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Abstract

In recent years, the cheminformatics community has seen an increased success with

machine learning-based scoring functions for estimating binding affinities and pose pre-

dictions. The prediction of protein-ligand binding affinities is crucial for drug discovery

research. Many physics-based scoring functions have been developed over the years.

Lately, machine learning approaches are proven to boost the performance of tradi-

tional scoring functions. In this study, a novel deep learning based scoring function

(DLSCORE) was developed and trained on the refined PDBBind v.2016 dataset using

348 BINding ANAlyzer (BINANA) descriptors. The neural networks of the DLSCORE

model have different number of fully connected hidden layers. Our model, an ensemble

of 10 networks, yielded a Pearson R2 of 0.82, a Spearman Rho R2 of 0.90, Kendall Tau

R2 of 0.74, an RMSE of 1.15 kcal/mol, and an MAE of 0.86 kcal/mol for our test set.

This software is available on Github at https://github.com/sirimullalab/dlscore.
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Introduction

The use of information technology along with artificial intelligence in the drug discovery field

has become critical over the past years. The use of biochemical high-throughput protein-

ligand assays has the advantage of providing accurate results, however, they are usually

expensive and are time- consuming. This is where chemoinformatics has an important role

in drug discovery. One scope of chemoinformatics focuses on ligand identification and dis-

covery of potential compound candidates that could help to prevent, cure, or even eradicate

certain diseases. Furthermore, virtual screening and an appropriate molecular docking sys-

tem of potential protein-ligand candidates helps by not only saving valuable time, but also

reducing the cost of the research as well. Some popular docking scoring functions include

AutoDock Vina1 , GOLD2 , SurFlex Dock3 and Glide4 among others. In our recent work we

incorporated halogen bonding and chalcogen bonding interactions in to vina scoring func-

tion5 6 . In this paper, we present a novel deep learning based scoring function to predict

binding affinities in a protein-ligand complex: DLSCORE.

Nowadays, many researchers in both cheminformatics, bioinformatics and computer sci-

ence, are using different approaches of AI to mimic the experimental biochemical high-

throughput results of a protein-ligand interaction, aiming to evaluate the binding geometries

of a putative ligand with a known protein target. One of the most recurrent approaches for

accurate and fast molecular docking prediction is employing machine learning techniques for

docking.

Machine learning (ML) is the scientific branch of artificial intelligence that focuses on

how computational algorithms learn from empirical data7 . There are different machine

learning methods that are used for predicting protein-ligand affinities, for instance, Durrant

et al.8 (NNScore 2.0) used a neural-network scoring function, Ballester et al.9 created a

random forest scoring function for the same purpose, while other authors such as Kinnings

et al. employ support vector machines (SVMs) to improve docking scoring functions for drug

repurposing10 , or Gomes et al. using atomic convolutional networks for predicting protein-
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ligand binding affinity11 . In here, we used a deep learning approach to accurately predict

the binding affinities by using an ensemble of fully connected dense neural networks. Deep

learning (DL) has shown great success in multiple fields, such as computer vision, speech

and image recognition, natural language processing, and now in the development of potential

ligands for novel drug discovery12 13 . The salient feature of DL is, with the large numbers of

hidden layers (with a bigger number of nodes) used, building higher-level representations of

the data progressively and reducing the need for carefully hand-crafted features in contrast

with conventional neural networks.
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Figure 1: The basic representation of a fully connected dense neural network architecture.
The nodes in red represent the input layer, the nodes in green represent the hidden layers,
and the blue node represents the output layer. In DLSCORE, the input layer represents
different molecular descriptors, while the output layer (one single node) is the pKd binding
affinity predicted value.

In recent years, the scientific community has witnessed a colossal increase in biological

data, including protein structures, genomic sequences, genes, SNP’s, and active ligands for

specific proteins. Thanks to this data growth, deep learning has become an attractive tool

to be applied in industry and research14 , including molecular docking and virtual screening.

