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Abstract

APOBECS3B (A3B) is a newly discovered driver of mutation in many cancers. We use
computational tools to revert a recent crystal structure of an A3B construct to its native
sequence, and run molecular dynamics simulations to study its underlying dynamics and
substrate recognition mechanisms. The A3B-oligonucleotide substrate simulations show a
series of dynamic substrate-protein contacts that correlate with previous work on A3B substrate
selectivity. A second series of simulations in which the target cytosine nucleotide was
computationally mutated from a deoxyribose to a ribose showed a change in sugar ring pucker,
leading to a rearrangement of the binding site and revealing a potential intermediate in the
binding pathway. Finally, apo simulations of A3B beginning in the open state experience a rapid
and consistent closure of the binding site, reaching a conformation incompatible with substrate
binding. These simulations agree with previous experimental studies, and we report the
atomistic details of these events to further therapeutic studies on A3B.



Introduction

The APOBECS3 (A3) family of cytidine deaminases is a recently-discovered endogenous source
of mutation in cancer."? Previously, A3 proteins were studied in the context of their interactions
with viruses and efforts were undertaken to discover small molecules that modulate the
mutational activities of the virally restrictive APOBEC3G enzyme.** Recent studies have linked
cancer progression and recurrence to A3 activity.>® A3 proteins have specific substrate
sequence preferences, and analyses of some cancer genomes have shown an enrichment of
A3 mutation signatures.’®"® Recent evidence suggests that APOBEC3B (A3B) is an important
driver of tumor progression in the A3 family."s"”

A3B is a dual-domain A3 that prefers to deaminate cytosines at TC motifs in DNA, with weak
preference placed on further upstream and downstream bases.'® Each A3 protein consists of
either one or two deaminase domains. In A3s with two deaminase domains like A3B, only the
second, C-terminal domain (ctd), shows significant catalytic activity. In these dual-domain A3s,
the role of the N-terminal domain (ntd) is unknown, but studies have found the full-length
construct to be more active than the ctd alone.’? All A3 domains share a minimum sequence
identity of 30%, which corresponds to a high degree of overall structure similarity.?"* Only single
A3 domain structures have been elucidated through X-ray crystallography. Among the A3
members, A3Bctd proved to be one of the most challenging proteins to crystallize, unlike its
closest homolog A3A (85% sequence identity).?® The crystal structure of A3Bctd in apo form
could only be elucidated recently after loop 3 truncation and a few stabilizing mutations and
showed a tightly closed active site.?* Further attempts to capture the A3Bctd active site in an
open conformation using different crystal forms resulted in alternative, yet still closed
conformations of the active site in apo form.? Simulations of A3Bctd also indicated the intrinsic
bias of its active site toward being in a closed conformation via distinct modes of interaction
between loop 1 and loop 7.%° Finally, a DNA-bound crystal structure of A3Bctd was achieved but
only after an additional A3A loop 1 swap in addition to the previously used loop 3 truncation and
solubilizing mutations.? Despite its high value, the information in the A3Bctd crystal structure
still leaves some open questions about the native interactions, especially of loop 1, of wild-type
A3Bctd with its DNA substrate.

Protein-DNA recognition is often mediated by hydrogen bonds and shape complementarity.?’~>°
Interestingly, the substrate preferences of A3 proteins can be exchanged through the transfer of
certain sequence regions.*! In conjunction with other studies, this work established the role of
loops 1, 3 and 7 in the process of DNA substrate recognition.?*3'=3 nitial crystal structures of A3
deaminase domains show these loops being adjacent to the binding site.?? Subsequent
crystallization of A3 proteins in complex with substrates showed residues on loops 1 and 7
binding to oligonucleotide substrates.?*?°3% Previous experimental studies have explored the
binding of A3s and other cytidine deaminases to chemically modified oligonucleotides, such as
those with a ribose-cytidine (rC) base at the target site, as well as other modifications to the
oligonucleotide backbone and base.?****3 These studies have concluded that A3B prefers
DNA substrates but can bind and catalyze other substrates with significantly lower activity.**
DNA and RNA differ in structure by only one hydroxyl group (at the C2’ position), which is
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enough to change the backbone sugar ring pucker from C2’ endo (for DNA) to C3’ endo (for
RNA). It is suspected that this difference in conformational preference is a contributing factor for
A3B'’s selectivity for DNA over RNA, but the exact mechanism is not known.

