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Abstract

Partial atomic charge assignment is of immense practical value to force field parametriza-

tion, molecular docking, and cheminformatics. Machine learning has emerged as a

powerful tool for modeling chemistry at unprecedented computational speeds given

ground-truth values, but for the task of charge assignment, the choice of ground-truth

may not be obvious. In this letter, we use machine learning to discover a charge model

by training a neural network to molecular dipole moments using a large, diverse set of

CHNO molecular conformations. The new model, called Affordable Charge Assignment

(ACA), is computationally inexpensive and predicts dipoles of out-of-sample molecules

accurately. Furthermore, dipole-inferred ACA charges are transferable to dipole and

even quadrupole moments of much larger molecules than those used for training. We

apply ACA to long dynamical trajectories of biomolecules and successfully produce

their infrared spectra. Additionally, we compare ACA with existing charge models and

find that ACA assigns similar charges to Charge Model 5, but with a greatly reduced

computational cost.
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Electrostatic interactions contribute strongly to the forces within and between molecules.

These interactions depend on the charge density field ⇢(r), which is computationally demand-

ing to compute. Simplified models of the charge density, such as atom-centered monopoles,

are commonly employed. These partial atomic charges result in faster computation as well

as provide a qualitative understanding of the underlying chemistry. [1–4] However, the decom-

position of charge density into atomic charges is, by itself, an ambiguous task. Additional

principles are necessary to make the charge assignment task well-defined. Here we show that

a Machine Learning model, trained only on the dipole moments of small molecules, discovers

a charge model that is transferable to quadrupole predictions and extensible to much larger

molecules.

Existing popular charge models have also been designed to reproduce observables of the

electrostatic potential. The Merz-Singh-Kollman (MSK) [5,6] charge model exactly replicates

the dipole moment and approximates the electrostatic potential on many points surrounding

the molecule, resulting in high-quality electrostatic properties exterior to the molecule. How-

ever, MSK suffers from basis set sensitivity, particularly for “buried atoms” located inside

large molecules. [7–9] Charge model 5 (CM5) [8] is an extension of Hirshfeld analysis, [10] with

additional parametrization in order to approximately reproduce ab initio and experimental

dipoles of 614 gas-phase dipoles. Unlike MSK, Hirshfeld and CM5 are nearly independent

of basis set. [9] This insensitivity allows CM5 to use a single set of model parameters. The

corresponding tradeoff is that its charges do not reproduce electrostatic fields as well as

MSK.

A limitation of these conventional charge models is that they require expensive ab initio

calculation, which can be computationally impractical, especially for large molecules, long

time scales, or systems exhibiting great chemical diversity. Recent advances in machine

learning (ML) have demonstrated great potential to build quantum chemistry models with

ab initio-level accuracy while bypassing ab initio costs. [11] Trained to reference datasets, ML

models can predict energies, forces, and other molecular properties. [12–27] They have been
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used to discover materials [28–37] and study dynamical processes such as charge and exciton

transfer. [38–41] Most related to this work are ML models of existing charge models, [9,42–44]

which are orders of magnitude faster than ab initio calculation. Here, we show that ML is

able to go beyond emulation and discover a charge model that closely reproduces electrostatic

properties by training directly to the dipole moment.

In this letter, we use HIP-NN (Hierarchically Interacting Particle Neural Network) [45]—

a deep neural network for chemical property prediction—to train our charge model, called

Affordable Charge Assignments (ACA). ACA is effective at predicting quadrupoles despite

being trained only to dipoles, demonstrating the remarkable ability of ML to infer quantities

not given in the training dataset. Furthermore, its predictions are extensible to molecules

much larger than those used for training. We validate ACA by comparing it to other pop-

ular charge models, and find that it is similar to CM5. We then apply ACA to long-time

dynamical trajectories of biomolecules, and produce infrared spectra that agree very well

with ab initio calculations.

