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I. INTRODUCTION

Over the last two decades, theoretical and computational developments have led to the

widespread use of density functional theory (DFT)1 in different fields of science. The suc-

cess of DFT comes from its ability to reformulate the many-body Coulomb problem in

the form of an easy to approximate exchange-correlation potential and energy2. However,

one of the most critical failures of standard exchange-correlation functionals is their inabil-

ity to describe correctly dispersive forces. Recently, efforts to cure this shortcoming have

been made at different levels of theory, ranging from: i) corrections to existing semi-local

functionals (the so-called family of DFT+D methods)3–9,ii) functionals taking into account

non-locality explicitly10–12, iii) methods expressing the exchange-correlation contribution in

terms of response functions such as the random phase approximation (RPA) and beyond-

RPA methods13–17, through to iv) advanced wavefunction methods such as coupled cluster

and quadratic configuration interaction methods18–23. The choice of one method over an-

other is usually dictated by the size of the system – although wavefunction methods are often

precise, their computational cost makes them impossible to use for systems of a certain size.

On the other hand DFT+D and vdW-DF methods are computationally relatively cheap.

But although the accuracy of these methods has been scrutinized in the past5,9,12,24–28, it

is presently still difficult to have a complete picture of their respective performances. It is

thus difficult to make an informed choice about which method to use for a given problem,

by trading off speed and accuracy.

In this paper, we provide additional benchmarking on the performance of the Tkatchenko

and Scheffler (TS)6, non-local van der Waals density functionals (vdW-DFs) and many-body

dispersion (MBD) methods on the A24 dataset29, the L730 dataset, and on a set of dimers

recently studied by Taylor et al.31. These datasets have been chosen to cover a wide range

of chemical situations, from purely dispersive interactions to hydrogen bonds.

The layout of the paper is organized as follows: in the following section, Sec. II, we briefly

present the theoretical formalism of the methods used here. Then the interactions energies,

calculated for the A24 test set29, the L7 test set30 and the “blind” set of molecules proposed

by Taylor et al.31, are shown and analyzed in Sec. III. Then, figure 4 provides a visual

summary of key results. Finally Sec. IV contains our conclusions.
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II. THEORY AND COMPUTATIONAL DETAILS

In this section, we summarize the general theoretical background of the methods used

in this work, from non-local van der Waals density functionals to the differents schemes

proposed by Tkatchenko and Scheffler6 (TS) and their variants, which include self-consistent

screening32 (SCS) or many-body dispersion (MBD) interactions32–34. Summaries on some

of the theoretical advantages and disadvantages of these approaches can also be found in

Refs.35,36.

A. Nonlocal van der Waals density functionals (vdW-DFs)

In 2004, Dion et al.10 proposed a functional (named vdW-DF1) that includes vdW forces

in a seamless fashion by dividing the exchange-correlation energy functional into three pieces:

Exc[n] = Ex[n] + E0
c [n] + Enl

c [n]. (1)

The first term on the right hand side of Eq. 1 is the exchange energy functional usually

chosen among GGA exchange functionals, the second term is the local correlation energy

functional which is approximated to the LDA correlation functional, and the last term is

the non-local correlation functional defined as:

Enl
c [n] =

1

2

∫ ∫
d3rd3r′n(r)φ(r, r′)n(r′), (2)

where n(r) is the electron density at the point r and φ(r, r′) is a kernel designed to capture

non-local correlation effects. With the aid of the plasmon-pole approximation for the inverse

dielectric function, the non-local kernel is written as:

φ(r, r′) =
2me4

π2

∫ ∞
0

a2da

∫ ∞
0

b2db W (a, b)T (ν(a), ν(b), ν ′(a), ν ′(b)) , (3)

where

W (a, b) =2[(3− a2)b cos b sin a+ (3− b2)a cos a sin b

+ (a2 + b2 − 3)sin a sin b− 3ab cos a cos b]/a3b3,
(4)

and

T (w, x, y, z) =
1

2

[
1

w + x
+

1

y + z

] [
1

(w + y)(x+ z)
+

1

(w + z)(y + x)

]
. (5)
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ν and ν ′ in Eq. 3 are given by ν(y) = y2/2[1 − exp(−4πy2/9d2)] and ν ′(y) = y2/2[1 −

exp(−4πy2/9d′2)] with d(r, r′) = |r − r′|q0(r) and d′(r, r′) = |r − r′|q0(r′). Therefore, the

non-local correlation energy depends on distances |r− r′| via d(r, r′) and d′(r, r′), which are

scaled by an effective wavenumber:

q0(r) = −4π

3
εLDA

xc n(r)− Zab

9
s2(r)kF(r), (6)

with the Fermi wave vector k3
F(r) = 3π2n(r) and the reduced gradient s(r) = ∇n(r)/2kF(r)n(r).