One powerful technique to understand the biophysics of proteins and biological interactions is
molecular dynamics (MD) computer simulations.*® These simulations model dynamics of all the
atoms of a chemical system, starting with an initial geometry and undergoing motion according
to the laws of physics at physiologic temperature. MD simulation is now capable of handling not
just proteins, but also solvents, ions, and nucleic acids accurately.***° With increases in
computing power, more questions have fallen into the scope of computability, and MD
simulations have begun to find valuable synergies with traditional biochemistry, often explaining
mechanisms underlying biochemical observations in atomic detail or proposing new routes for
further experiments.®°-*

In this work, we use explicitly solvated molecular dynamics simulations to explore long-awaited
native interactions of wild-type A3Bctd with oligonucleotide substrates. These simulations reveal
the importance of base-specific hydrogen bonds, pocket shape, and backbone sugar
conformation in A3Bctd substrate binding. We also simulate an A3Bctd-substrate complex with
a ribose-C as the target nucleotide instead of deoxyribose-C, and observe a ring pucker change
to the RNA-preferred C3’ endo conformation. This pucker change leads to a shift away from the
crystallized binding pose, revealing a potential intermediate conformation in A3B-oligonucleotide
binding that may provide structural insights for further biochemical or therapeutic work.
Correlations between these simulations and experimental findings suggest that these models
can accelerate studies of A3B and may generalize to other A3-ssDNA complexes.

Methods

Simulations of A3B were parameterized using the AMBER FF14SB force field for protein atoms,
and FFQ9BSCO and FF99BSCO_chiOL3 force field for DNA and RNA atoms, respectively.>%°
The starting coordinates for oligonucleotide-bound simulations were based on PDB entry 5TD5.
In each system, mutations were reverted to wild-type and missing residues were modeled using
the Schrodinger PRIME software suite.®'®? Simulations were embedded in a TIP3P water box
generated by LEaP from the AmberTools suite with a buffer distance of 10 A, with Na and ClI
ions added to neutralize charge and attain a concentration of 0.2M.*” Solvent in the crystal
structure other than waters were removed. Crystal waters were left in place, and protonation
states and hydrogen coordinates were assigned by VMD PropKa.®*** The catalytic zinc ion and
the zinc-coordinating residues in the active site were modeled according to the Cationic Dummy
Atom Model.® The catalytic zinc was also modeled bound to a OH" ion, in order to model the
pre-catalysis substrate recognition dynamics of A3B.

Three A3Bctd systems were simulated: A DNA-bound system based on coordinates from 5TD5
with nucleotide sequence 5’-TTCATG-3’, a hybrid oligonucleotide-bound system based on
coordinates from 5TD5 with nucleotide sequence 5’-TTrCATG-3’ (where rC indicates a
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ribonucleotide cytidine), and an apo simulation based on coordinates from 5TD5 but with all
DNA atoms removed. Each system underwent energy minimization in its force field, followed by
gradual heating and equilibration with decreasing restraints. AMBER input scripts for each step
are provided in the Supplemental Materials. Each system was simulated in triplicate, differing in
temperature initialization seed, and each replicate underwent 1 us of unrestrained MD
simulation in an NPT ensemble at 310 K.

