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Abstract
Using single precision floating point representation reduces the size of data and compu-

tation time by a factor of two relative to double precision conventionally used in electronic
structure programs. For large-scale calculations, such as those encountered in many-body
theories, reduced memory footprint alleviates memory and input/output bottlenecks. Re-
duced size of data can lead to additional gains due to improved parallel performance on
CPUs and various accelerators. However, using single precision can potentially reduce the
accuracy of computed observables. Here we report an implementation of coupled-cluster
and equation-of-motion coupled-cluster methods with single and double excitations in
single precision. We consider both standard implementation and one using Cholesky de-
composition or resolution-of-the-identity of electron-repulsion integrals. Numerical tests
illustrate that when single precision is used in correlated calculations, the loss of accu-
racy is insignificant and pure single-precision implementation can be used for computing
energies, analytic gradients, excited states, and molecular properties. In addition to pure
single-precision calculations, our implementation allows one to follow a single-precision
calculation by clean-up iterations, fully recovering double-precision results while retaining
significant savings.

1 Introduction

Quantum chemistry is one of the most demanding fields in terms of computational resources.
Standard formulations of many-body theories result in large amount of data (wave-function
parameters) and in steep computational scaling. For example, storage and floating point oper-
ations requirements of the coupled-cluster method with single and double substitutions (CCSD)
scale as N4 and N6 with the system size, respectively.1 This steep scaling limits the applicabil-
ity of these highly reliable methods. Large memory footprint, inherent to correlated theories,
also creates a hurdle for efficient parallelization and utilization of accelerators (such as graphic
processing units, GPUs). In this paper, we present a production-level implementation of CCSD
and EOM-CCSD (equation-of-motion CCSD) methods2–8 and investigate the impact of using
reduced precision on computational efficiency and the accuracy of the results.

The standard of accuracy for quantum chemical calculations of thermochemical and chemi-
cal kinetics data is 1 kcal/mol (which is equal 4.2 kJ/mol or 1.593·10−3 hartree).9,10 A typical
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desired accuracy for excitation or ionization energies is 0.01-0.1 eV. The errors in the calcula-
tions arise due to the intrinsic errors of the methods due to approximations in many-electron
and one-electron bases1 as well as due to the finite convergence thresholds for the iterative
algorithms. Typically, convergence thresholds are much tighter than the methods’ error bars.

The IEEE 754 standard11,12 defines single and double precision floating-point arithmetic in
computers. The numbers in this format are represented in the scientific notation

(−1)sb0.b1b2b3 . . . bp−12
E, (1)

where s is the sign bit, p is the precision of significand, E is the exponent, and bits bi can take
values 0 or 1. Although the second revision of the standard12 generalizes base, or radix, here we
consider only binary formats. The number is called normal if b0 is 1 and subnormal otherwise.
Subnormal numbers fill the gap between the smallest positive normal number and zero. The
attributes of single- and double-precision floating-point numbers are summarized in Table 1.

Table 1: Summary of single and double floating-point IEEE 754 standard.
Single Double

Total size, bits 32 64
Exponent size, bits 8 11
Exponent bias 127 1023
Sign, bits 1 1
Significant (explicit), bits 23 52
Decimal precision log10(2

24) ≈ 7 log10(2
53) ≈ 16

Smallest normal number 2−126 2−1022

Typical implementations of most ab initio methods use double precision arithmetic. The
single precision format uses half the number of bits of double precision, thereby allowing to
store twice as many values. Another benefit is proportionally faster memory access and disk
input/output (in terms of the number of elements per second). This is important in practice
because memory speed improves at a slower rate than CPUs. Furthermore, CPU caches can
accommodate twice as many floating point numbers potentially leading to less frequent cache
misses. In terms of computational time, single precision gives a twofold speedup on CPUs for
most modern architectures and the gains on GPUs can be much larger. Thus, single-precision
implementation of quantum-chemistry methods can extend the scope of systems amenable to
these treatments, decrease time-to-solution, and reduce energy footprint. Using too much en-
ergy and power per calculation is recognized as one of the biggest challenges in high performance
computing and using reduced precision or even entirely different representation of real numbers
have been advocated.13