The original vdW-DF1 of Dion et al. adopted the revPBE functional10,37,38 for the ex-

change and Zab = −0.8491 in the non-local correlation functional to reproduce the cor-

relation energy at the slowly varying density. It was found that the vdW-DF1 functional

overestimates equilibrium distances due to the too repulsive revPBE exchange functional,

and underestimates hydrogen-bond strength39.

To solve these problems, a second version, named vdW-DF2, was proposed by Lee et al.40

by replacing the revPBE exchange with the less repulsive PW8641 exchange. They have used

Zab = −1.887 to reproduce the asymptotic behavior of the correlation energy at the high

density limit, since it provides a more accurate approximation for atoms and molecules

than the gradient expansion used in vdW-DF1. Recently, Hamada proposed an improved

version of the vdW-DF2 functional, which is called rev-vdW-DF2 (also called revB86b-

DF2)42, by pairing the revised B86b exchange functional (called B86R) with the non-local

functional of vdW-DF2. The B86R functional was designed to be as the B86b functional43

at the large gradient limit but to behave as the second order of gradient in the low gradient

region. At the same time, Berland and Hyldgaard12 proposed another exchange functional

to be coupled with the non-local functional of vdW-DF1. This new functional, which is

called LV-PW86r functional, was designed to switch the gradient enhancement factor from

Langreth-Vosko (LV)44 at small values of the gradient region to PW86r at large values. This

combination led to the creation of the vdW-DF-cx functional, where cx stands for consistent

exchange. Several tests have been conducted45 and have shown that this functional improves

the description of the binding energy of weakly interacting molecular and bulk systems.

Here we tested the performance of the two most recent functionals (rev-vdW-DF2 and

vdW-DF-cx) as well as the historical vdW-DF2.
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B. The Tkatchenko-Scheffler method and its variants

An alternative to dispersion functionals is to apply a semi-empirical dispersion correction.

Many variants of corrections exist46–48. Here we focus on the Tkatchenko-Scheffler (TS)

method, and its descendants.

The dispersion corrected total energy is written as3 :

EDFT−disp = EKS−DFT + Edisp, (7)

where EKS−DFT is the DFT energy as obtained, for instance, with PBE. Edisp is, in analogy

to the PBE-D2 given by Grimme4, the TS6 dispersion energy correction written as:

Edisp =− 1

2

N∑
A=1

N∑
B=1,B 6=A

C6AB

R6
AB

fdamp(RAB; sR), (8)

where C6AB denotes the dispersion coefficient for an atom pair AB while R6
AB is the distance

between two atoms. fdamp is a Fermi-type damping function, which decays at small r fast

enough to allow the correction to be negligible when the distance between atoms is lower

than the typical vdW distance. This function contains a free parameter, denoted sR, which

is adjusted according to the exchange-correlation functional used. A value of 0.94 is known

to be optimal for the PBE functional49.

For a given atom in its environment, the polarizability αTS
A and the dispersion coefficient

CTS
6AA are obtained by rescaling the free atom polarizability αfree

A and dispersion coefficient

C free
6AA as:

αTS
A =

V eff
A

V free
A

αfree
A , (9)

and

CTS
6AA =

(
V eff
A

V free
A

)2

C free
6AA. (10)

The scaling factor V eff
A /V free

A is the ratio between the volume occupied by an atom in his

environment V eff and the free non-interacting reference V free. The volumes are estimated

using a Hirshfeld partitioning of the electron density. Then the dipole-dipole dispersion

parameter for an atom-pair C6AB is computed by following the combination rule:

C6AB =
2C6AAC6BB

[αB

αA
C6AA + αA

αB
C6BB]

. (11)
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1. The self consistent screening scheme

The TS scheme includes on-site screening but does not include long-range electrostatic

screening extending beyond the range of the exponentially decaying densities. This is cor-

rected in the Tkatchenko and Scheffler + self-consistent screening (TS+SCS)7 method, which

includes long-range screening behavior through the frequency-dependent screened polariz-

ability αSCS
A (iω) found by solving the coupled equations:

αSCS
A (r; iω) = αTS

A (r; iω)− αTS
A (r; iω)

∑
A 6=B

τA,Bα
SCS
B (r; iω), (12)

where τA,B is the dipole-dipole interaction tensor. Thus, both the short-range (via the TS

scheme) and the long-range (via the SCS scheme) electrostatic screenings are contained in

the solution of the SCS equation for every frequency of the electric field. The coefficients

C6AA are calculated using the frequency-dependent polarizability and the Casimir-Polder

integral50

C6AA =
3

π

∫ ∞
0

αSCS
A (iω)αSCS

A (iω)dω, (13)

which are used in (8) for the energy. As before, for the PBE functional, the optimal value

for the adjustable parameter sR is set equal to 0.97.

