positive and everything beneath it as a negative. In this work the impact on the 

accuracy of taking progressively larger parts of the results (working in decreasing order of 

likelihood ratio) as positives was tested. 

 

In order to further evaluate the performance of the algorithm it was compared against a number 

of other, more straightforward, metrics. One way of approaching link prediction is to determine 

the similarity between two nodes. If they are sufficiently similar they are deemed to be likely to 

have a link between them. What will be used here are local structural similarity indices. 

 

The first metric used was the Jaccard index, which is the number of common neighbours shared 

between two nodes divided by the size of the set of all neighbours of the two nodes (18): 

𝑠𝑥𝑦
𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =

|Γ(𝑥) ∩ Γ(𝑦)|

|Γ(𝑥) ∪ Γ(𝑦)|
 

where 𝑠𝑥𝑦 is the similarity score between vertex 𝑥 and 𝑦 and Γ(𝑥) is the set of neighbours of 

vertex 𝑥 and Γ(𝑦) that of vertex 𝑦, though the implementation used by graph-tool only considers 

the out-neighbours. 

 

Second, the Adamic-Adar Index was calculated, which gives the sum of weights of common 

neighbours of two vertices calculated as follows (18, 19): 

𝑠𝑥𝑦
𝐴𝐴 = ∑

1

log 𝑘𝑧
𝑧∈Γ(𝑥)∩Γ(𝑦)

 

where the implementation used by graph-tool only considers the out-neighbours and thus uses 

the in-degrees. 

 

Following the example of (10) the shortest path similarity was also calculated, which was simply 

taken to be one over the length of the shortest path between two vertices (and zero if no path 

exists) (20). Clauset et al. also compare their model to the number of common neighbours, very 

similar to the Jaccard index, defined as follows (18–20): 

𝑠𝑥𝑦
𝐶𝑁 = |Γ(𝑥) ∩ Γ(𝑦)| 

 

A final metric used was the degree product. This is based on the fact that scale-free networks are 

thought to grow via preferential attachment, where the probability of a vertex connecting to 

another given vertex is proportional to its degree (21, 22). Unlike the models to which this theory 

was first applied the network here is directed. Hence the metric was slightly modified. As 

Mislove et al. point out, in a directed network preferential attachment subdivides into 

preferential creation (the probability to create a new link which is proportional to a node's out-
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degree) and preferential inception (the probability to receive a new link which is proportional to 

the node's in-degree) (23). The form used in (10) was modified to yield: 

𝑠𝑥𝑦
𝑃𝐴 = 𝑘𝑜𝑢𝑡𝑥

× 𝑘𝑖𝑛𝑦
 

This measures the similarity if vertex 𝑥 is the source of the edge and vertex 𝑦 the target. 

 

Each of these metrics was calculated for each proposed edge in the test set for each of the years 

used during the SBM testing. It was then assumed that the edges in the test set scoring highest on 

the relevant similarity metrics were most probable to represent missing edges. The procedure 

was repeated four times and the mean of the values was plotted with the standard deviation taken 

as estimate of the error. 

 

Prediction of Links 

For the link prediction an up-to-date network was used to minimise the rediscovery of already 

known reactions. This meant that the size of the overall network had to be reduced to be able to 

process it given the available computational resources. The same network as used during the 

testing of the accuracy of the link prediction algorithm was used, however, instead of adopting 

an "all-to-all" wiring scheme it was instead decided to adopt a scheme registering and connecting 

only the heaviest reactant to the heaviest product, as already discussed in (24) which resulted in a 

network of 161,760 chemical species and 132,539 edges, each representing a reaction record in 

Reaxys. 

 

It was decided to investigate the routes from limonene to paracetamol more closely to see if any 

useful reactions could be predicted in this area of chemistry. For this section of the work 

usefulness was defined as a reaction which reduces the number of steps taken to carry out the 

conversion of limonene to paracetamol, i.e. one that provides a "short cut". Alternatively also 

accepted was a prediction that leads to an increase in the number of efficient paths available to 

carry out the synthesis, i.e. one that opens up chemical space, providing more options. Seeing as 

the previous chapter worked on the assumption that five steps were required to carry out the 

synthesis, a more efficient path was taken to be a path with a length of four or less steps. 