Analysis of hydrogen bonds was performed using the MDTraj Python package® and visualized
using Matplotlib.®” The existence of hydrogen bonds was defined by Baker-Hubbard criteria.®®
The hydrogen bond analysis was performed on snapshots taken at increments of 5 ns in the
trajectories. Only hydrogen bonds that involve a base atom or the 2’ ribose oxygen and that
appear in at least 15% of any simulation’s snapshots are shown in Table 1. To monitor the sugar
pucker of target nucleotide, we used cpptra;j.®*""

Pocket volumes were studied using POVME3.0"%" and visualized using Visual Molecular
Dynamics.” The pocket region was defined by a set of inclusion spheres which cover the
observed DNA-binding region (Figure S1). This region is defined as running between loops 1
and 7, down into the zinc-containing active site pocket, and out between loops 1 and 3. Because
quantitative comparison of the pockets was performed, the POVME convex hull exclusion option
was not used, per suggested POVME3.0 best practices.” All trajectories were aligned by their
backbone atoms to the starting structure of the DNA-bound A3B MD simulation (after
equilibration).

Results and Discussion

Perturbation of the Target Nucleotide Sugar from C2’ Endo to C3’ Endo Conformation Can
Trigger Substrate Unbinding from A3Bctd Active Site

The simulations containing the ribose-C (rC) nucleotide at the target position displayed major
differences from those containing the deoxyribose-C (dC). In the dC simulations, both the
protein residues of the binding site and the -1, +1 and target cytidine nucleotides remained in
the same position (RMSD < 2.2 A) throughout the simulations. However, in the second rC
simulation, the RMSD of the target nucleotide was much higher, as shown in Figure 1E. This
change indicates a shift in DNA-rC binding pose, characterized by a binding site rearrangement.
The simulations show that one of the the driving events in this “shift” was a change in the sugar
pucker of the rC nucleotide.
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Figure 1: (A) Sugar pucker of the target C, measured in both A3B-dC and (B) A3B-rC
simulations. In rC simulation replicate 2, the RNA transitions from a C2’ endo (DNA-preferred) to



a C3’ endo (RNA-preferred) sugar pucker. (C) Geometry of C2’ endo sugar pucker taken from
the starting configuration of the dC simulation, and (D) C3’ endo sugar pucker taken from the
second rC simulation (middle right). (E) RMSD of target C compared to its initial pose in
A3B-DNA (black) and A3B-DNA-rC (red) simulations. (F) Numbering system used to identify
atoms in nucleotides.
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V208

Figure 2: Binding site-adjacent residues. (A) Whole protein view and (B) catalytic pocket
focused view of the simulation with target dC, showing the starting (crystal structure-based)
conformation of the substrate oligonucleotide after minimization. (C) Whole protein view and (D)
catalytic pocket focused view of the average structure of the C3’ endo portion of the rC
simulation, as determined by POVME pocket shape analysis. Loop 1 is shown in light blue, loop
3in dark green, loop 5 in light green, and loop 7 in yellow.



The rC pucker change correlates with a change in binding site shape. Notably, the change in
sugar pucker shifts the DNA-rC substrate toward loop 1 and away from the catalytic glutamate
residue and loop 3 (Figure S6). A comparison of average binding pocket shape between the
A3B-DNA simulation and C3’ endo snapshots of the A3B-DNA-rC is shown in Figure 3.

A B
TTdCATG TTrCATG C3’ endo

Figure 3: Average binding cleft shapes differ between (A) dC simulations (C2’
endo/deoxyribose, red) and (B) the portion of the rC simulation after the sugar pucker change
(C3’ endo/ribose, blue). Mesh shows average pocket shape along the DNA binding cleft
observed in crystal structures. The atoms in the dC figure structure are the initial coordinates of
the simulation, while C3’ endo atomic coordinates are taken from the POVME cluster centroid
snapshot. The -1 T in the TTrCATG C3’ endo snapshots leaves the original substrate binding
cleft and is no longer in the pocket defined in the 5TD5 crystal. Images are taken from the same
angle and structures are RMSD-aligned. Catalytic zinc is shown as a gray sphere.

Interaction Footprint of A3Bctd in Complex with Oligonucleotides.

The shifted conformation in the second DNA-rC simulation can also be characterized by
movements in the binding pocket residues, and changes in the network of hydrogen bonds
made between the protein and target rC. A table of all common hydrogen bonds between base
and protein atoms is shown in Table 1, and a more detailed time series plot is provided in Figure
S2. As the dC simulations do not have the 2’ O atom, hydrogen bonds involving it are labeled
N/A.