2. The many body dispersion scheme

A non-negligible part of the dispersion interaction comes from many-body interactions

which are not described completely by the TS and TS+SCS schemes, although they are

known to be of substantial importance51 in the description of molecular systems. For in-

stance, this type of interaction can be modelled7 by a set of quantum harmonic oscillators

(QHOs) coupled through a dipole-dipole potential. In particular, it has been shown33 that

the interaction energy obtained as the difference between the eigenvalues of the coupled

system of QHOs and the eigenvalues of the uncoupled system is equal to the RPA dispersion

energy:

Edisp =

∫ ∞
0

dω

2π
ln det

[
CRPA(iω)

]
, (14)

of the QHOs, in which the CRPA matrix is defined as:

CRPA(iω) = δpq + (1− δpq)αp(iω)τpq, (15)
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where τpq is the dipole-dipole interaction tensor and αp(iω) is an atomic polarizability. In

practice33, a range separation is introduced in the dipole-dipole interaction so that Eq. (14)

is further modified to incorporate both the SCS and MBD approaches, an approach known

as the MBD@rsSCS scheme33.

3. The fractional ions scheme

Further refinements were proposed by Gould et al.34 that led to improvements in more

difficult nanosystems. Firstly, by using the gas phase polarizabilities of fractional ions52,

the ionic nature of the system is fully taken into account. Secondly, the eigenvalues of

the system are remapped to avoid unphysical “polarization catastrophes”, which can lead

to failures in SCS and MBD calculations. The remapping involves using the eigenvalues

xn of the Hermitian matrix X(ω) = −T 1/2
LR ALR(ω)T

1/2
LR , where ALR(ω) is obtained using

short-range screening on the ionic polarizability model. The MBD dispersion energy is then

rewritten as53:

Edisp = −
∫ ∞

0

dω

2π

∑
n

ln[1 + x̃n(ω)]− x̃n(ω), (16)

where

x̃n =


xn xn ≥ 0

−
[
erf
(√

π
2
|xn|

)4
]1/4

xn < 0
. (17)

Unlike the raw eigenvalues xn(ω), which can unphysically become less than -1 causing the

polarization catastrophe, the remapping ensures that x̃n(ω) > −1.

C. Computational details

The calculations presented in this work have been performed using the VASP (Vienna ab-

initio simulation package)54,55 code. To ensure a high level of precision in our calculations,

we have used a large cut-off of 1000 eV. At the same time, the use of a plane-wave basis

set implies the lack of basis set superposition error. Also, sufficiently large cells were used

to avoid spurious interactions between periodically repeated images, which were single Γ-

point calculations. In the calculations using the TS method and its variants, the exchange-

correlation energy was obtained using Perdew-Burke-Ernzerhof (PBE)37 functional.
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Calculations using the non-local vdW functionals, vdW-DF2 and rev-vdW-DF2 calcula-

tions were performed using the implementation25,40,56,57 in VASP. VASP was also used for

the vdW-DF-cx functional with the implementation of Björkman58. Detailed discussion of

the MBD implementation in the VASP code can be found in previous publications34,59,60

and will not be repeated here.

III. RESULTS

A. A24 dataset

In this section we present our results for the A24 test set proposed by Řezáč and Hobza29,

which contains 24 molecular dimers of small sizes. This test set composed of small and diverse

complexes, covers different types of noncovalent interacting systems, and is ideal to perform

high level benchmarking calculation. All dimers were placed in a 17.5× 17.5× 17.5 Å3 box

and our results are compared with respect to CCSDT(Q) extrapolated to the complete basis

set limit (CBS) values from Řezáč and Hobza29.

As indicated in Table I, the mean absolute errors (MAE) with respect to the refer-

ence values from Řezáč and Hobza29 are respectively 0.143 kcal/mol for vdW-DF2, 0.133

kcal/mol for rev-vdW-DF2 and 0.137 kcal/mol for vdW-DF-cx. Those errors increase to

0.351, 0.290, 0.309 and 0.294 kcal/mol, respectively for the TS, TS+SCS, MBD@rsSCS and

MBD@rsSCS/FI methods. It appears, by comparing to the MAE value of PBE calculations

which is equal to 0.404 kcal/mol, that the correction brought by the TS scheme is limited,

reducing the error by only 13.1%. This correction increases to 28.2% with the TS+SCS

scheme, to 23.5% with the MBD@rsSCS method, and to 27.2% with MBD@rsSCS/FI. On

the contrary, the non-local vdW based methods show a reduction of 64.5% to 67% of the

MAE in comparison with that of the PBE.