We briefly review HIP-NN’s structure. A more complete description is reported elsewhere

in Ref. [45]. HIP-NN takes a molecular conformation as input. The input representation

consists of the atomic numbers of all atoms and the pairwise distances between atoms.

This representation is simple and ensures that the network predictions satisfy translational,

rotational, and reflection invariances. Figure 1 illustrates how HIP-NN processes molecules

using a sequence of on-site and interaction layers. On-site layers generate information specific

to each local atomic environment and interaction layers allow sharing of information between

nearby atomic environments.

HIP-NN has previously been successful in modeling energy [45] and pre-existing charge

models. [9] Here, we extend the model for dipole prediction using

µ =
NatomsX

i=1

qiri, (1)
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Figure 1: Abstract schematic of HIP-NN in the context of dipole prediction, illustrated for
a water molecule.

where ri and qi are the position and charge of atom i. HIP-NN’s learned charge assignment

qi (the ACA charge) is decomposed as a sum over hierarchical corrections,

qi =
NinteractionsX

`=0

q`i . (2)

As depicted in Fig. 1, each q`i is calculated from the activations (i.e. outputs) of the `-th set

of HIP-NN on-site layers. An equivalent decomposition is µ =
P

` µ
` where µ` =

P
i q

`
ir

`
i is

the `-th hierarchical dipole correction. HIP-NN is designed such that higher-order corrections

(i.e. µ` for larger `) tend to decay rapidly.

Training of HIP-NN proceeds by iterative optimization of the neural network model pa-

rameters using stochastic gradient descent. The goal of training is to maximize the accuracy

of HIP-NN’s dipole predictions (as quantified by the root-mean-square-error) subject to regu-

larization. The full ACA model of this paper was generated by an ensemble of four networks.

More details about HIP-NN and its training process are provided in Ref. [45] and Supporting

Information.

The HIP-NN training and testing data are drawn from the ANI-1x dataset, which includes

non-equilibrium conformations of molecules with C, H, N, and O. [46] The ANI-1x dataset was
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constructed through an active learning procedure [47–49] that aims to sample chemical space

with maximum diversity. Although ANI-1x was originally designed for potential energy

modeling, its chemical diversity also enhances the transferability of ML predictions for other

properties, such as the dipole moment. We restrict molecule sizes to 30 atoms or less, and

randomly select 396k for training and 44k for testing. Dataset calculations were performed

with Gaussian 09 using the !B97x density functional and 6-31G⇤ basis set. [50] This level of

theory will be referred to as the quantum-mechanical (QM) standard throughout this paper.

Figure 2: Size distributions of molecules in three datasets. Top panel counts the number
of all atoms (C, H, N, O) and bottom panel counts the number of heavy atoms (C, N, O),
per molecule. Each histogram is normalized by its maximum bin count. Although ACA is
only trained to ANI-1x, its predictions are extensible to the much larger molecules in the
DrugBank and Tripeptides datasets.

We benchmark the ACA model according to the accuracy of its dipole and quadrupole

predictions. To demonstrate extensibility, we test on the DrugBank (⇠ 13k structures)

and Tripeptides (2k structures) subsets of the COMP6 benchmark, [46] which contain non-
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equilibrium conformations of drug molecules and tripeptides. Figure 2 shows the molecular

size distribution of these datasets; the molecules in the extensibility sets are roughly four

times larger on average than those of ANI-1x, which we used to train ACA.

Figure 3 shows 2D histograms comparing ACA predicted dipoles and quadrupoles to the

QM reference, for all three datasets. We measure the root-mean-square-error (RMSE) and

mean-absolute-error (MAE). Left panels of Fig. 3 compare Cartesian dipole components in

units of Debye (D). The MAE of 0.078 D for predicting ANI-1x dipoles is comparable to

the error between the QM level of theory and experimental dipole measurements. [51] The

MAE of ⇡ 0.3 D for predicting DrugBank and Tripeptides dipoles demonstrates the strong

extensibility of ACA. Right panels of Fig. 3 compare quadrupole Cartesian components in

units of Buckingham (B). The agreement with QM is remarkable (MAE = 0.705 B for the

ANI-1x tests) in light of the fact that ACA was trained only to dipoles. Furthermore, ACA

continues to make good quadrupole predictions for the much larger COMP6 molecules. We

conclude that the ACA charges are physically useful for reproducing electrostatic quantities.