After the ring pucker change, the 2’ O atom of the target rC forms a hydrogen bond with
Thr214’s sidechain. In non-shifted DNA-rC simulations, the Thr214 sidechain maintains a
hydrogen bond to the 4’ O of the target rC. This shift correlates with a breaking of all major
protein-base hydrogen bonds in the other nucleotides of the chain, except that between Ser282



and the amine to be hydrolyzed at the 4-position on the rC. In all rC simulations, the initial
hydrogen bond between the target C nucleotide’s amine and the catalytic Glu255 residue, is
broken partway through each simulation.

Experiments on A3A have shown that Asp131, homologous to A3B’s Asp314, confers the
preference for T at the -1 position of the oligonucleotide.? Both the crystal structures of A3B and
our simulations show hydrogen bonds consistently formed between the 3-position NH motif of
the T -1 base and the Asp314 sidechain. Interestingly, the rC simulation post-pucker change has
broken this hydrogen bond and replaced it with one to the sidechain of Asp316. Asp316 was
shown to be essential for A3B antiviral function and is therefore likely involved in DNA binding.”®
Given that this shift only appears in the DNA-rC simulation, it is possible that the perturbation
caused by the target C’'s DNA-to-RNA mutation aided the system in leaving its initial energy well
and exploring intermediate binding poses. It is also possible that Asp316 contributes by an
indirect electrostatic mechanism when it is not directly forming hydrogen bonds for substrate
recognition.

Another less frequent base hydrogen bond with the -1 T intermittently forms with the backbone
NH of Tyr315. This hydrogen bond, however, is not specific to the Tyr sidechain, as the contact
is to the protein backbone. It is also not specific to the thymine ring, as the 2-position on the
nucleobase is also an oxygen atom in the other pyrimidine, cytosine. A3G is the only A3 with a
strong -1 preference other than T, and it prefers C. The corresponding position to A3B Tyr315 is
A3G Asp317, and A3G is the only A3 with a residue other than Tyr or Phe at that position.

All six nucleotides in the simulation were analyzed, but only hydrogen bonds involving the -1 T,
C, and +1 A nucleotides showed greater than 15% frequency. The only hydrogen bond involving
the +1 A nucleotide was infrequent, which correlates with the weak preference found toward the
+1 position in substrate specificity experiments.'® Thus, while hydrogen bonding can offer an
explanation for the target C and -1 T base specificity, the simulations do not reveal specific
sidechain-base hydrogen bonding for other nucleotides. The data implies, however, that
electrostatic and/or shape-based recognition may take place. In our simulations, the positively
charged sidechains of loop 1 residues contact the negatively charged phosphate backbone of
the oligonucleotide. These positively charged loop 1 residues are known to be key for activity in
A3A and A3Gctd, as A3A H29 and A3G H216 (homologous to A3B R212) could be mutated to
an arginine while maintaining residual activity.”””® However, when A3G H216 is mutated to Ala, it
loses activity.”®”® While these backbone contacts appear to be charge-driven and are not
specific to one nucleotide sequence, the base atoms of the nucleotide make consistent
hydrogen bonds with the loop1 backbone, in what may be a shape-driven recognition process.
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Hydrogen Bond TTCATG TTrCATG C2’ endo | TTrCATG C3’ endo
-1 T 3-position NH - Asp314 sidechain O 94% 86% 0%
-1 T 3-position NH - Asp316 sidechain O 0% 0% 96%
-1 T 2-position O - Tyr 315 backbone NH 51% 59% 0%
Target C sugar O2’ - Thr214 OH N/A 3% 94%
Target C sugar O2’'H - His253 NE2 N/A 18% 0%
Target C sugar O3’ - Asn240 HD21 22% 42% 0%
Target C sugar O4’ - Thr214 OH 89% 74% 0%
Target C 2-position O - Ala254 backbone NH 95% 76% 0%
Target C 3-position amine - Ser282 backbone C=0 96% 85% 93%
Target C 3-position amine - Glu255 sidechain O 85% 35% 0%
+1 A 3-position N - Arg212 sidechain guanidinium 21% 17% 42%

Table 1: Frequent protein-oligonucleotide hydrogen bonds made in either the DNA or DNA-rC
simulations. Colors indicate frequency of hydrogen bonds (% of frames in which bonds are
made). Dark red: 0%, light red: 1-33%, yellow: 34-66%, green: 67+%.