Considering the TS, TS+SCS, MBD@rsSCS and MBS@rsSCS/FI schemes, the mean

absolute percentage errors (MAPE) shows a slight different behavior from the MAE. Indeed,

with respect to CCSDT(Q)/CBS values29, by comparing MAPE equal to 21.96% and 16.96%,

respectively for the TS+SCS and MBD@rsSCS/FI, one can note a decreasing of 5% while

their MAE are relatively similar (within 0.004 kcal/mol).

Figure 1 shows the differences between the interaction energies calculated with the dif-
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TABLE I: Interaction energies (in kcal/mol) for the A24 test set obtained with PBE, vdW-DF2,

rev-vdW-DF2, vdW-DF-cx, TS, TS+SCS, MBD@rsSCS and MBD@rsSCS/FI methods compared with

CCSDT(Q)/CBS. The mean absolute errors (MAE), mean errors (ME), the maximum deviations (|MAX|)

and the mean absolute percentage errors (MAPE) are provided with respect to the CCSDT(Q)/CBS

values29.

System CCSDT(Q)/CBS29 PBE vdW-DF2 rev-vdW-DF2 vdW-DF-cx PBE-TS PBE-TS+SCS MBD@rsSCS MBD@rsSCS/FI

1 water. . . ammonia Cs −6.492 −7.008 −6.605 −6.897 −6.540 −7.417 −7.368 −7.525 −7.482

2 water dimer Cs −4.994 −5.124 −5.070 −5.094 −4.701 −5.427 −5.381 −5.540 −5.506

3 HCN dimer Cs −4.738 −4.730 −4.930 −4.797 −4.540 −5.055 −5.036 −5.133 −5.141

4 HF dimer Cs −4.564 −4.859 −4.874 −4.726 −4.248 −4.980 −4.956 −5.101 −4.975

5 ammonia dimer C2h −3.141 −2.850 −3.073 −2.964 −2.676 −3.280 −3.195 −3.407 −3.375

6 methane. . . HF C3v −1.660 −1.728 −1.675 −1.670 −1.462 −2.100 −2.052 −2.258 −2.201

7 ammonia. . . methane C3v −0.771 −0.705 −0.874 −0.723 −0.654 −1.023 −0.999 −1.002 −0.999

8 methane. . . water Cs −0.656 −0.545 −0.767 −0.593 −0.571 −0.800 −0.788 −0.810 −0.806

9 formaldehyde dimer Cs −4.479 −4.077 −4.976 −4.926 −4.514 −4.886 −4.808 −5.099 −5.128

10 ethene. . . water Cs −2.564 −2.463 −2.744 −2.700 −2.564 −3.165 −3.094 −3.200 −3.168

11 ethene. . . formaldehyde Cs −1.623 −0.863 −1.687 −1.398 −1.310 −1.899 −1.789 −1.728 −1.732

12 ethyne dimer C2v −1.529 −1.233 −1.609 −1.463 −1.455 −1.776 −1.786 −1.860 −1.852

13 ethene. . . ammonia Cs −1.382 −1.086 −1.549 −1.380 −1.358 −1.778 −1.705 −1.725 −1.702

14 ethene dimer C2v −1.106 −0.409 −1.352 −1.036 −1.044 −1.569 −1.512 −1.391 −1.395

15 methane. . . ethene Cs −0.509 −0.265 −0.650 −0.489 −0.605 −0.781 −0.755 −0.690 −0.691

16 borane. . . methane Cs −1.513 −1.199 −1.372 −1.509 −1.335 −2.136 −2.009 −2.160 −2.182

17 methane. . . ethane Cs −0.836 −0.048 −1.029 −0.682 −0.780 −1.278 −1.139 −0.964 −0.942

18 methane. . . ethane C3v −0.614 −0.035 −0.765 −0.479 −0.603 −0.944 −0.807 −0.716 −0.695

19 methane dimer D3d −0.539 −0.039 −0.706 −0.430 −0.559 −0.839 −0.723 −0.627 −0.601

20 methane. . . Ar C3v −0.405 −0.088 −0.565 −0.342 −0.475 −0.548 −0.490 −0.430 −0.431

21 ethene. . . Ar C2v −0.365 −0.098 −0.541 −0.354 −0.525 −0.503 −0.497 −0.434 −0.447

22 ethene. . . ethyne C2v +0.794 +1.657 +0.773 +1.021 +0.943 +0.541 +0.595 +0.751 +0.749

23 ethene dimer D2h +0.909 +1.908 +0.932 +1.156 +1.004 +0.611 +0.722 +0.884 +0.873