When it comes to molecular docking and compound activity prediction, DL methods can

be adopted due to its capability of using a large number of nodes in the hidden layers, as

well as the high number of molecular descriptors to build those models12 . Recently, Ragoza
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et al.15 employed a protein-ligand scoring function by using convolutional neural networks.

Jimenéz et al.16 used convolutional neural networks (CNN) in the development ofKDEEP and

obtained a Pearson correlation coefficient of 0.82, with a root mean square error (RMSE)

of 1.27 in pK units between the predicted affinity and the experimental values16 . Gomes

et al.11 developed an algorithm for learning atomic-level chemical interactions using spatial

convolutional neural networks directly from atomic coordinates.

Materials and Methods

Workflow

The following automated workflow (Fig. 2) was used in order to test the results from

DLSCORE against the predicted values from other scoring functions.

Loading and
preparing proteins-

ligands

Running scoring
functions

Creating a single CSV
file with the results

Data validation and
graph display

Addition of experimental
data to the CSV file

Independent data
testing

Figure 2: DLSCORE development workflow

Data Collection

PDBbind17 dataset was used to train, test, and validate the model. The PDBbind database

is a comprehensive collection of experimentally measured binding affinity data for biomolec-

ular complexes deposited in the PDB data bank17 . Here, we used the PDBbind (v.2016)

refined set (n = 4154)18 and their corresponding experimentally determined binding affini-

ties obtained from PDBbind database17 in terms of the equilibrium dissociation constant

(Kd). The PDBbind (v.2016) refined set was used due to its high-quality data obtained

after applying different filters regarding its binding features and resolution18 19 . A total

of 3191 crystallized complexes were utilized from the refined set to train and validate our

DLSCORE model, while 300 were used for testing.
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Protein-Ligand Preparation

The protein-ligand complexes were downloaded from PDBbind dataset and then transformed

from .pdb to a .pdbqt format, which contains additional parameters, such as partial charges,

and atom types. This conversion was necessary in order to obtain the BINding ANA-

lyzer (BINANA) features20 that were used to train DLSCORE. Two different python codes,

"prepare_receptor4.py" and "prepare_ligand4.py" from MGLTools21 were used for the

conversion of protein and ligand files respectively.

Intermolecular Features (descriptors)

We used the BINANA algorithm20 implemented in NNScore 2.08 in order to characterize

the binding of ligand-receptor complexes and used these descriptors for the input layer in

our DLSCORE model. BINANA identifies ligand and protein atoms within a distance of

2.5 Å - 4.0 Å between them, as well as electrostatic interactions, binding pocket flexibility,

hydrogen bonds, salt bridges, rotatable bonds, π interactions, among others20 . A total of

348 features were considered for each protein-ligand complex.

DLSCORE Model Architecture

In this study, we employed fully-connected neural networks (FCNN). The networks in the

model consist of multiple hidden layers with a different number of neurons. Each hidden

layer has a weight matrix (W ) with a dimension ruled by the input size and the number of

neurons in that layer. Since we are dealing with a regression problem, the size of the output

layer is 1. Each protein-ligand complex is represented by a feature vector (f = f1, f2, f3...fn)

of size 348. The input layer takes the feature vector, performs a matrix multiplication with

the weight matrix (W1) and then it propagates the information after applying a non-linear

activation function (Rectified Linear Unit (ReLU)22 in our case) to it. The next hidden layer

takes these values and performs the same operation before propagating these values to the
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next layer. It is worth to mention that, the probability of each of the neurons information

to be propagated depends on the dropout probability23 . Here, the dropout probability was

20% for the input layer and 50% for the hidden layers. The network architecture can be

expressed mathematically as follows:

h1 = ReLU(x×W1 + b1)

h2 = ReLU(h1 ×W2 + b2)

h3 = ReLU(h2 ×W3 + b3)

. . .

. . .

hn = ReLU(hn−1 ×Wn + bn)

(1)

Where h1...hn are the hidden layers, x is the input, W1...Wn are the weights and b1...bn are

the biases for each of the corresponding hidden layers.