Although double precision is de facto a standard in quantum chemistry and other sci-
entific calculations, many algorithms can be re-designed to work in mixed precision, as was
recently done in such diverse areas as lattice quantum chromodynamics,14 molecular dynam-
ics,15 and general linear algebra algorithms with iterative refinements.16 In quantum chemistry
mixed-precision algorithms have been explored in the context of integral calculations17,18 within
Hartree-Fock (HF) and density functional theory (DFT).19–22 The main conclusion from these
studies was that pure single precision is not sufficient for integral and HF/DFT calculations
and one should only deploy it in a mixed-precision fashion, i.e., such that some operations are
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performed in single precision and some — in double precision. The utility of single precision has
not yet been thoroughly investigated in post-HF calculations. Previous studies23–25 focused on
non-iterative methods, such as MP2 and triples correction for CCSD. Single-precision MP2 was
tested within resolution-of-the-identity (RI)23 and Cholesky decomposition (CD)24 schemes.
These studies have shown that commonly used RI bases and CD thresholds (10−2–10−3) yield
much larger errors in total energies than errors due to using single-precision arithmetics. Nu-
merical analysis of the (T) correction for CCSD25 has shown that this calculation is stable with
respect to numerical noise, justifying single-precision implementation. Despite these encourag-
ing findings, the extent of applicability of single precision in many-body theories is not fully
understood. There are several open questions:

1. Does numerical error accumulate in iterative procedures such as those used to solve CCSD
and EOM equations?

2. What is the impact of using single precision on molecular properties and excited states?

3. Can one reliably compute analytic nuclear gradients and optimize structures within pure
single precision?

As a standard practice in quantum chemistry, typical numerical convergence thresholds
are tight enough to not affect the resulting accuracy. For example, Q-Chem’s default CCSD
convergence criteria are 10−6 hartree for energies and 10−4 for amplitudes;26 Molpro uses 10−6

hartree for energies and 10−5 for amplitudes.27 Some packages use a single threshold, for
example, GAMESS uses 10−7 for amplitudes28 and ORCA uses 10−5–10−6 hartree for energies.
Thus, it appears that 7 decimal digits is sufficient for correlation energy (we note that 10−7

hartree is three orders of magnitude tighter that chemical accuracy).
In this paper, we describe a general implementation of CC/EOM-CC methods that allows

users to perform calculations in either single or double precision. We implemented both the
standard variant and one using Cholesky decomposition (CD) or resolution-of-the-identity (RI)
of electron-repulsion integrals. In addition, our implementation allows one to follow up a single-
precision calculation with a clean-up step in which the full double-precision accuracy can be
recovered. The code is based on the libtensor29 and libxm30 libraries for many-body electronic
structure calculations. The production-level code is implemented in the Q-Chem electronic
structure package.31,32

2 Algorithms and implementation details

Libtensor29 was developed to provide a high-level interface for tensor operations and to de-
liver efficient performance. The library has been used to implement a large number of CC,2–4

EOM-CC,6–8,33 and ADC (algebraic diagrammatic construction)34 methods for calculating en-
ergies, properties, and nuclear gradients in Q-Chem. Libtensor supports tensor symmetries,
block-sparcity, several contraction algorithms, different BLAS implementations, and several
computational backends.30,35 We extended the libtensor library to incorporate single-precision
operations by generalizing all tensor operations for the general element type. Fig. 1 gives an
example of the code. The code is available in the original repository on github. The numeri-
cal tests presented in this paper were performed with a developer version of Q-Chem and the
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template<size_t N, typename T>

class bto_copy :

public additive_gen_bto<N, typename bto_traits<T>::bti_traits>,

public noncopyable {

// ....

// Declaration of the templated class

}

template<size_t N>

using btod_copy = bto_copy<N, double>;

Figure 1: Example of the change in the interface. In this code a block-tensor operation over
double type (“btod”) is generalized to a block-tensor operation over the template type.

modified libtensor, compiled by the GCC-6.4.0 compiler with the ’-O3’ optimization flag and
linked to the Intel MKL library (2017.0 version).