24 ethyne dimer D2h +1.084 +1.856 +1.006 +1.325 +1.308 +0.899 +0.901 +1.051 +1.055

Total

MAE 0.404 0.143 0.133 0.137 0.351 0.290 0.309 0.294

ME −0.320 −0.124 0.023 0.102 −0.351 −0.290 −0.309 −0.295

|MAX| 0.999 0.497 0.447 0.465 0.925 0.866 1.033 0.990

MAPE (%) 42.17 13.35 9.92 10.82 27.94 21.96 17.63 16.96

ferents functionals and the CCSDT(Q)/CBS values. As can be seen, the differences are

contained within an interval of −0.7 to +0.5 kcal/mol, except for the water-ammonia dimer,

for which the TS based methods give differences close to −1 kcal/mol. Moreover this fig-

ure shows the better performance of the non-local vdW methods over the various TS and

MBD methods for the H-bonded and mixed-type systems: indeed a systematic overestima-
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FIG. 1: Differences in kcal/mol for the A24 test for the non-local van der Waals functionals, TS based

and many body methods computed with respect to the CCSDT(Q)/CBS reference values29.

tion of the binding energies can be found with the TS and MBD methods, whereas a more

even distribution of errors is obtained with the vdW-DF flavours. However, except for the

borane-methane dimer, the MBD schemes give smaller errors (lower than −0.1 kcal/mol)

when applied to dispersion dominated systems.

B. “Blind” test dataset

To further benchmark the methods of interest here on a different dataset, we have chosen

the one created by Taylor et al.31, composed of 10 dimers with a range of sizes (from 6

to 32 atoms). In their work, the authors did not release the reference values before the

various calculations were conducted, which therefore constituted a “blind” test. In this

set, though hydrogen-bonded and dispersion dominated systems still prevail, the dimers
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cannot be strictly classified into either category. Moreover, a majority of dimers of this set

are not found in other sets. The geometries used here correspond to the near equilibrium

positions, and were taken from the supplementary material of Taylor et al.31 optimized at

the MP2/aug-cc-pVTZ level of theory. The reference values for the binding energies have

been obtained with CCSD(T) extrapolated to CBS by the same authors31.

As reported in Table II, the MAE is equal to 3.001 kcal/mol for PBE37 and shows

clearly that in order to describe correctly dispersion dominated system, one has to use

semi-empirical correction or non-local functionals to improve the results. Comparing to

PBE, the MAE for the whole test set is reduced by 73.5% and 78.2% for TS and MBD

based schemes respectively, and this reduction increases to 82-83% for the non-local vdW-

DF family. Furthermore, the MAPE supports the good performance of the vdW-DF family

of methods, especially the vdW-DF2 functional which outperforms all the other methods

with a MAPE of 6.74% to be compared for instance to the value of 10.08% for vdW-DF-cx,

the closest one.

Additionally since Taylor et al.31 computed the interaction energies for this test set with

the vdW-DF2 functional, we compare our vdW-DF2 results with their results. Our calcula-

tions were done using the VASP code with PAW potentials61,62 while those from Taylor et al.

have been computed with the QBOX code63 with norm-conserving pseudopotentials. This

may be the reason behind the slight disagreement between the MAE of 0.394 kcal/mol for the

vdW-DF2 results of Ref. 31 and 0.513 kcal/mol for our vdW-DF2 calculations. By examin-

ing more closely the results, most of the difference is due to the nitromethane, nitrobenzene,

and EDNA dimers, with deviations of 0.378, 0.484 and 0.535 kcal/mol respectively between

the two vdW-DF2 calculations.

It is important to note here that we obtain positive mean errors for all methods, which

indicates a general tendency to underestimate the absolute binding energies of the different

systems. This is in contrast to the results for the A24 test set which show the opposite

behavior.

C. L7 dataset

We then applied the different functionals to the L7 data test set proposed by Sedlak et

al.30, which consists of 7 non covalent complexes: “CBH”, the octadecane dimer in stacked
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TABLE II: Interaction energies (kcal/mol) for the molecular dimers from the “blind” test set of Taylor et

al.31 obtained with PBE, vdW-DF2, rev-vdW-DF2, vdW-DF-cx, TS, TS+SCS, MBD@rsSCS and

MBD@rsSCS/FI methods compared with CCSD(T)/CBS. The mean absolute errors (MAE), mean errors

(ME), the maximum deviation (|MAX|) and the mean absolute percentage errors (MAPE) are provided

with respect to CCSD(T)/CBS values31.