After the change of the rC sugar to the C3’ endo conformation, the target cytosine is too far from
the catalytic glutamate 255 to perform deamination. This new binding mode may be an
intermediate conformation in normal DNA binding and/or dissociation, however it was only
observed in one of the DNA-rC simulations. Further simulation of all systems might eventually
show the same shift, or complete oligonucleotide dissociation.

Notably, the DNA simulations and the C2’ endo portion of the DNA-rC simulations maintain a
relatively similar DNA interaction interface (Figure 4). While the C3’ endo portion of the DNA-rC
simulations still has the target C buried in the catalytic pocket, the neighboring nucleotides
experience an outward shift and define a new interaction surface. This shift moves the -1 T
down loop 7, and partially dissociates the -2 T from the protein. The shift of the target rC away
from loop 3 brings the +2 T and +3 G in contact with the surface of loop 3 that faces the catalytic
pocket, though our hydrogen bond analysis does not indicate specific interactions driving this
association.



TTdCATG TTrCATG C2’ endo TTrCATG C3’ endo

Figure 4: Oligonucleotide interaction surface differences between DNA (left) and DNA-rC
(center and right) simulations. Structures from the end of each simulation are shown. Each
protein atom is colored by its frequency of contact (<5 A distance) with the oligonucleotide, on a
color scale from blue (no contact) to white (60% contact) to red (100% contact). The
oligonucleotides are colored by RMSF, with black corresponding to 0 Angstroms and white to 5
Angstroms. The C3’ endo portion of the DNA-rC simulation shows a shift in position of the 0 and
-1 nucleotides of the substrate, but low RMSD after the shift. Structures are RMSD-aligned.

Apo A3Bctd simulations show closure of substrate binding cleft

Loops 1, 3, and 7 have been identified as being primarily responsible for substrate recognition,
and our data indicate that their interaction patterns are directly affected by the presence of the
oligonucleotide (Figure 5). Both the DNA-bound and DNA-rC-bound simulations show
significantly fewer loop-loop contacts compared to the apo A3Bctd simulations, commensurate
with their high number of loop-oligonucleotide interactions.

The apo simulations show extensive loop 1 - loop 3 interactions, specifically Arg212 and GIn213
to Asn240, Glu241, Ala242, and Lys243. These contacts are made less frequently in the
DNA-bound and DNA-rC-bound simulations. This is to be expected, as the substrate is bound
between loops 1 and 3. The almost complete loss of loop 1 - loop 3 contacts after the change to
the C3’ endo sugar pucker is due to the substrate adopting a series of non-specific contacts
between the +1, +2, and +3 nucleotides and loop 3, thereby preventing loop 3 residues from
contacting loop 1.

The apo simulations also show the most loop 1 - loop 7 contacts. This is to be expected, as the
substrate oligonucleotide passes directly between these loops. Arg311 in loop 7 makes contact
with most residues in the first half of loop 1, from Asn203 to Arg210. The apo simulation is the



only simulation in which Tyr313 contacts loop 1, primarily via Arg211, but also less frequently
through the flanking Arg210 and Arg212. Both the apo and rC C3’ endo simulations show
frequent contacts between Tyr315 on loop 7 and Leu209, Arg210, and Arg211 on loop 1.
Generally, the large number and frequency of contacts in the apo and rC C3’ endo snapshots
indicate a more closed binding site, again implying that the DNA-rC simulation may have
captured an intermediate-bound state of the complex.
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Figure 5: Frequency of loop-loop contacts in A3B simulations. White indicates infrequent
contacts, and black indicates contacts 50% of the time or more. Contacts are defined as a
closest heavy atom distance of < 4 Angstroms

Figure 6 shows an analysis of binding cleft volume of different A3B simulations. The simulation
in which DNA was removed shows a rapid closure of the cleft, leading to a protein conformation
incompatible with substrate binding. This trend was consistent in all three simulation replicates.