Fig. 2 shows an overview of the CCSD and EOM-CCSD workflows. In our implementation,
we compute all integrals and solve SCF equations in double precision; the integral transfor-
mation step is also performed in double precision. We then convert the tensors (integrals)
to single precision and perform all tensor operations (contractions, additions, etc.) in the
CCSD/EOM-CCSD calculations using single precision. In the RI/CD variants, we also employ
the single precision algorithm at the CCSD step. Once the CCSD equations converge in sin-
gle precision, the procedure can switch to double precision to perform clean-up iterations to
recover the double-precision result. We follow the same strategy for Λ-amplitudes. We also
implemented single-precision calculations of various density matrices needed for property and
nuclear gradient calculations.

The EOM workflow entails solving the CCSD equations and evaluating the similarity-
transformed Hamiltonian (H̄) intermediates followed by the computation of EOM energies
and amplitudes by iterative diagonalization of the similarity-transformed Hamiltonian using
the Davidson algorithm. We extended the routines36 that compute the intermediates and σ-
vectors (products of the similarity-transformed Hamiltonian acting on EOM trial states) for
EOM-IP/EA/SF/EE-CCSD to support calculations in single precision.

It is expected that using single precision provides a speedup factor of two on CPUs (not
taking into account additional speedup due to reduced IO). If the single-precision calculation
is followed up by clean-up steps to recover double-precision accuracy, the theoretical estimate
for the overall speedup is estimated as:

Theor. speedup =
Ndp

0.5 ·Nsp +Ncleanup

, (2)

where Ndp and Nsp are the number of iterations in double and single precisions, Ncleanup is the
number of cleanup iterations in double precision.

4



HF, integral calculations and trans-

formations in double precision

Conversion of integrals and Fock matrix to single precision

CCSD in single precision

Conversion of amplitudes (and optionally in-

tegrals and Fock matrix) to double precision

CCSD in double precision

Target: canonical CCSD in double precision

CCSD in single or double precision

If not done before, convert integrals

and amplitudes to single precision

Intermediates in single precision

EOM in single precision

Target: EOM in single precision

Figure 2: Left: Implemented CCSD algorithm. Cleanup step in double precision is optional.
Right: EOM algorithm.

Table 2: Convergence thresholds for CCSD calculations. Convergence for Λ equations is the
same as for the T amplitudes.
System E, sp, hartree T , sp E, dp, hartree T , dp
Water clusters 10−5 10−3 10−6 10−4

Uracil 10−6 10−4 10−6 10−4

ATT 10−6 10−4 10−6 10−4

G2 set, pure sp or dp 10−6 10−4 10−6 10−4

G2 set, sp with cleanup 10−5 10−3 10−6 10−4

G2 set, sp with energy in dp 10−5 10−3 — —
C6H5N 10−6 10−4 10−6 10−4

benzene 10−10 10−9 10−7 10−5

3 Computational details

Benchmark calculations were performed on 4x8 Intel Xeon E5-4640 using 4 threads. The
benchmark set consists of diverse types of electronic structure, including water clusters of
increasing size, the uracil molecule, a nucleobase trimer (ATT, adenine-thymine-thymine), an
aromatic diradical (C6H5N), the benzene molecule, and the G2 set37 containing 148 molecules.
We tested basis sets of the double-, triple-, and quadruple-zeta quality, with and without diffuse
functions. All Cartesian geometries are given in Supplementary Information (SI).