System CCSD(T)/CBS31 vdW-DF231 PBE vdW-DF2 rev-vdW-DF2 vdW-DF-cx PBE-TS PBE-TS+SCS MBD@rsSCS MBD@rsSCS/FI

Benzene-methane −1.476 −1.492 −0.189 −1.460 −1.264 −1.417 −1.705 −1.686 −1.441 −1.459

Ethanol dimer −2.870 −2.981 −0.814 −2.881 −2.452 −2.242 −3.143 −3.094 −2.893 −2.901

Benzene-water −2.870 −2.924 −1.880 −2.854 −2.673 −2.752 −3.448 −3.290 −3.030 −2.950

Methylformate dimer −3.485 −3.246 −1.799 −3.198 −2.774 −2.614 −3.339 −3.218 −3.192 −3.194

Water dimer −5.049 −5.031 −5.160 −5.070 −5.124 −4.727 −5.460 −5.414 −5.574 −5.541

Nitromethane dimer −6.393 −5.972 −2.570 −5.594 −5.242 −5.053 −4.647 −4.369 −4.737 −4.765

Nitrobenzene dimer −7.110 −5.785 −2.705 −5.301 −6.091 −6.826 −6.586 −5.723 −4.763 −4.965

Imidazole dimer −10.207 −9.501 −9.458 −9.503 −10.135 −10.165 −10.658 −10.589 −10.741 −10.772

EDNA dimer −12.360 −11.441 −4.628 −10.906 −11.095 −10.905 −10.452 −9.791 −10.451 −10.545

FOX-7 dimer −12.700 −12.569 −10.942 −12.716 −12.630 −12.402 −12.969 −12.767 −13.181 −13.135

Total

MAE 0.394 3.001 0.513 0.519 0.542 0.654 0.791 0.796 0.720

ME 0.358 2.978 0.503 0.503 0.542 0.211 0.459 0.452 0.429

|MAX| 1.325 9.815 1.809 1.265 1.455 1.908 2.569 2.347 2.145

MAPE (%) 5.47 52.45 6.74 10.15 10.08 11.42 12.77 11.10 10.25

parallel conformation is representative of aliphatic dispersion interaction, “GGG”, a stacked

guanine trimer arranged as in DNA is representative of the aromatic stacking π . . . π disper-

sion interaction, “PHE”, a trimer of phenylalanine residues in mixed H-bonded-stacked con-

formation is representative of a mixed interaction between dispersion and H-bonds, “C3A”

is a stacked circumcoronene. . . adenine dimer, “C3GC” is a stacked circumcoronene and

Watson-Crick hydrogen-bonded guanine-cytosine dimer, “C2C2PD” is a parallel displaced

stacked coronene dimer, and “GCGC” is a stacked Watson-Crick hydrogen bonded guanine-

cytosine dimers arranged as in DNA, the last four being representative of strong aromatic

dispersion interaction. Their sizes range from 48 to 112 atoms, which allows to test the be-

haviour of the methods of interest for relatively large systems. In the original publication30,

the geometries for six of the complexes, CBH, C3A, GCGC, C3GC, GGG and PHE were

determined at the DFT-D TPSS/TZVP64 level with no constrains, while the C2C2PD geom-

etry was optimized at the QCISD(T) level of theory. The binding energies were obtained30

at the QCISD(T)/CBS level of theory.

As seen in Table III, the different MAE with respect to the reference are largely superior

12
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FIG. 2: Differences in kcal/mol for the “blind” test set of Taylor et al.31 for the non-local van der Waals

functionals, TS based and many body methods computed with respect to CCSD(T)/CBS reference values.

to the chemical accuracy of 1 kcal/mol. The difference are especially large for the MBD

methods where the MAE is equal to 5.937 kcal/mol for the MBD with range-separation

self consistent screening and equal to 5.790 kcal/mol for the same scheme with fractional

ions. Except for the PBE results, shown here to emphasize the improvement brought on

by the different methods, the maximum deviations are found with the MBD methods, with

particularly large errors for the C2C2PD and C3GC complexes which is reflected by the

MAPE, which are respectively 31.27% and 30.94% for MBD@rsSCS and MBD@rsSCS/FI.

We also observe that the vdW-DF family of methods does not always give the best results:

indeed, the TS scheme shows a slightly lower MAE value than vdW-DF2; 2.919 and 3.106

kcal/mol respectively.

As seen before for the data set of Taylor et al., the positive mean error demonstrates a
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TABLE III: Interaction energies (kcal/mol) for the test set L7 of Sedlak et al.30 obtained with PBE,

vdW-DF2, rev-vdW-DF2, vdW-DF-cx, TS, TS+SCS, MBD@rsSCS and MBD@rsSCS/FI methods

compared with QCISD(T)/CBS. The mean absolute errors (MAE), mean errors (ME), the maximum

deviation (|MAX|) and the mean absolute percentage errors (MAPE) are provided with respect to

QCISD(T)/CBS values30.

