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Abstract

Molecular discovery seeks to generate chemical species tailored to very specific

needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced

Generative Adversarial Networks (ORGAN), capable of producing a distribution over

molecular space that matches with a certain set of desirable metrics. This methodology

combines two successful techniques from the machine learning community: a Generative

Adversarial Network (GAN), to create non-repetitive sensible molecular species, and

Reinforcement Learning (RL), to bias this generative distribution towards certain

attributes. We explore several applications, from optimization of random physicochemical

properties to candidates for drug discovery and organic photovoltaic material design.
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Introduction

In the past century, the impact that molecules such as penicillin, progestin or azidothymidine

have had in human society is only comparable to the monumental effort (in terms of either

time, money or luck) that their finding demanded. Even nowadays, a new material requires

an estimated time of 20 years before it is ready to be commercialized. This fact has inspired

molecular discovery, a scientific current that seeks to bypass the need of serendipity using a

plethora of techniques. For molecular discovery, we need to navigate chemical space, the set

of all possible compounds. Navigating such a space is hard, the space is incredibly large and

discrete, small changes in a molecule can change radically its properties [1]. This challenge

has prompted the emergence of large-scale joint projects, such as the Materials Genomic

Project in the United States, or the NOMAD laboratory in Europe.

Current strategies to explore and discover molecules lie with high-throughput virtual screen-

ing [2] or discrete local search methods such as genetic algorithms [3–5]. With high-throughput

screening, an enormous library of compounds is generated, and then successively filtered

using increasingly expensive computational techniques to determine if a given species has the

desired properties. This strategy has achieved many important triumphs in pharmaceutical

contexts [6, 7], design of organic photovoltaics [8, 9], OLEDs [10] and flow batteries [11, 12],

among many others. However, this approach has many drawbacks, mainly that its coverage

of molecular space is limited to the combinations of initial fragment libraries.

Materials discovery can be posed as an inverse-design problem, where a set of properties

is specified and then fit candidates are generated. Nowadays, feasibility of inverse design has

been accelerated partly due to new developments from the Artificial Intelligence community:

Generative Adversarial Networks [13, 14], text sequence generation models [15–18] and

Reinforcement Learning (RL) [19–21].

Their application onto chemical space has brought new ways to explore, represent and

calculate molecules. Recently Bombarelli et al. employed a variational autoencoder for

molecular generation[22] which allows to explore and optimize in a continuous latent space,
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while also being able to sample molecules from such space. Kadurin et al. reported an

adversarial autoencoder for drug design[23] and Gilmer et al. has demonstrated Message

Passing Neural Networks for fast, accurate prediction of properties [24].

In this work we present ORGANIC, an implementation of Objective-Reinforced Generative

Adversarial Networks for Inverse-design Chemistry based on the ORGAN algorithm [25]. As

we will show, this code1 is able to optimize a distribution over molecular space according to

certain desired properties.

Methods

Figure 1: Usage of ORGANIC illustrated. In the training procedure we show the three
fundamental components: a generator, a discriminator, and a reinforcement metric. Arrows
indicate the flow of inputs and outputs between networks.

In Figure 1, the general scheme of ORGANIC is illustrated. It is a chemistry-orientated

implementation of the Objective-Reinforced Generative Adversarial Networks paradigm which

combines a Generative Adversarial Network with a Reinforcement Learning component.

The model is composed of three key elements: a Generator G, a Discriminator D and a

Reinforcement component R. On one side, the discriminative network determines whether

a molecule is likely to come from the initial distribution (positive) or not (negative). The
1The ORGANIC code is available online at https://github.com/aspuru-guzik-group/ORGANIC
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reinforcement provides a quality metric R(x) ∈ [0, 1] that will quantify the desirability of

a given molecule x, where 1 is meant to represent the desired shift in properties and 0 an

undesired change. Finally, the generator has the task of generating molecules that maximizes

the objective function which is a linear combination of the discriminator component and the

reinforcement component, parametrized by a tunable parameter λ.

In this way, the adversarial approach is meant to keep the generation of molecules similar

to the initial distribution of data, while the reinforcement learning biases this generation

towards the maximization of the reward (and, if the metric is well-defined, some desirable

properties).