Additional material quantifying the distributions depicted in Figs. 2 and 3, including error

as a function of molecular size, are available in Supporting Information.

Next, we compare the dipole-inferred ACA model to some conventional charge models.

This analysis uses a subset of GDB-11, denoted here as GDB-5, which contains up to 5

heavy atoms of types C, N, and O. [52] The dataset contains a total of 517,133 structures,

including non-equilibrium conformations. Four charge models were included in the refer-

ence dataset: Hirshfeld, [10] MSK, [5,6] CM5, [8] and population analysis from natural bond

orbitals [53] (NBO). Hirshfeld assigns atomic contributions to the electron density based on

their relative weighting to the proto-density. MSK charges are constrained to reproduce

the dipole moment while attempting to match the electrostatic potential at many points

surrounding the molecule. CM5 is an extension of Hirshfeld, empirically parametrized to

reproduce ab initio and experimental dipoles. NBO charges are computed as a sum of oc-

cupancies from all natural atomic orbitals on each atom. The NBO model is more popular
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Figure 3: 2D histograms showing the correlation between predicted (ACA) and reference
(QM) electrostatic moments using three test datasets: ANI-1x, DrugBank, and Tripeptides.
Left and right panels show dipole and quadrupole correlations, respectively. The upper and
lower values in each subpanel are RMSE and MAE, respectively. Each histogram is nor-
malized by its maximum bin count. ACA is surprisingly effective in predicting quadrupoles,
given that it was only trained to ANI-1x dipoles.

for capturing features such as bond character.

Figure 4 shows the correlation between each pair of charge models and demonstrates

the inconsistency between different approaches to charge partitioning. The strongest cor-

respondence is between CM5 and ACA, with a mean-absolute-deviation of 0.031 e. Other

model pairs have mean-absolute-deviations that range from three to eight times larger—a

consequence of differing principles used to design these models.

Conceptually, MSK, CM5, and ACA are similar in that they attempt to partition charge

such that the molecular dipole moment is preserved in the point charge representation. We

note, however, that MSK differs significantly from CM5 and ACA (Fig. 4). MSK is con-

strained to match the QM dipole exactly for each given input molecular configuration. This

constraint alone is under-determined, and so MSK therefore invokes additional principles

for its charge assignment, attempting to fit the far-field electrostatic potential. However,
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Figure 4: 2D histograms showing correlations between all pairs of charge models. The
upper and lower values in each subpanel are root-mean-square-deviation and mean-absolute-
deviation, respectively. The strong agreement between ACA and CM5 charge assignments
was unexpected.

the far-field potential is relatively insensitive to the partial charge assignments of internal

atoms. [7–9] Because MSK performs its charge assignments according to global (rather than lo-

cal) criteria, the assigned charges can deviate significantly from the local charge density field.

Another related difficulty of MSK is that it exhibits a noticeable basis set dependence. [7,9]

CM5 was designed to address such drawbacks. [8] Like CM5, our ACA charge model is

local-by-design, thus averting the problem of artificial long-range effects. Specifically, ACA

seeks a local charge assignment model that best reproduces the QM dipoles over the whole

training dataset. We remark that the ACA dipole predictions do not perfectly reproduce the

QM dipoles. Allowing for this imperfection may actually be important; collapsing a charge

density field into a relatively small number of monopoles while simultaneously forcing the

molecular dipole to be exact may be incompatible with locality of the charge model.
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Figure 5: (Left) Infrared spectra of select molecules, computed without polarization effects
due to solvation. The values in parentheses are the total number of all atoms (C, H, N,
O) and of heavy atoms (C, N, O), respectively. The agreement between QM and ACA-
derived spectra is reasonable, given that the harmonic approximation is not exact. (Right)
2D histograms of predicted (ACA) versus true (QM) dipoles at 103 subsampled time-steps
throughout the 100 ps trajectories. The upper and lower values in each subpanel are RMSE
and MAE, respectively.