System QCISD(T)/CBS30 PBE vdW-DF2 rev-vdW-DF2 vdW-DF-cx PBE-TS PBE-TS+SCS MBD@rsSCS MBD@rsSCS/FI

1 C2C2PD −24.36 +5.410 −18.542 −19.345 −21.487 −20.465 −18.379 −13.714 −14.505

2 C3A −18.19 +2.147 −14.871 −15.537 −17.642 −15.618 −14.603 −11.070 −11.375

3 C3GC −31.25 +5.157 −25.627 −26.816 −29.946 −26.271 −25.305 −18.898 −19.278

4 CBH −11.06 −0.469 −16.006 −12.768 −14.757 −13.497 −15.324 −11.458 −11.746

5 GCGC −14.37 +3.869 −13.754 −13.452 −15.288 −12.846 −12.410 −9.579 −9.426

6 GGG −2.40 +3.900 −2.625 −2.203 −3.264 −2.889 −2.813 −1.466 −1.461

7 PHE −25.76 −17.250 −24.568 −24.557 −24.911 −21.224 −21.399 −20.439 −20.444

Total

MAE 18.632 3.106 2.304 1.579 2.919 3.787 5.937 5.790

ME 18.632 1.628 1.816 0.014 2.083 2.451 5.824 5.594

|MAX| 36.407 5.918 5.015 3.697 4.979 5.981 12.352 11.972

MAPE (%) 119.93 17.59 12.01 14.01 16.67 21.37 31.27 30.94

tendency to underestimate the binding energy, even for larger systems. Only the vdW-DF-

cx seems to find a balance between overestimating and underestimating the binding energy

for the different systems, with a mean error of 0.014 kcal/mol and a MAE of 1.579 kcal/mol

with respect to QCISD(T)/CBS values.

IV. DISCUSSION AND CONCLUSIONS

In this work, we tested seven different methods, from semi-empirical corrections to non-

local van der Waals functionals and many-body dispersion methods, in order to compare

their ability to describe intermolecular interactions, which are of major importance in un-

derstanding and describing molecular complexes. When compared to CCSD(T) results at

the complete basis set limit and its derivative, which are considered as the “Gold Standard”

of computational chemistry29 but come with a correspondingly high computational cost, we

have found the following results:

• Concerning the A24 test set, all the methods give results that are within the chemical

accuracy of 1 kcal/mol. When compared with CCSDT(Q)/CBS reference values, the
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FIG. 3: Differences in kcal/mol for the test set L7 from Sedlak et al.30 for the non-local van der Waals

functionals, TS based and many body methods computed with respect to QCISD(T)/CBS reference

values.30

non-local vdW functionals have a MAE about 50% lower than the TS based and MBD

methods.

• Almost the same trend is observed among the methods for the “blind” test set of Taylor

et al. – the MAE for the vdW-DF methods show a better accuracy of approximately

0.2 kcal/mol compared to the TS and MBD schemes.

• In the case of the L7 test set, composed by relatively large systems up to 112 atoms,

chemical accuracy is not reached and some mean absolute errors or maximum devia-

tions values shows in particular with the TS and MBD methods. We again observe

that the non-local vdW-DF family provides the best results, specifically the vdW-DF-

cx method. The relatively poor performance (compared to the other test sets) of the

different schemes is not totally surprising since it is expected that absolute errors tend

to increase with the size of the systems.

We summarize all our results in Table IV, Table V and Figure 4: overall, the vdw-DF

functionals perform better than the TS and MBD methods. In particular, the vdW-DF-cx

functional is the method that performs the best among all the methods that we have tested.
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TABLE IV: Mean Absolute Error (MAE) (kcal/mol) of interaction energies for the three differents test

sets are reminded and the MAE obtained for the totality of molecular pairs (41 molecules) composing

those test sets with PBE, vdW-DF2, rev-vdW-DF2, vdW-DF-cx, TS, TS+SCS, MBD@rsSCS and

MBD@rsSCS/FI.

PBE vdW-DF2 rev-vdW-DF2 vdW-DF-cx PBE-TS PBE-TS+SCS MBD@rsSCS MBD@rsSCS/FI

A24 test set 0.404 0.143 0.133 0.137 0.351 0.290 0.309 0.295

“Blind” test set 3.001 0.513 0.519 0.542 0.654 0.790 0.796 0.750

L7 test set 18.632 3.106 2.304 1.579 2.919 3.787 5.937 5.790

Total 4.149 0.739 0.598 0.482 0.863 1.009 1.389 1.344

TABLE V: Mean Absolute Percentage Error (MAPE) (%) of interaction energies for the three differents

test sets are reminded and the MAPE obtained for the totality of molecular pairs (41 molecules)

composing those test sets with PBE, vdW-DF2, rev-vdW-DF2, vdW-DF-cx, TS, TS+SCS, MBD@rsSCS

and MBD@rsSCS/FI.