In designing DLSCORE architecture, we divided the entire method into two parts:

First, we tried to find the number of fully connected hidden layers and the number of

neurons in each of the layers that perform best. We chose the number of neurons in the

hidden layers to be a subset of {128, 256, 512, 768, 1024, 2048}. By taking all possible

combination and permutation, we came up with 55,986 different neural networks.

Second, we trained the networks with the following parameters:

Table 1: Training parameters

Optimization Adam
Learning rate 0.001
Loss function Mean Squared Error
Activation function ReLU22

Dropout rate 20% (input layer), 50% (hidden layers)

We did not rely on a single best network, instead, we took an ensemble of multiple

better performing networks. Since each network may capture different features, they might
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be performing better for some but not for every system. So, to have consistent results,

it is better to use the predictions from multiple networks and take the ensemble average.

Therefore, after training the networks, we sorted them based on their performances on the

validation set (see Results and Discussions ) and put the best performing networks in the

ensemble.

Evaluation metrics

The networks were evaluated using statistical metrics, including, standard deviation, mean

square error (MSE), mean absolute error (MAE), RMSE, Pearson, Spearman rho and Kendall

Tau correlation coefficients.The mathematical models for MAE and RMSE are given below:

MAE =
1

n

n∑
j=1

|yj − ŷj|

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2
(2)

Where yj and ŷj represent the experimental and the predicted binding affinity, respectively.

The MAE measures the average magnitude of the errors in their binding affinity predictions,

while the RMSE measures the ability of DLSCORE to properly identify a small prediction

range of the predicted vs the experimental values. We used a 1 - 2 kcal/mol confidence limits

to test the scoring functions overall performance..

Results and Discussions

Initially, we trained DLSCORE with a total of 3,191 protein-ligand complexes using molec-

ular BINANA descriptors20 . During the training, we performed a 10-fold cross-validation

in order to obtain unbiased results.

We chose the best 100 networks based on the performance (Pearson R2) on the validation
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set while training. The second step was to adjust the other hyperparameters like dropout

rate, learning rate, L1 − L2 regularization, etc. However, we did not see any noticeable

difference in the overall performance of these 100 networks while tuning the hyper-parameters

mentioned. Therefore, we kept the initial configuration of these networks.

Since getting a prediction from an ensemble of 100 networks is time consuming, we

analyzed different size of ensembles so that we can come up with a smaller ensemble that gives

us the optimum performance. We looked at the comparative statistics (Pearson, Spearman

Kendall, RMSE, and MAE) for different size of ensembles (Fig. 3) and noticed that

the optimal performance (highest correlation coefficients and lowest RMSE and MAE)

is achieved with the top 10 networks. Moreover, choosing this subset of networks over a

hundred gives us a 10x speedup of the program. The performance of the top 15 networks

was looked at more deeply, and the results are available in the supplementary information

(SI Fig. ??). Based on the Pearson correlation coefficient, we chose the default number of

networks for our model to be 10. An extra feature where the user is allowed to choose the

number of networks has been added to DLSCORE.

When executing DLSCORE, NNScore 2.0, and Vina using the test set from the PDBbind

v.2016 refined set , we obtained results where our deep learning scoring function outperformed

NNScore 2.0 and Vina (Table 2, Fig. 4).

Table 2: Main statistics of binding affinity predictions of DLSCORE, NNScore 2.0 and Vina
after testing it with 300 refined protein-ligand complexes.