As we showed in Fig. 4, the CM5 and ACA charges are remarkably consistent, a result we

did not anticipate. CM5 reproduces the molecular dipole well, but not as accurately as ACA

(See Supporting Information). The reduced accuracy of CM5 dipoles may be due to the fact

that it is a is fit to a hybrid of ab initio and experimental data. In contrast, ACA trains to

a homogeneous database of QM dipoles. The ML approach has a conceptual advantage: it

is fully automated and requires few design decisions (primarily, the specification of an error

metric for training). As a consequence, the extension of ACA to new atomic species and to

new classes of molecules should be straightforward.
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A strong practical advantage of ACA is that assignment does not require any new

QM calculations. We highlight this efficiency advantage by applying ACA to calculate an

experimentally-relevant quantity. Inspired by the work of Ref. [26], we use ACA to calcu-

late dynamic dipoles and subsequently infrared spectra for select molecules. Ground-state

trajectories were generated from the ANI-1x potential [46] and were 100 ps in length with a

0.1 fs time-step—amounting to a total of 106 time-steps. Dipoles were predicted along these

trajectories using ACA. Both the molecular dynamics and dipole prediction were performed

using only ML, i.e., without any QM calculation. Spectra were made by Fourier transform-

ing the dipole moment autocorrelation function. Harmonic spectra were calculated with the

Gaussian 09 software. A comparison of time-domain ML spectra to QM harmonic spectra

is shown Figure 5, left panels. Although time-domain and harmonic spectra are not one-to-

one, the comparison is reasonable since spectral features are harmonic to first order. ACA

recovers the harmonic features across all molecules.

To further validate the ACA dipole predictions, QM calculations were performed at 103

subsampled time-steps throughout the trajectories. Fig. 5, right panels, shows that the

ACA dipole predictions are in excellent agreement with QM, another validation of ACA’s

extensibility. The dipole errors are consistent with those observed in the datasets of Fig. 3.

Note that cholesterol and morphine have 74 and 40 atoms, respectively, whereas our training

dataset has no molecules with more than 30 atoms. The quality of the ML-predicted spectra

for cholesterol and morphine is similar to those of smaller molecules, such as aspirin.

We carried out an additional test with smaller molecules of sizes 6 to 15 atoms, using

QM to calculate dipoles at all 106 time-steps. The resulting infrared spectra are shown in

Supporting Information, and are in excellent agreement with our ML-based approach. For

these smaller molecules, ACA yields a factor of greater than 104 computational speed-up.

The results are even more dramatic for large molecules.

In summary, the key contribution of this paper is the formulation of an electrostatically

consistent charge model called Affordable Charge Assignments (ACA). We construct the
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ACA model using a deep neural network that outputs charges. The network is trained to

DFT-computed molecular dipole moments over a diverse set of chemical structures. The

fast and accurate predictive power of the model was evidenced with extensibility tests (Fig.

3) and infrared spectra (Fig. 5). Although ACA is only trained directly to the molecular

dipole, we show that it also captures quadrupole moments, demonstrating transferability.