PBE vdW-DF2 rev-vdW-DF2 vdW-DF-cx PBE-TS PBE-TS+SCS MBD@rsSCS MBD@rsSCS/FI

A24 test set 42.17 13.35 9.92 10.82 27.94 21.96 17.63 16.96

“Blind” test set 52.45 6.74 10.15 10.08 11.42 12.77 11.10 10.25

L7 test set 119.93 17.59 12.01 14.01 16.67 21.37 31.27 30.94

Total 57.95 12.46 10.33 11.18 21.99 19.62 18.37 17.71

Surprisingly, the TS method without further corrections gives MAE results that are closer

to the reference values than more advanced schemes such the TS-SCS, the MBD@rsSCS,

and the the MBD@rsSCS/FI that include more complete treatment of non-additivity35.

The MAE is dominated by the larger errors in the larger molecules, however, and may

thus reflect a better performance of TS in some of the largest systems. Indeed, the picture

changes when we consider the MAPE, where the two MBD-based methods outperform the

two TS methods.

One other point is worth mentioning here. Our tests were all evaluated using geometries

that had been optimized using higher level theories. Thus our calculations cannot test the

ability of the dispersion corrections to calculate forces, which are important for calculating

structures and carrying out molecular dynamics. For example, it has been shown that

some of the vdW-DF functionals overestimate lattice parameters significantly in layered
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FIG. 4: Mean Absolute Error (MAE) of interaction energies in kcal/mol and Mean Absolute Percentage

Error (MAPE) in % for the whole set of molecules (41 molecules) composing the three test sets. Here, all

methods show improvements to energies over PBE, with the vdW-DF methods outperforming TS and

MBD methods.

structures, despite giving good energies65–67. Further testing should be carried out in this

regard to understand which approaches can consistently reproduce structures and forces.

Before concluding, let us take a brief moment to consider one of the more surprising

findings from this work, that the MBD and FI methods perform more poorly than straight

TS theory or any of the vdW-DF type approximations68. This holds true (at least for

absolute errors, for percentage errors the situation is reversed) even in the larger systems

(PHE and GGG complexes from the L7 test set) where many-body effects (specifically

many-atom effects in these theories) might be expected to perform better due to greater

numbers of 3-, 4- and n-atom terms. This combinatorial picture, while compelling, misses

an important aspect of such terms, however – that the next-dominant (in gapped insulators)

3-body terms introduce repulsive and attractive contributions [equivalent to plus and minus

signs on xn in Eq. (16)], and can thus cancel each other out. A more physical perspective

is that most field lines crowd each other out, leaving only the direct contributions between

pairs of atoms.

There is thus no reason to assume the many-body terms will necessarily contribute sys-

tematically to the energy as a function of size. Indeed dispersion between two bulk insulators
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or a bulk insulator and an atom or small molecule can be quite well represented by sums

over their constituent atoms provided the underlying polarizability model is sufficiently good,

which enables the broad success of Lifshitz theory69. The exception to this argument is in

systems like 2D materials and nanowires where the geometry is strongly anisotropic and

thus favours one sign over another, as identified by Dobson and co-workers70–73. None of

the systems studied in this work fall into this category, however. Thus, contributions from

many-body terms are unlikely to help or hinder in any systematic way the treatment of

dispersion for the systems reported here.

Finally, several directions can be investigated for possible improvements to the methods

used here. Firstly, the performance of the TS family of methods depends on the exchange-

correlation functional with which it is combined. It was demonstrated previously74 that

combining the TS and MBD methods with a different exchange-correlation functional can

lead to improvements. Here PBE was used, as the presence of an exact exchange contribution

increases significantly the computational cost in plane wave codes and would therefore make

molecular dynamics calculations difficult for relatively large systems. Secondly, the vdw-

DF functionals are based on a simplified version of the adiabatic connection fluctuation

dissipation theorem75, to which several simplifications have been introduced. Having a new

look76 at each of them to work out where precision can be gained would be helpful to improve

existing methods. Thirdly, improvements can be made to the MBD models, through further

refinement of the polarizability model (as per Ref. 34) and inclusion of Type-C contributions

(from Dobson’s classifications of non-additivity35) for large metallic systems. Nonetheless,

the current state-of-art does a good job for the systems considered here and, should perform

well for similar systems.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Agence Nationale de la Recherche

under Grant No. ANR-15-CE29-0003-01, from the CNRS PICS program 2DvdW, from the

French-Korean STAR program (NRF-2017K1A3A1A21013734), and from the French PIA
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