The DNA and DNA-rC simulations maintain an open binding cleft, except for the DNA-rC
replicate which experiences a change in sugar pucker and partial unbinding of the substrate.
Further, the apo simulation of A3B converges to a much lower pocket volume than was
observed in our prior work on A3A (average A3A apo volume shown in magenta).?® This
difference is largely due to A3A’s shorter loop 1, and the propensity of the A3A binding cleft to
remain open could explain its higher level of deaminase activity relative to A3B.
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Figure 6: Relative pocket volumes of APOBECS3B substrate binding cleft during MD simulations.
Each simulation was run in triplicate, with replicates shown as lighter and darker shades of the
same color. Average pocket volumes are shown as thick dotted lines. Average volume from the
same analysis performed on A3A apo simulation used in prior work shown in magenta.?

Conclusions

APOBEC enzymes are of high therapeutic interest, and efforts to use them as targeted
biochemical tools, for example as CRISPR/Cas9 fusions, will benefit from a thorough
understanding of A3 substrate recognition. Due to the highly dynamic nature of the A3Bctd
active site, it has not been possible to capture its native DNA interaction footprint via x-ray
crystallography. In this work, we generate a DNA-bound wild-type A3Bctd model from the recent
A3Bctd variant crystal structure in complex with DNA, and investigate the long-sought native
A3Bctd-DNA interactions and their dynamics using MD simulations. Our simulations offer insight
into the mechanisms of substrate recognition and binding. Further, they show significant
differences arising from the presence of a non-preferred oligonucleotide.
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The analysis of MD simulations show a set of dynamic hydrogen bonds important for substrate
recognition at the -1, 0, and +1 positions of the oligonucleotide. Many of these contacts agree
with previous experimental findings, while several others provide novel routes for further
experiments. The interactions of the substrate-recognition loops with each other are also
monitored. The loop-loop interactions of the apo protein provide insight into the thermodynamics
and kinetics of substrate binding, as many of these contacts must be broken to accommodate
an oligonucleotide.

The perturbation of the DNA substrate to a ribose sugar at only the target nucleotide caused
one simulation replicate to undergo a ring pucker change and explore a less tightly-bound
conformation of the oligonucleotide substrate. In this novel binding pose, the -1T H-bond with
Asp314 is replaced with one to Asp316, the shape of the catalytic pocket is widened, and the
target C is shifted away from the catalytic glutamate. This partially unbound pose ismay
represent a binding/dissociation intermediate and could be useful in discovering alternate
approaches to A3B inhibition.
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simulation snapshots.



Analysis of crystal structures to discover oligomerization interfaces of A3 domains

Previous work has shown that interaction between A3 domains is an important phenomenon.
Evidence for this interaction has been seen both in the activity differences of dual-domain
APOBECS3s when expressed as full-length versus as the catalytic domain alone, and in the
in-vitro oligomerization of wild type A3 domains which also frequently leads to activity
differences. While no full-length A3 crystal structures have yet been solved, the packing of
single-domain structures may offer hints to the basis of these observed oligomerizations. Figure
7 shows the frequently-observed crystal packing arrangements of A3 domains, which gives rise
to two clusters of interfaces.

This work was performed using open-source PyMOL.% The structures considered in this
analysis were 5CQD?', 5CQK?', 5CQI*', 5CQH?!, 4XXO¥, 2M65%, 3VM8®, 3VOW®, 3WUS*,
4J4J%, 410U%¢, 5HX4%7, 5HX5%, 2MZZ%8, 5K813¢, 5K82%, 5K83%, 2JYW™®, 3E1U?°, 2KBO®,
2KEM?', 31QS?®, 3IR2°", 3V4K3, 3V4J3, 4ROV*, and 4ROW.* Interface surface area was
calculated using the EPPIC webserver.*® Interfaces were filtered to only show those with more
than 500 A*2 of surface area.* Structures which have a greater number of monomers in their
asymmetric unit can show the same interface multiple times, and this is counteracted by only

labeling each interface once.
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A3Fctd \