ACA is compared with four conventional charge models on a dataset containing over

500k molecules (Fig. 4). The rather poor correlation between most model pairs confirms

the ambiguity in charge partitioning. The ACA model correlates well to Charge Model 5

(CM5). CM5 was designed to combine advantages of the Hirshfeld and MSK models. It is

parameterized to reproduce a combination of ab initio and experimental dipoles. ACA, like

CM5, is a local model that is designed to reproduce dipoles, but unlike CM5, is built entirely

from ab initio data. In addition to fast charge assignments, a potential advantage of ACA

is its applicability to a wide range of chemically diverse systems, assuming that appropriate

training data is available. This work is also a testament to how physics-informed ML can be

used to discover properties (here, charge assignment) not employed as an explicit target in

the training process.

Future work will focus on improving and utilizing ACA for quantum-chemical prediction.

Improvements to extensible dipole prediction may be made by engaging in dipole-driven

active learning. Furthermore, ACA could be trained to higher-order multipole moments

such as quadrupoles—this could be important for systems where the dipole does not provide

enough of a constraint for charge assignments. Currently ACA is limited to CHNO atoms,

but this could be overcome when more diverse datasets are available. Another important

drawback of the current model is that charged systems, such as anionic and cationic species,

cannot yet be treated. An application using ACA is underway to predict dynamic charges

in neutral biomolecular systems to parametrize force fields for molecular dynamics.
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Supporting Information Available

More details on ACA training and charge assignment. Correlation plots of ACA charge

predictions between different neural networks. Table summarizing test and extensibility

datasets along with statistical measures of dipole and quadrupole prediction. Error in dipole

prediction as a function of number of atoms in the following test datasets: test set of ANI-1x,

DrugBank, and Tripeptides. Correlation plots between predicted and reference electrostatic

moments (i.e. dipoles and quadrupoles) using several popular charge models: ACA, Hir-

shfeld, MSK, CM5, and NBO. Infrared spectra and dipole correlations of small molecules

ranging from 6 to 15 total atoms.
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HIP-NN Architecture and Training Details

HIP-NN Architecture

The HIP-NN model closely follows the methodology given in Ref. [1]. A key difference

is that linear layers are used to construct partial atomic charge, rather than a molecular

energy, and so no sum over atoms is employed. The network has 2 interaction blocks,

each consisting of 1 interaction layer, followed by 3 on-site layers, and a linear layer to form

hierarchical contribution to charge. Each layer was given a width of 40 neurons. The network

architecture contains approximately 60k parameters.

Training

Training also closely follows Ref. [1]. The main difference is the cost function, adapted

for dipole regression. The cost function used here consists of dipole RMSE, total charge

RMSE, and L2 regularization (as described in Ref. [1]):

L =

r
1

3
h(µ0 � µ)2i+

q
hQ02i+ LL2 (1)

where the angle brackets h...i denote a quantity averaged over each training batch of 30

molecules, µ0 and µ represent the predicted and QM dipole, respectively, and Q0 represents

the predicted total charge for the molecule (i.e. the total QM charge is set to zero). The

factor of 1
3 is a normalization reflecting the three cartesian degrees of freedom in the dipole.

Training is then given by the gradient-based optimization and annealing/early-stopping

algorithm in Ref. [1]. A validation set of 1% of the training dataset (approximately 4385

molecules) was used for the annealing procedure, and the dipole RMSE was used as the

validation criterion for annealing. For training to the ANI-1x dataset used in this work, the

algorithm terminates after roughly 1000 epochs.

2



Details of Charge Assignment

The full charge assignments are given by an ensemble prediction using four different

random initializations of HIP-NN, each separately trained to the same data. Figure S1

shows the correlation between charge predictions by the members of the ensemble; networks

agree to approximately 0.01 e (Fig. S1).The charges produced by the ensemble are not exactly

neutral, and so when predicting the charge on a molecule, excess total charge is redistributed

evenly across atoms. This redistribution constitutes a very small change, typically 0.001 e

or less per atom.