 

To implement this, a path search was carried out in graph-tool, finding all paths of a length of 

less than or equal to four steps. Having obtained this list of paths the vertices, i.e. chemical 

species, lying on these paths were extracted. 

 

Though it is possible that there exists a molecule which currently does not lie on any of the 

paths, and which would provide a more efficient route if suitable reactions to it were found, 

identifying such a molecule raises the complexity of the problem at hand significantly. Hence it 

was decided to limit the search to reactions between the molecules currently lying on the paths.  

 

Generating the list of reactions which meet the requirements of usefulness defined above is 

straightforward: all that is required is to generate the set of all possible pair-wise combinations of 

the molecules on the existing four step paths connecting limonene to paracetamol (considering 

the pair (a,b) to be distinct from (b,a)) taking the first node in each pair as source and the second 

as target of an edge. 
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This was carried out for the set of vertices at hand. Self-loops were removed from the list (i.e. an 

edge where a given vertex is both source and target) and any edges already existing in the 

network were also removed from the set of edges of interest. 

 

The generated list of edges of interest was then fed to the link prediction algorithm parametrised 

as described in the previous section on testing the accuracy of the link prediction algorithm and 

the same procedure was followed to obtain the likelihood ratios before ranking the edges in order 

of decreasing magnitudes of the likelihood ratios. 

 

The paracetamol case study presented in the previous chapter applied the rule that the 

intermediate being converted into a new intermediate had to contain precisely one ring structure 

before and after the reaction. Thus, for reasons of consistency, this was applied to the result set 

of the link prediction too and any reactions where this was not the case were screened out. 

 

The reduced set of predictions was analysed to determine what improvement in the number of 

four step routes each reaction would result in. Each edge was added to the network, the change in 

the number of four step paths leading from limonene to paracetamol was recorded, and the edge 

was deleted from the network again before the next edge was added. Any edge which created at 

least one additional four step path was retained in the result set and the remainder was screened 

out. 

 

Finally, the remaining result set was analysed to remove any reactions contained in Reaxys but 

absent from this subnetwork by comparing it to the much larger network used by us in (25) so 

that the set only contained novel transformations.  

 

Next, the exact procedure was repeated but the search generating the test set was trying to find 

all five-step paths (though still analysing how many new four-step paths would be added by the 

prediction). This was done in order to get a larger sample set and a greater chance of it 

containing true positives. 

 

In addition, a possible change in Gibbs free energy due to the transformation occurring was 

calculated for the three highest-ranking transformations. The reaction equations were balanced as 

outlined in (26) by using small molecules that are common byproducts of syntheses such as 

water, carbon dioxide, etc as also outlined in (27, 28). The Gibbs energy of reaction was 

calculated by Mr Yehia Amar (group member) in Gaussian 09 with geometry minimisation using 

ωB97XD level of theory and a cc-PVDZ basis set followed by frequency calculation with the 

same level of theory to confirm that the found minimum is the true minimum. Single point 

energy calculation was then carried out using the same level of theory and a basis set of cc-

PVTZ assuming no solvation. Clearly the Gibbs free energy of reaction assuming the molecules 

are in a vacuum will not yield the same answer as when calculating it in a solvent. Due to the 

very limited amount of data available on these reaction suggestions however there is no solvent 

information available. As the calculation is only a rough estimate and liable to change under the 

ultimate conditions in the laboratory the added uncertainty due to the calculation being carried 

out without solvent is taken to be acceptable. 
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Supplementary Text 

Analysis of Alternative Stochastic Block Models 

Finding the MDL for the various SBM configurations yields the results shown in Table S2. 

 

To visualise the results Λ1 was plotted for the different comparisons in Figure S1. Λ1 was 

calculated such that the preferred option has a value of 1.0. 

 

Based on the MDL data, the degree corrected, non-overlapping, nested SBM provides the best 

possible fit. Looking at the values of Λ1 in Figure S1 there is a clear, statistically significant 

preference towards this configuration. Though one should be wary of applying a hard and fast 

confidence threshold, a line at Λ1 = 0.01 has been drawn onto the plot as this is a rule-of-thumb 

often used to determine whether a preference is statistically significant or not (7). From this it is 

apparent that the preference over the non-nested, degree-corrected, non-overlapping SBM might 

not be statistically significant. 