A3Getd
AGntd )
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Figure S3: Analysis of crystal structures to discover A3 domain oligomerization interface. A3
crystal structures were analyzed to find crystal interfaces with at least 500 A? surface area. Each
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interface is shown according to the position of the other domain as a cylinder, with the yellow
end at the center of mass of the domain and the blue end indicating the position of the catalytic
Zn. The analysis shows clusters of interfaces at the N and C terminals of the reference domain
(shown as blue and red cartoon/highlighting, respectively).



Comparative structural biology of APOBEC enzymes

Python package available at https://qgithub.com/j-wags/DepictStructBioinf

Due to the high degree of homology between APOBEC3 enzymes, we expect that structural and
functional insights from one family member may have implications for others. To this end, we
have developed a Python package to explore structural and biochemical data within the
APOBECS family. This package contains all APOBEC3 domains, pre-aligned to each other. It
also enables annotation of structures, which can be visualized in Pymol as an overlay on crystal
structures or homology models. This package not only shows annotations on the structure that
they belong to, but can also identify the homologous residues that the annotations apply to on
other APOBEC3 domains Figure S4 shows an example of two such aligned APOBEC3 domains
and with an annotation of Asp314 in A3B and the homologous residue in A3G.

b
\" / t 'Homolegous to:' Asp3l4 in A3Bctd'

i

'l-ﬁmulnguus to:'.'Asp3ld in A3Bctd'

B

/ I
% A e
Figure S4: Structural and functional annotation of APOBEC3B (green) and APOBEC3G

(purple), with the important A3B substrate recognition residue Asp314 and its homologue in
A3G annotated.
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Figure S5: Distance between catalytic Glu255 and target cytosine. In the second rC simulation,
the target cytosine shifts away from GIlu255 in the binding pocket.
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$AMBERHOME /bin/pmemd.cuda -0 -i $DIR/minl.in -o $DIR/minl.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/a3b_xtal_dna_new_rC.crd -ref
$DIR/a3b_xtal dna_new rC.crd -r $DIR/minl.rst -x $DIR/minl.nc

$AMBERHOME /bin/pmemd.cuda -0 -i $DIR/min2.in -o $DIR/min2.out -p

$DIR/a3b_xtal_dna_new_rC.top -c $DIR/minl.rst -ref $DIR/minl.rst -r $DIR/min2.rst -x

$DIR/min2.nc

$AMBERHOME /bin/pmemd.cuda -0 -i $DIR/min3.in -o $DIR/min3.out -p

$DIR/a3b_xtal_dna_new_rC.top -c $DIR/min2.rst -ref $DIR/min2.rst -r $DIR/min3.rst -x

$DIR/min3.nc

$AMBERHOME /bin/pmemd.cuda -0 -i $DIR/min4.in -o $DIR/mind.out -p

$DIR/a3b_xtal_dna_new_rC.top -c $DIR/min3.rst -ref $DIR/min3.rst -r $DIR/mind.rst -x

$DIR/min4.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/mdl.in -o $DIR/mdl.out -p

$DIR/a3b_xtal_dna_new_rC.top -c $DIR/min4.rst -ref $DIR/min4.rst -r $DIR/mdl.rst -x

$DIR/md1.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md2.in -o $DIR/md2.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/mdl.rst -ref $DIR/mdl.rst -r $DIR/md2.rst -x
$DIR/md2.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md3.in -o $DIR/md3.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/md2.rst -ref $DIR/md2.rst -r $DIR/md3.rst -x
$DIR/md3.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md4.in -o $DIR/md4.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/md3.rst -ref $DIR/md3.rst -r $DIR/md4.rst -x
$DIR/md4.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md5.in -o $DIR/md5.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/md4.rst -ref $DIR/md4.rst -r $DIR/md5.rst -x
$DIR/md5.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md6.in -o $DIR/md6.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/md5.rst -ref $DIR/md5.rst -r $DIR/md6.rst -x
$DIR/md6.nc