Molecular encoding

The molecules were represented as characters strings using the SMILES encoding [26] and

then hot-encoded as binary matrices. SMILES are able to capture the topology of a molecular

species via defined grammar rules. In a string, the characters represent atoms, bond types,

cycles and branches within a molecular graph. In this manner, the set of characters and

rules already contain some heuristics about how molecules are built. However, this encoding

also implies several inconveniences, such as the existence of invalid representations. SMILES

strings can be valid ‘N#Cc1cc[nH]n1" or invalid like “[C[[[N", meaning they can represent a

molecule under the grammar defined by SMILES. Furthermore, the representation is non-

unique, several strings can map to the same molecule (although there exists canonization

algorithms [27]).

For the hot-encoding, we build a dictionary of m possible characters, each is assigned an

index for the hot-encoding. For example, the i− th character in a string xi, will get encoded

to a binary vector of length m, with 0’s except in the index that maps to the character

represented. A maximum length T is decided based on the training set and on the expected

size of the string. In this way, each molecule is encoded to a n× T binary matrix, which can

be converted back to a SMILES and then to a molecule.
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In our work we employ the RDKit [28] package for manipulation and verification of

SMILES.

Adversarial approach

Although the generation of valid SMILES can be trivial if one relies on simple permutations of

carbons and oxygen atoms, such a strategy can lead to millions of different possible molecules

which might not be of any interest for a given problem domain. In order to generate molecular

species that resemble a given initial distribution, a key strategy is to make use of adversarial

training.

Generative Adversarial Networks (GANs)[13] are a generative model that aims to minimize

the divergence between a real data distribution pdata and the distribution psynth generated by

an implicit generative model G. The main idea is that two different neural networks play a

game against each other: given an initial training distribution pdata, the generator G samples

x from a distribution psynth generated with random noise z, while a discriminator D looks at

samples, either from psyntetic or from pdata, and tries to classify their identity (y) as either

real (x ∈ pdata) or fake (x /∈ pdata).

The GAN setting is then formulated as a zero sum game where the value is the cross-

entropy loss between the discriminator’s prediction and the true identity of the samples. This

is implemented in practice as a minmax optimization problem, one model is optimized with

respect to the performance of another model alternatively:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼psynthetic(z) [log(1−D(G(z)))]

In our setting the discriminator D is a Convolutional Neural Network (CNN)[29] parame-

terized= by φ, while the generator G is an RNN parameterized by θ using LSTM (Long Short

Term Memory) cells [30] that generates sequences X1:T = (x1, ..., xT ) of length T , which in

our case might represent valid SMILES strings.
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With the correct training procedures, GANs are able to work remarkably well for continuous

variable outputs since the gradient is propagated between networks during optimization.

For discrete variable outputs, this proves difficult since these objects are sampled from a

multinomial distribution, with probabilities given by the output of a softmax function, which

is not differentiable and hence cannot be optimized with respect to each other easily. [18]

The generator (which has previously been trained on the training set using MLE) generates

batches of molecules, which are analyzed by the discriminator and the metric; then the former

is trained to simultaneously fool the discriminator and maximize the reward.

Reinforcement Learning

It is only with recent developments that GANs have been adapted for discrete objects. One

of the strategies is to bypass the generator differentiation problem by treating the generation

of discrete sequences as a stochastic policy in an RL setting. The gradient is in this case

approximated as a gradient policy update [31].

With a policy gradient, we treat G as an agent in an RL game where we consider states s,

actions a from an action space A and a reward function Q. A state st is an already generated

partial sequence of characters X1:t. We have an action space A that encompasses all possible

characters to select for the next character xt+1. Next a reward function Q(s, a) that represents

the expected reward for taking action a in state s. Each episode is the completion of a fully

generated sequence of fixed length T , which is rewarded with he function RT (X). The agent’s

stochastic policy is given by Gθ(xt|X1:t−1) and we wish to maximize its expected long term

reward J(θ):

J(θ) = E[RT |sθ, θ] =
∑
x1∈X

Gθ(x1|sθ) ·Q(sθ, x1) (1)

For any full sequence X1:T , we have Q(s = X1:T−1, a = XT ) = RT (X). In order to

calculate which action a is best for partial sequences st at intermediate timesteps, we need
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to consider the expected future reward when the sequence is completed. To calculate Q in

such cases, we perform N -time Monte Carlo search with the canonical rollout policy Gθ.

That means from a partial sequence X1:t, we sample stochastically from 1 to N , completed

sequences Xn
t+1:T via the policy Gθ.

This formulation allows us to choose the source of completion reward R, either from the

discriminator or from a quality metric. In ORGAN, the parameter λ controls the contribution

of the source of each reward, where λ = 0 represents a complete RL approach and λ represents

a complete GAN training. Typically one will want to use a value in-between.