 

Having minimised the description length, the posterior distribution was subsequently sampled for 

each of the possible configurations across 200,000 iterations. The results of this are shown in 

Table S3. 

 

The results indicate that the non-nested, degree corrected, overlapping SBM provides the best fit 

to the data, followed by the nested version of the same. Based on the data in Table S3 the 

logarithm of the posterior odds ratio was calculated and plotted in Figure S2 to evaluate the 

significance and strength of the preference. Given that it provided the partition with the best fit to 

the data the degree of preference towards the nested version was tested here. 

 

As can be seen in Figure S2 the nested version of the non-overlapping, degree corrected SBM 

has an almost as strong, statistically significant preference over all other models as the non-

nested version of the same (though of course the non-nested version's statistical preference over 

the nested version remains). 

 

For the purposes of this study it was decided to use the nested version of the non-overlapping, 

degree corrected SBM. Scope however clearly exists to explore how the non-nested, non-

overlapping, degree corrected SBM would perform in link prediction for this data set. 
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Fig. S1. Posterior odds ratio relative to the best model according the MDL criterion. The solid 

line represents Λ1 = 10−2. 

 

  



 

 

14 

 

 

Fig. S2. Posterior odds ratio upon sampling the posterior distribution between the given 

configuration and (the nested, non-overlapping, degree corrected version of the SBM. The solid 

line represents Λ2 = 10−2. 
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Fig. S3. The accuracy of the algorithm calculated at a number of points in time. Each line shows 

the accuracy when taking the corresponding top-x% of results, when ranked according to 

decreasing likelihood ratio, as positives. The error bars were obtained by taking the standard 

deviation across four repeats of the measurements. 
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Fig. S4. A selection of reaction predictions considered most likely by the algorithm that turned 

out to already be known when comparing it to a larger section of Reaxys. Due to the heaviest-to-

heaviest wiring scheme implemented only the main reactant and product are shown.  
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Fig. S5. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 1-10 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S6. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 11-20 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S7. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 21-30 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S8. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 31-40 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S9. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 41-50 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S10. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 51-60 in decreasing order 

of likelihood ratio magnitude. 



 

 

23 

 

 

Fig. S11. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 61-70 in decreasing order 

of likelihood ratio magnitude. 



 

 

24 

 

 

Fig. S12. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 71-80 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S13. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 81-90 in decreasing order 

of likelihood ratio magnitude. 
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Fig. S14. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 91-100 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S15. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 101-110 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S16. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 111-120 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S17. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 121-130 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S18. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 131-140 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S19. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 141-150 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S20. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 151-160 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S21. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 161-170 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S22. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 171-180 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S23. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 181-190 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S24. A selection of transformations, ranked by the algorithm, that were identified as novel 

and increasing the number of four-step-paths showing transformations 191-200 in decreasing 

order of likelihood ratio magnitude. 
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Fig. S25. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 1-10 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S26. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 11-20 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S27. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 21-30 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S28. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 31-40 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S29. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 41-50 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S30. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 51-60 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S31. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 61-70 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S32. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 71-80 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S33. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 81-90 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S34. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 91-100 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S35. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 101-110 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S36. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 111-120 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S37. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 121-130 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S38. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 131-140 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S39. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 141-150 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S40. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 151-160 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S41. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 161-170 in 

decreasing order of likelihood ratio magnitude. 
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Fig. S42. A selection of transformations evaluated using the link prediction algorithm that turned 

out to be contained in Reaxys and their unfiltered rankings, showing transformations 171-175 in 

decreasing order of likelihood ratio magnitude. 
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Table S1. Configurations of SBMs for which the MDL was found and the posterior likelihood 

distribution sampled in order to calculate likelihood ratios. 