Dipoles for each datapoint µ are constructed as

µ =
NatomsX

i=1

ri qi (2)

and traceless quadrupoles are constructed as

Q =
NatomsX

i=1

✓
ri ⌦ ri �

1

3
I r2i

◆
qi (3)

where ⌦ is the outer product, and I is the unit dyadic (or Kronecker delta).
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Figure S1: Pair correlation plots of charge predictions from the four neural networks constituting
our ensemble, labeled as 0, 1, 2, 3. Upper and lower values in each subpanel are RMSD and MAD,
respectively.

Additional Data

This section contains additional data quantifying the performance of ACA. We include a

a table summarizing extensibility results (Table S1), bar charts showing error as a function of

molecule size (Figures S2, S3, and S4), dipole and quadrupole correlations plots comparing

ACA to other existing popular charge models (Figures S5 and S6), and infrared spectra

computed with ML dynamics + ACA, ML dynamics + QM dipoles, and harmonic QM

(Figure S7).
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Table S1: Summary of test and extensibility datasets along with statistical mea-
sures for dipole and quadrupole prediction.

ANI-1x Drug Bank Tripeptides
Total # molecules 438481a 13379 2000

Total atoms (CHNO) per molecule, min / mean / max 2 / 14 / 30 8 / 44 / 140 30 / 53 / 70
Heavy atoms (CNO) per molecule, min / mean / max 1 / 7 / 17 3 / 22 / 65 17 / 27/ 37

Dipole MAE, RMSE (D) 0.08b, 0.12b 0.28, 0.49 0.31, 0.47
Quadrupole MAE, RMSE (B) 0.71b, 0.95b 1.27, 1.89 1.31, 1.72

Mean
��µACA � µQM

�� (D) 0.16b 0.59 0.66
a This is 10% of the full ANI-1x dataset, which consists of more than 4M molecules.
b Error metrics computed on held-out test set of 43849 molecules.

Figure S2: Bar charts showing RMSE and MAE for each molecule size in the 43849 test datapoints
selected from ANI-1x. Top and bottom panels correspond to total atoms (CHNO) and heavy atoms
(CNO), respectively.
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Figure S3: Bar charts showing RMSE and MAE for each molecule size for the DrugBank exten-
sibility set. Top and bottom panels correspond to total atoms (CHNO) and heavy atoms (CNO),
respectively.

Figure S4: Bar charts showing RMSE and MAE for each molecule size for the Tripeptide exten-
sibility set. Top and bottom panels correspond to total atoms (CHNO) and heavy atoms (CNO),
respectively.
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Figure S5: 2D histograms showing correlations between predicted (Charge Model) and reference
(QM) electrostatic moments using five different charge models: ACA, Hirshfeld, MSK, CM5, and
NBO. The test dataset is GDB-5, which contains a total of 517,133 molecules. The upper and lower
values in each subpanel are RMSE and MAE, respectively. Each histogram is normalized by its
maximum bin count. ACA recovers both the dipole and quadupole moments of the test dataset at
better accuracy than all other models except for MSK. ACA recovers quadrupoles, despite being
only trained to dipoles.
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Figure S6: 2D histograms showing correlations between predicted (Charge Model) and reference
(QM) electrostatic moments using three different charge models: ACA, CM5, and MSK. The test
dataset is a random subset of ANI-1x, which contains a total of BLAH molecules. The upper and
lower values in each subpanel are RMSE and MAE, respectively. Each histogram is normalized by
its maximum bin count. ACA recovers both the dipole and quadupole moments of the test dataset
at better accuracy than CM5. ACA recovers quadrupoles, despite being only trained to dipoles.
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Figure S7: Infrared spectra of small molecules calculated using ACA (red) and QM (black). The
values in parentheses are the total number of all atoms (C, H, N, O) and heavy atoms (C, N, O),
respectively. For each molecule, both ACA and QM dipoles were predicted at 106 time-steps of the
same ANI-1x molecular dynamics trajectory. Frequencies determined from DFT harmonic mode
analysis are also shown (blue). Right panels are dipole correlation plots of ACA versus QM. Upper
and lower values in each subpanel are RMSE and MAE, respectively.
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