Convergence thresholds for CCSD equations are summarized in Table 2. Since single pre-
cision provides ∼7 decimal digits of precision, the tightest threshold of convergence for energy
in single precision is 10−7 hartree (assuming correlation energies of 1 hartree). By numeri-
cal experimentation we found that single precision iterations converge smoothly with energy
threshold of 10−5–10−6 hartree; therefore, we used this threshold for the single precision part of
the calculation in most cases. In the double-precision calculations, we used default convergence
except for the benzene benchmark. In properties calculations, we used the same convergence
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criteria for T and Λ amplitudes. Unrelaxed one-particle density matrices used in dipole moment
calculations were computed in double and single precision from respective double and single
precision intermediates and amplitudes. In all EOM calculations a 10−5 convergence threshold
for EOM amplitudes38 was used in the Davidson procedure. For geometry optimization and
finite-difference frequency analysis, much tighter convergence criteria were used: 10−10 for en-
ergies, 10−9 for T and Λ amplitudes for double precision; 10−7 for energies, 10−5 for T and Λ
amplitudes for single precision. The criteria of convergence in geometry optimization were the
same for the double and single precision calculations: 2 ·10−5 a.u. for the maximum component
of the gradient 5 · 10−5 a.u. for the maximum atomic displacement, and 1 · 10−7 a.u. for energy.

4 Results and discussion

4.1 Accuracy of ground-state energies and properties

We found that the CC amplitude convergence rate is not affected by using single precision and
that the number of CCSD iterations in calculations with single-precision CCSD followed by a
clean-up step is the same as in the reference double-precision calculations. A typical output of
single-precision calculation with the clean-up step is shown in SI (Fig. S1).

Table 3 shows the results for water clusters. Pure single precision calculations (without the
clean-up step) do not introduce significant numerical errors in total energies, i.e. the typical
difference between single and double precision energies is only several J/mol, which is three
orders of magnitude below chemical accuracy. Moreover, the double-precision numerical accu-
racy is fully recovered when the cleanup iteration is performed. The single-precision calculation
is twice as fast than the double-precision one. For the calculation with the clean-up step, the
speedup quickly approaches the theoretical maximum (about 1.5, for these parameters) with
the increasing number of water molecules (see Fig. 3). We observed similar performance and
accuracy for RI/CD-CCSD calculations of these clusters.
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Figure 3: Wall time speedup for SP scheme with cleanup for the CCSD/cc-pVDZ energy
calculations of water clusters. Frozen core is used. Theoretical estimate is given by Eq. (2).

To test whether numerical errors increase with system size, we compared single and double
precision CCSD for an adenine-thymine-thymine system (ATT) and found that the difference
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between single and double precision total energies is 15 J/mol (again, full double precision
accuracy can be recovered with a single clean-up step).

We investigated basis set effects on the error due to single precision by using uracil. Table 5
presents total energies and dipole moments. The results show that the errors in energies are
negligible and that the differences in dipole moments computed in single and double precision
are less than the number of digits printed in the output. Increasing the basis set from cc-pVDZ
to cc-pVTZ and aug-cc-pVTZ does not increase the errors.

To confirm that these observations hold for other systems, we compared the CCSD total
energies computed in single and double precision for the G2 set37 using the the 6-31G(d), cc-
pVDZ, cc-pVTZ, and cc-pVQZ basis sets. In addition, we compared single-precision results
with those obtained with a cleanup step and with a calculation in which energy is computed in
double precision using double-precision integrals and single-precision amplitudes. The results
are summarized in Table 6. As one can see, the MAD in single-precision calculations is less
than 4 J/mol. The MADs, STDs, and maximum errors in cc-pVQZ basis are only slightly
larger than in cc-pVDZ.

In order to meaningfully compare the differences between single and double precision, one
should keep in mind that in these calculations the energy threshold for CCSD convergence was
10−6 hartree ≈2.6 J/mol. Within this threshold, the error of the calculations with the cleanup
step is the same as in the single-precision calculation. Interestingly, calculation of double-
precision energies from single-precision amplitudes gives larger errors, which can be explained
by the convergence criteria used: the amplitudes are underoptimized in comparison with the
amplitudes, used for other calculations (shown in Table 2).