The quality metric for RL can be defined from the myriad of functions designed for

properties of interest in molecules. Some examples include Log P [32], Synthetic Accessibility

Score [33], Natural Product-likeliness [34], Chemical Beauty (QED)[35] and presence or

absence of substructures that can be calculated with chemoinformatic tools [28]. Complex

properties such as HOMO-LUMO bandgap energies, Photoelectric Conversion Efficiency

(PCE) and Redox potentials can be calculated with quantum chemistry methods. In practice,

these can be estimated order of magnitude much faster, but less accurately, with machine

learning regression tools such as Neural Networks and Gaussian Processes.

Experiments and discussion

This section reports the computational experiments performed with ORGANIC ; it comprises

three examples which simultaneously tackle interesting chemical problems and address different

kinds of desired chemical distributions.

Datasets

In our experiments we have made use of the following datasets:

• Small molecules, a 5,000 molecules subset of the dataset of roughly 134 thousand stable

small molecules, which is itself a subset of all molecules with up to nine heavy atoms

7



(CONF) out of the GDB-17 universe of 166 billion organic molecules [36][37].

• Drug-like compounds, a subset of 15,000 drug-like molecules randomly selected from

the ZINC database of 35 million commercially-available compounds[38][39].

• Organic photovoltaics, a subset of 15,000 non-fullerene acceptors proceeding from the

Harvard Clean Energy Project [8]. It comprises the compounds with best Power

Conversion Efficiencies.

Melting point

As an initial proof-of-concept, we attempted to optimize an uncommon target property: the

melting point. To this purpose, a feed-forward neural network with two 300-neuron hidden

layers was trained on 15,000 examples randomly extracted from the valid data points of

Jean-Claude Bradley open melting point dataset [40]; the molecules were encoded as 4096-bit

radius 12 Morgan fingerprint vectors.

ORGANIC was trained for 120 epochs on the small molecules training set. In each

training epoch, the melting points were computed using the former neural network, and

then remapped to the [0, 1] interval for use as a metric; in this way, the model rewards the

generated molecules with the highest melting points.

Figure 2: Right: evolution of the mean score during the 200 epochs of training for chemical
beauty. Left: distribution of melting point corresponding to the first and last epochs, as
compared to the training set.

The evolution of the training is shown in Figure 2. As it can be readily seen, the model
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promptly learns to extend the molecular distribution towards greater melting points; although

the mean is barely displaced (and this may have more to do with the actual structure of

chemical space), both tails of the distribution increase dramatically, around 200 degrees more.

Figure 3: Two organic molecules with melting points above 800 K. Both combine an enormous
size with the presence of hydrogen-bond donors and acceptors, which reflects the chemical
patterns learned by ORGANIC. Most of the valid molecules generated after 120 epochs of
training have similar structures.

What is more, ORGANIC discovers patterns in molecular structure that match with

chemical intuition. As shown in Figure 3, the generated molecules combine many factors

(long hydrocarbon chains, as well as hydrogen-bond donors and acceptors) that enhance

non-covalent interactions between different molecules, or features such as rigid rings that

hinder packing, that result in a higher melting point. It should be noted that in this case, we

were able to generate molecules much bigger than those in the initial training set.

Drug discovery

We tested the performance of ORGANIC in the drug dataset, using two drug-likeness

indicators: the quantitative estimate of drug-likeness, here dubbed "chemical beauty" [35]

and Lipinski’s rule-of-five [41]. The first is already contained in the [0, 1] interval, but in the

case of Lipinski’s rule we designed a metric which assigned a 0.25 reward per followed rule.

In both cases, a 200-epoch optimization was carried out.

The evolution of the training is shown in Figure 4 for chemical beauty.

Regarding chemical beauty, it is worth mentioning that the number of molecules with
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Figure 4: Right: evolution of the mean score during the 200 epochs of training for chemical
beauty. Left: distribution of chemical beauty corresponding to the first and last epochs, as
compared to the training set.

maximum rewards after 200 epochs is slightly lower than in the training set. This might have

two sources. First, as the metric has a fixed maximum value (in contrast to the previous

example, where the melting point has no practical limit, and the metric is updated as a

remapping in every epoch) which is very difficult to find in chemical space, the model tends

to maximize the ’integral of the reward’ maximizing the number of molecules in the 0.8-0.9

range, much more abundant. On the other hand, as can be seen in Figure 4, this particular

epoch is a bit noisy.