Statistical value DLSCORE NNScore 2.0 Vina
N (sample size) 300 300 300
RMSE (kcal/mol) 1.15 2.78 3.17
MAE (kcal/mol) 0.86 2.03 2.50
Max possible correlation 0.98 0.98 0.98
Pearson R2 0.82 0.21 0.15
Spearman rho 0.90 0.47 0.39
Kendall tau 0.74 0.33 0.27

When compared the three scoring functions (DLSCORE, NNScore 2.0, and Vina) with

8



0 20 40 60 80 100
0.65

0.70

0.75

0.80

0.85

0.90

Co
rre
la
tio
n 
co
ef
fic
ie
nt
 R
2

Spearman Pearson Kendall

0 20 40 60 80 100
0.5

1.0

1.5

2.0

Er
ro
r m
et
ric
s (
kc
al
/m
ol
)

RMSE MAE

Number of networks

Figure 3: Plots displaying the statistical values of DLSCORE as a function of the number
of networks. The first plot (above) shows the correlation coefficient values of Spearman,
Pearson, and Kendall. The second plot (below) shows the RMSE and MAE values in
terms of kcal/mol

PDBbind v.2016 refined data, DLSCORE had the optimal performance, getting the clos-

est values to the experimental data (Fig. 5a) in terms of ∆G values. Vina obtained 88

protein-ligand complexes (29.33% of the total data) with a difference less than 1 kcal/mol

of the experimental values, 52 data points (17.33%) within 1-2 kcal/mol boundaries, and

160 (53.34%) were greater than 2 kcal/mol. NNScore 2.0 got 114 values (38%) less than 1

kcal/mol, 71 (23.67%) between 1-2 kcal/mol and 115 (38.33%) were higher than 2 kcal/mol.

On the other hand, DLSCORE outperformed the other scoring functions, where 203 data

points (67.67% of the total data) were less than 1 kcal/mol away from the experimental

values, 71 (23.67%) were within 1-2 kcal/mol, and the 26 (8.66%) remaining were found

outside the 2 kcal/mol boundaries. Moreover, DLSCORE appears to have less variability,

but a bigger number of outliers (Fig 5b), while NNScore 2.0 shows a greater standard devi-

ation, but fewer outliers. Likewise, Vina displays slightly similar variability with NNScore
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(b) NNScore 2.0
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Figure 4: Graphs showing the predicted values within 1 kcal/mol (dotted line) and 2
kcal/mol (solid line) range. Green dots represent a predicted score less than 1 kcal/mol away
from the experimental value. Yellow dots represent a predicted score between 1 kcal/mol
and 2 kcal/mol of the experimental value. Red dots represent a predicted score greater than
2 kcal/mol away from the experimental value.
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2.0, but fewer outliers. Both NNScore 2.0 and Vina have a max value of approximately 10.17

kcal/mol and 10.36 kcal/mol (respectively) between the predicted and experimental values,

while DLSCORE has a max value of 4.43 kcal/mol.
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Figure 5: Graphs showing the absolute difference between the predicted and the experimental
values in terms of ∆G (kcal/mol) given three scoring functions (DLSCORE, NNScore 2.0
and Vina). Figure 5a displays the density plot behavior. Figure 5b shows the skewness,
variabiblity and normality in a side by side boxplot representation.

Conclusion

Deep learning has been shown to be a useful approach of machine learning when it comes

to protein-ligand binding affinity predictions. DL can take advantage of larger data sets in

improving accuracy. Here, DLSCORE has proven to be a suitable DL machine learning algo-

rithm for the accurate prediction of binding affinities of crystalized structures, outperforming

NNScore 2.0 and Autodock Vina, yielding the best RMSE, MAE, and R2 correlation coef-

ficients, as well as other statistical values. Furthermore DLSCORE has proven to show more

consistency in its results, as it has less variability, and a less max. value when in its absolute

difference between the predicted affinity and the experimental data.
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Implementation and Accessibility

We used Keras and Tensorflow to create and train all the neural networks. A system with

28 core (14 per socket) Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz processor, 128 GB

of RAM and 8 GeForce GTX 1080Ti GPUs was used for training. The code is available

for the public via GitHub at https://github.com/sirimullalab/DLSCORE. The work-

flow is available at https://github.com/sirimullalab/CADD-Workflows/blob/master/

scoring_function_workflow.ipynb in the form of a JuptyterLab Notebook.
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