Table 3: CCSD/cc-pVDZ total energies of water clusters. Differences between single- and
double-precision energies are shown in the last column.
Cluster size Esp, a.u. Esp+dp, a.u. Edp, a.u. ∆dp,sp, J/mol
2 -152.48710832 -152.48710752 -152.48710767 1.7
3 -228.74911206 -228.74911017 -228.74911059 3.9
4 -305.00868540 -305.00868416 -305.00868472 1.8
5 -381.26858576 -381.26858599 -381.26858585 -0.2
6 -457.51949116 -457.51949130 -457.51949145 -0.8
7 -533.78980571 -533.78980623 -533.78980640 -1.8

Table 4: CD-CCSD/cc-pVDZ total energies of water clusters. Cholesky threshold of 10−3 was
used. Differences between single and double precision energies are shown in the last column.
Cluster size Esp, a.u. Esp+dp, a.u. Edp, a.u. ∆dp,sp, J/mol
2 -152.48713650 -152.48713571 -152.48713586 1.7
3 -228.74916915 -228.74916737 -228.74916779 3.6
4 -305.00875903 -305.00875662 -305.00875717 4.9
5 -381.26864546 -381.26864554 -381.26864540 0.2
6 -457.51960841 -457.51960843 -457.51960858 -0.4
7 -533.78994271 -533.78994226 -533.78994243 0.7
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Table 5: CCSD total energies and dipole moments of uracil in various basis sets.
Basis set Esp, a.u. Edp, a.u. ∆dp,sp, J/mol Dipole,

T,L,1DM
in sp

Dipole,
T,L,1DM
in dp

cc-pVDZ -413.72139806 -413.72139812 -0.2 1.550917 1.550917
cc-pVTZ -414.10170402 -414.10170403 0.0 1.643366 1.643366
aug-cc-pVTZ -414.13153216 -414.13153108 2.8 1.689405 1.689405

Table 6: Mean average deviation (MAD) and standard deviation (STD), J/mol, from reference
double-precision CCSD total energies for the G2 set.
Basis sp sp with dp energy sp with cleanup

MAD STD MAD STD MAD STD
6-31G(d) 0.12 0.2 3.7 6.6 1.5 1.4
cc-pVDZ 0.15 0.2 3.6 6.7 1.4 1.4
cc-pVTZ 0.3 0.5 3.4 5.3 1.5 1.4
cc-pVQZ 0.68 0.9 3.7 5.0 1.6 1.5

4.2 Accuracy of target-state energies in EOM-CCSD

To test the accuracy of single-precision calculations of excited states, we carried out EOM-
EE-CCSD calculations for uracil and EOM-SF-CCSD calculations for C6H5N. We considered a
range of different states: singlets and triplets, states with different symmetry (symmetric and
antisymmetric with respect to the symmetry plane), closed-shell and open-shell types, valence
and Rydberg states. In all cases, the difference between total energies computed in double and
single precision does not exceed 3 J/mol (3 · 10−5 eV), which is much smaller than the intrinsic
error bars of EOM-CCSD (0.1-0.3 eV). This result is comparable to the differences in the CCSD
total energies. The respective excitation energies are the same within at least 4 decimal figures.

4.3 Accuracy of gradient evaluation in single precision

To test how the precision affects the accuracy of the gradient calculation and the resulting
optimized structures, we optimized the benzene molecule at the CCSD/cc-pVDZ level of the-
ory using tight convergence criteria. In these calculations, density matrices were computed
in the respective precisions; orbital response was computed in double precision. Geometry
optimization was performed by gradient optimization (gradient was evaluated analytically).
Starting from the same initial geometry (MP2/cc-pVDZ optimized structure), both optimiza-
tions converged in 6 iterations (single precision run converged by gradient and displacement).
The resulting geometries are nearly identical, with mean absolute error (computed for only
non-zero Cartesian coordinates) of 1.9 · 10−9 Å.