mpirun -np 4 $AMBERHOME/bin/pmemd.cuda.MPI -0 -i $DIR/md7.in -o $DIR/md7.out -p
$DIR/a3b_xtal_dna_new_rC.top -c $DIR/md6.rst -ref $DIR/md6.rst -r $DIR/md7.rst -x
$DIR/md7.nc



minl.in
Minimization run
cat <mdin
minimize structure
&cntrl
imin=1,maxcyc=500,
ncyc=500,ntb=1,cut=10,
ntr=1, restraintmask="!@H=",restraint_wt=100.0

END

Minimization run
cat <mdin
minimize structure
&cntrl
imin=1,maxcyc=500,
ncyc=500,ntb=1,cut=10,
ntr=1, restraintmask=":1-200 & !@H=",restraint_wt=50.0

END

min3.in
Minimization run
cat <mdin
minimize structure
&cntrl
imin=1,maxcyc=500,
ncyc=500,ntb=1,cut=10,
ntr=1, restraintmask=":1-192@CA,N,C,0",restraint_wt=10.0

END

min4d.in



Minimization run
cat <mdin
minimize structure
&cntrl
imin=1,maxcyc=40000,
ncyc=40000,ntb=1, cut=10,

END

250 ps MD with res on protein
&cntrl

imin =0

irest = 0,

1

1

ntx =1,

ntb =1,

cut = 10,

ntr = 1, restraintmask=":1-63,65-94,96-99,101-192 & !@H=", restraint_wt=2.0,
ntc = 2,

ntf =2,

tempi = 0.0,

tempo = 310.0,

ntt = 3,

gamma_ln = 5.0,

nstlim = 125000, dt = 0.002,

ntpr = 5000, ntwx = 5000, ntwr = 5000,
iwrap=1,

250 ps MD
&cntrl
imin=0, irest=1,ntx=7,
ntb=2, pres0=1.0, ntp=1,
taup=2.09,
cut=10, ntr=0,
ntc=2, ntf=2,
tempi = 310.0, tempo = 310.0,
ntt = 3, gamma_ln = 5.0,
ntr =1, restraintmask=":1-192 & !:97,102,66 & !@H=", restraint_wt=3.0
nstlim = 125000, dt = 0.002,
ntpr = 5000, ntwx = 5000, ntwr = 5000,
iwrap=1



250 ps MD
&cntrl
imin=0, irest=1,ntx=7,
ntb=2, prese0=1.0, ntp=1,
taup=2.0,
cut=10, ntr=0,
ntc=2, ntf=2,
tempi = 310.0, tempo = 310.0,
ntt = 3, gamma_ln = 5.0,
ntr = 1, restraintmask=":1-192 & !:97,102,66 & !@H=", restraint_wt=2.0
nstlim = 125000, dt = 0.002,
ntpr = 5000, ntwx = 5000, ntwr = 5000,
iwrap=1

250 ps MD
&cntrl
imin=0, irest=1,ntx=7,
ntb=2, pres0=1.0, ntp=1,
taup=2.9,
cut=10, ntr=0,
ntc=2, ntf=2,
tempi = 310.0, tempo = 310.0,
ntt = 3, gamma_ln = 5.0,
ntr = 1, restraintmask=":1-192 & !:97,102,66 & !@H=", restraint_wt=1.0
nstlim = 125000, dt = 0.002,
ntpr = 5000, ntwx = 5000, ntwr = 5000,
iwrap=1

1 us MD

&cntrl
imin=0, irest=0,ntx=1,
ntb=2, pres0=1.0, ntp=1,
taup=2.9,
cut=9, ntr=0,
ntc=2, ntf=2,
tempi = 310.0, tempo = 310.0,
ntt = 3, gamma_ln = 5.0,
nstlim = 500000000, dt = 0.002,
ntpr = 25000, ntwx = 25000, ntwr = 25000,
iwrap=1,ioutfm=1



Scheme S1: Example commands and AMBER input files for MD simulation
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