Configuration # Nested Degree 

corrected 

Overlapping Non-informative 

prior 

1 TRUE TRUE TRUE no 

2 TRUE TRUE FALSE no 

3 TRUE FALSE FALSE n/a 

4 TRUE FALSE TRUE n/a 

5 TRUE TRUE FALSE yes 

6 TRUE TRUE TRUE yes 

7 FALSE TRUE TRUE no 

8 FALSE FALSE TRUE n/a 

9 FALSE FALSE FALSE n/a 

10 FALSE TRUE FALSE no 

11 FALSE TRUE FALSE yes 

12 FALSE TRUE TRUE yes 
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Table S2. MDL values for each run for the different SBM configurations along with the mean 

and standard deviation (St. Dev.) for each configuration. "N-I prior" stands for "non-informative 

prior". 

Nested Degree 

corrected 

Overlapping N-I 

prior 

MDL1 MDL2 MDL3 Mean St. 

Dev. 

TRUE TRUE TRUE no 119186 119186 119186 119186 0 

TRUE TRUE FALSE no 115328 115778 114978 115361 401 

TRUE FALSE FALSE n/a 120365 120522 120015 120300 260 

TRUE FALSE TRUE n/a 131814 135094 133912 133607 1662 

TRUE TRUE FALSE yes 127801 128938 127264 128001 855 

TRUE TRUE TRUE yes 131036 131036 131036 131036 0 

FALSE TRUE TRUE no 119186 119186 119186 119186 0 

FALSE FALSE TRUE n/a 133952 138371 138371 136898 2551 

FALSE FALSE FALSE n/a 121360 121296 121225 121294 67 

FALSE TRUE FALSE no 115313 115303 115702 115440 228 

FALSE TRUE FALSE yes 128351 127990 129439 128593 754 

FALSE TRUE TRUE yes 131036 131036 131036 131036 0 
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Table S3. The natural log of the model evidence for each run for the different SBM 

configurations along with the mean and standard deviation (St. Dev.) for each configuration as 

well as the total run time for one set of calculations. "N-I prior" stands for "non-informative 

prior". 

Nested Degree 

corrected 

Over-

lapping 

N-I 

prior 

ME1 ME2 ME3 Mean St. 

Dev. 

Run 

time [h] 

TRUE TRUE TRUE no -302634 -302634 -302634 -302634 0 22 

TRUE TRUE FALSE no -115089 -115041 -115454 -115195 226 2 

TRUE FALSE FALSE n/a -119460 -119416 -120006 -119627 329 2 

TRUE FALSE TRUE n/a -292054 -284535 -298193 -291594 6841 6 

TRUE TRUE FALSE yes -126832 -128122 -124303 -126419 1943 2 

TRUE TRUE TRUE yes -314484 -314484 -314484 -314484 0 27 

FALSE TRUE TRUE no -336184 -341637 -334139 -337320 3876 148 

FALSE FALSE TRUE n/a -398161 -368207 -358687 -375019 20600 68 

FALSE FALSE FALSE n/a -118807 -119849 -119932 -119529 627 1 

FALSE TRUE FALSE no -113491 -112863 -112900 -113085 352 1 

FALSE TRUE FALSE yes -126899 -125939 -126094 -126311 515 1 

FALSE TRUE TRUE yes -353976 -349243 -353976 -352398 2732 146 
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Table S4. Changes of rankings of reaction suggestions between the four-step and five-step link 

prediction case study showing the old and new filtered ranking and the corresponding unfiltered 

percentage ranking. 

Transformation Old ranking New ranking Old top percent New top percent 

Figure 2.A 1 8 1% 0.5% 

Figure 2.B 2 4 1% 0.5% 

Figure 2.C 3 11 2% 0.5% 

Figure 2.D 4 14 2% 0.5% 

Figure 2.E 5 17 3% 0.5% 

Figure 2.F 6 26 4% 1% 

Figure 2.G 7 63 4% 2% 

Figure 2.H 8 25 5% 1% 

Figure 3.A 9 28 5% 1% 

Figure 3.B 10 42 8% 1.5% 

Figure 3.C 11 51 8% 2% 

Figure 3.D 12 49 8% 2% 

Figure 3.E 13 31 9% 1% 

Figure 3.F 14 58 10% 2% 

Figure 3.G 15 19 11% 1% 

Figure 3.H 16 38 11% 2% 
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