4.4 Accuracy of finite-difference frequencies

To investigate whether finite-difference calculations of frequencies (using analytic gradients) can
be carried out in single precision, we computed the frequencies and normal modes for benzene
at the respective optimized geometries with the same convergence criteria as used for geometry
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Table 7: EOM-EE-CCSD total energies (in a.u.) of excited singlet and triplet states of uracil
in various basis sets. In each cell the first number is obtained from double-precision calculation
and the second number is obtained from single-precision EOM calculation. The third number
is the difference between double- and single-precision energies. CCSD equations were solved in
double precision in all cases.
Singlets
Basis set 1A′ 2A′ 1A′′ 2A′′

cc-pVDZ -413.50624322
-413.50624315
−7 · 10−8

-413.46584035
-413.46584026
−9 · 10−8

-413.52849406
-413.52849409
3 · 10−8

-413.47629005
-413.47628997
−8 · 10−8

cc-pVTZ -413.89150482
-413.89150498
1.6 · 10−7

-413.84840838
-413.84840792
−4.6 · 10−7

-413.90876266
-413.90876251
−1.5 · 10−7

-413.85792039
-413.85792058
1.9 · 10−7

aug-cc-
pVTZ

-413.92599740
-413.92599743
3 · 10−8

-413.88373275
-413.88373272
−3 · 10−8

-413.94000534
-413.94000543
9 · 10−8

-413.90496469
-413.90496414
−5.5 · 10−7

Triplets
Basis set 1A′ 2A′ 1A′′ 2A′′

cc-pVDZ -413.57714822
-413.57714817
−5 · 10−8

-413.51667861
-413.51667858
−3 · 10−8

-413.53936723
-413.53936718
−5 · 10−8

-413.48574474
-413.48574485
1.1 · 10−7

cc-pVTZ -413.95932894
-413.95932869
−2.5 · 10−7

-413.89779284
-413.89779281
−3 · 10−8

-413.91902233
-413.91902181
−5.2 · 10−7

-413.86657196
-413.86657206
1.0 · 10−7

aug-cc-
pVTZ

-413.99008713
-413.99008666
−4.7 · 10−7

-413.92935022
-413.92935024
2 · 10−8

-413.94969790
-413.94969820
3.0 · 10−7

-413.90754309
-413.90754252
−5.7 · 10−7

Table 8: EOM-SF-CCSD total energies (in a.u.) of several electronic states of C6H5N in
various basis sets. Symmetry labels refer to state symmetries. In each cell the first number is
from double-precision calculation, the second number is from single-precision EOM calculation,
and the third number is the difference between double- and single-precision energies. CCSD
equations were solved in double precision in all cases.
Basis set 1A2 2A2 1A1 2A1

cc-pVDZ -285.46570954
-285.46570956
2 · 10−8

-285.42658952
-285.42658954
2 · 10−8

-285.40655223
-285.40655224
1 · 10−8

-285.37250140
-285.37250139
−1 · 10−9

cc-pVTZ -285.79837285
-285.79837303
1.8 · 10−7

-285.76114321
-285.76114343
2.2 · 10−7

-285.74329035
-285.74328950
−8.5 · 10−7

-285.70728705
-285.70728629
−7.6 · 10−7

optimizations with the step size of 0.001 Å. The resulting frequencies are very different: real
and imaginary frequencies of ∼15000 cm−1 occur along with several imaginary frequencies.
Thus, not surprisingly, single precision is not sufficient for finite-difference calculations. How-
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ever, finite-difference calculations using single-precision calculation with the double-precision
cleanup step fully recovers double precision frequencies, while affording ∼ ×1.3 speedup of the
calculation.

5 Conclusion

In this contribution, we report single- and mixed-precision implementation of the CCSD and
EOM-CCSD energies, analytic gradients, and properties. Using single precision results in re-
duced memory footprint, considerable computation speed-up, and reduced energy-to-solution.
That is, single precision calculations use half the memory (or disk) space and produce a speedup
factor of 2 on CPUs. The main focus of this paper was on assessing the impact on accuracy
of the resulting energies and properties, in particular in iterative schemes. The results indicate
that the rate of error accumulation in single precision is sufficiently slow, and overall single pre-
cision introduces negligible errors for total energies, excitation energies, forces, and properties.
Moreover, single precision can be used in geometry optimizations with analytical gradients.

If tight convergence is desired (e.g. in finite-difference calculations), single precision can be
used to speedup iterations in the beginning, converging to the single-precision result first and
continuing in double precision. In most cases the total number of iterations is not affected and
the speedup is close to the theoretical estimate.
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