Regarding Lipinski’s rule, ORGANIC is not able to improve the training set’s distribution,

which we have attributed to the categorical character of the metric.

Moreover, we compared the molecules generated during training with the list of FDA-

approved drugs [42], and found 148 coincidences for the chemical beauty and 207 for the

Lipinski’s rule-of-five experiments; these include popular compounds, such as salicylic acid,

benzocaine, paracetamol or sulfanilamide. Although these findings can be partially attributed

to randomness, the vastness of the explored chemical space, and the fact that all of these

drugs present high scores in the established metrics makes this fact at least worth mentioning.

Non-fullerene acceptors for OPVs

Now we address another popular inverse-design problem in the recent literature: Non-fullerene

electron acceptors for use in organic solar cells. To this matter, we trained a feed-forward
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Figure 5: Right: evolution of PCE across the 50 epochs of training. Left: distribution of the
PCE corresponding to the first and last epochs, as compared to the training set.

neural network with two 300-neuron hidden layers on 15,000 examples randomly extracted

from a data set pertaining to the Harvard Clean Energy Project. Then we trained ORGANIC

on the OPV dataset. In each training epoch, the PCE was computed and remapped to

the [0, 1] interval The results are gathered in Figure 5. It is easy to infer that the average

values of the PCE are improved really quickly, although the maximum varies greatly (for

example, the maximum value, around 12%, is found in the first epoch). However, these

results can be easily attributed to the nature of the metric: a neural network which has

been trained on a combinatorial library and might not generalize easily to less structured

molecules. Furthermore, the error in estimation is quite large, with a mean of 2 percentual

points of PCE. More accurate estimators are likely to produce more certain results.

Limitations of the framework

In the past sections we have shown several successful applications of our model. We will now

address some of its limitations.

A major drawback of the ORGAN paradigm is the amount of non-valid molecules. In our

experiments with ORGANIC, we have found the ratio of non-valid molecules to vary greatly

in the range 0.2-99.9%. What is more, from the portion of valid molecules, it is possible

to find a lot of repetitive patterns. Both cases depend greatly on the training set and the

optimized metrics.

However, the main reason for this behavior is the landscape of the chemical space. As an
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example, in the optimization of non-fullerene acceptors, we found percentages of non-validity

in the range 7-99%. This is due to the roughness of the chemical space, where small changes

in the molecular structure (for example, a disruption of the conjugation) can have dramatic

effects on the structure.

Another possible point of failure lies when the density of molecules for a certain criteria

is very sparse. For example, if we seek to generate symmetric molecules, the density of

symmetric molecules with respect to non-symmetric molecules is very low and so it easy

for the generator to collapse under training. In part because symmetry is not an apparent

feature in the SMILES representation of molecules.

On the other hand, we have performed little variations on the λ parameter described in

the Methods section. After several tests, and checking previous results [25], we found 0.5 to

be the most fitting value, but further work should be dedicated to this hyperparameter (and,

for example, its variations across training). As a rule of thumb, any value that is not 1.0 or

0.0 will give reasonable results.

It should also be noted that SMILES grammar rules already encode heuristics about

chemistry, and so part of the success of ORGANIC lies in the representation of molecules as

strings. There are possibly better textual representations for different chemistry domains

[43], future work will also look at overcoming SMILES validation problems with grammar

aware networks[44].

Conclusions and future work

In this paper, we have shown how a chemically oriented implementation of Objective-Reinforced

Generative Adversarial Networks which can perform molecular generation biased towards some

desired chemical properties. Our code is an open source, all figures can be easily reproduced

from the repository and have been thoroughly designed so non-expert can run a generation

task with as little as 10 lines of python commands. what is more, the computational requires

12



are modest and can be run on a common personal computer.

Through several examples, addressing many of the current topics of molecular discovery,

we have shown the performance of ORGANIC as compared with a genetic algorithm. All

the results reveal that we are able to effectively shift the molecular distribution towards

user-specified properties.

We hope that this implementation will grow to become a standard in molecular generation.

In the recent future, we seek to extend this work to combine the generative process with

high-throughput screening pipelines that could act as more reliable reward functions. There

is also the possibility of augmenting this approach with the recent developments of attention

networks and latent space exploration with text sequence models [45, 46].

ORGANIC has been carefully designed to be used by non-expert users, and can be

accessed at https://github.com/aspuru-guzik-group/ORGANIC.
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