
 1 

Mol2vec: Unsupervised Machine Learning 

Approach with Chemical Intuition 

Sabrina Jaeger,1 Simone Fulle,1* Samo Turk1* 

1 BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany. 

* Corresponding authors: fulle@bio.mx, turk@bio.mx 

  

mailto:fulle@bio.mx
mailto:turk@bio.mx


 2 

ABSTRACT: Inspired by natural language processing techniques we here introduce Mol2vec 

which is an unsupervised machine learning approach to learn vector representations of 

molecular substructures. Similarly, to the Word2vec models where vectors of closely related 

words are in close proximity in the vector space, Mol2vec learns vector representations of 

molecular substructures that are pointing in similar directions for chemically related 

substructures. Compounds can finally be encoded as vectors by summing up vectors of the 

individual substructures and, for instance, feed into supervised machine learning approaches to 

predict compound properties. The underlying substructure vector embeddings are obtained by 

training an unsupervised machine learning approach on a so-called corpus of compounds that 

consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, 

yields dense vector representations and overcomes drawbacks of common compound feature 

representations such as sparseness and bit collisions. The prediction capabilities are 

demonstrated on several compound property and bioactivity data sets and compared with 

results obtained for Morgan fingerprints as reference compound representation. Mol2vec can 

be easily combined with ProtVec, which employs the same Word2vec concept on protein 

sequences, resulting in a proteochemometric approach that is alignment independent and can 

be thus also easily used for proteins with low sequence similarities. 

KEYWORDS: Machine learning, artificial neural networks, high dimensional embeddings, 

feature engineering 
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Introduction 

As numeric representation of molecules is an essential part of cheminformatics, a variety of 

descriptors and molecular fingerprints (FP) exists which are either fed into machine learning 

(ML) models or form the basis for similarity searching and clustering approaches. Most 

commonly used representations include Morgan FPs (also known as extended-connectivity 

fingerprints (ECFP))1 as they often outperform other types of FPs in similarity search and 

virtual screening tasks2,3 and are also successfully used for molecular activity predictions.4–7 

To generate a Morgan FP, all substructures around all heavy atoms of a molecule within a 

defined radius are generated and assigned to a unique identifier (called Morgen identifier 

below). These identifiers are then usually hashed to a vector with fixed length. However, the 

vectors obtained are very high-dimensional and sparse, and on top of that might also contain 

bit collisions introduced by the hashing step. 

The recent rise in popularity of artificial neural networks brought several breakthroughs in 

ML and ideas from various fields of data science are also spilling over to cheminformatics. 

Convolutional neural networks, originally developed for image recognition, were successfully 

applied on molecular graphs8,9 and on 2D depictions of molecules.10 In parallel, natural 

language processing (NLP) techniques were adopted to learn from classical features, like 

molecular FPs,11 SMILES strings,12 and graph representations of compounds.8 Most worth 

noting, the NLP method “term frequency-inverse document frequency” (tf-idf) was applied on 

Morgan fingerprints for compound-protein prediction11 and the ”Latent Dirichlet Allocation” 

method for chemical topic modeling.13 Another popular NLP approach is Word2vec14 which 

learns high dimensional embeddings of words where vectors of similar words end up near in 

vector space. This concept was already adopted to protein sequences (ProtVec) for the 

classification of protein families and disordered proteins15 but was not applied to molecules so 

far.  
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Figure 1. Overview of the generation and usage steps of Mol2vec. Step 1: Generation of 

Mol2vec embeddings (i.e. vector representations of substructures) via an unsupervised pre-

training step. Step 2: The application of Mol2vec vectors requires that substructure vectors are 

retrieved and summed up to obtain compound vectors, which can finally be used to train a 

supervised prediction model. 

 

Here, we introduce Mol2vec, which is an NLP inspired technique that considers compound 

substructures derived from the Morgan algorithm as “words” and compounds as “sentences”. 

By applying the Word2vec algorithm on a corpus of compounds, high-dimensional 

embeddings of substructures are obtained, where the vectors for chemically related 

substructures occupy the same part of vector space. Mol2vec is an unsupervised method which 

is initially trained on unlabeled data to obtain feature vectors of substructures which can be 

summed up to obtain compound vectors. Please note that while the generation of a Mol2vec 
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model is an unsupervised pre-training step, subsequent machine learning models for property 

predictions are supervised throughout the manuscript (Figure 1). Questions addressed below 

are how Mol2vec performs on different compound data sets, on regression and classification 

problems, and combined with the ProtVec representation for proteins in proteochemometric 

(PCM) approaches on proteins with different sequence similarities ranges. 

 

Materials and Methods 

Mol2vec and ProtVec are unsupervised pre-training methods that can be used to obtain high 

dimensional embeddings of molecular substructures or n-grams of protein sequences (i.e. they 

provide featurization of compounds and proteins). These vectors can then be further used in 

supervised ML tasks. In this section, we first describe the data sets used for the pre-training of 

the Mol2vec and ProtVec models and the pre-training itself, followed by the data sets used for 

the evaluation of Mol2vec in supervised tasks and the employed machine learning methods for 

property predictions. 

Pre-training compound data set. The corpus of compounds was composed using the ZINC 

v1516 and ChEMBL v2317,18 databases as source of compounds. The two databases were 

merged, duplicates removed, only compounds kept that could be processed by RDKit, and 

filtered using the following cutoffs and criteria: molecular weight between 12 and 600, heavy 

atom count between 3 and 50, clogP between -5 and 7, and only H, B, C, N, O, F, P, S, Cl, Br 

atoms allowed. Additionally, all counter ions and solvents were removed and canonical 

SMILES generated by RDKit.19 This procedure yielded 19.9 million compounds. 

Compound encoding and Mol2vec model. In an NLP analogous fashion, molecules were 

considered as sentences and substructures as words. To obtain words for each molecule, the 

Morgan algorithm 1 was used to generate all atom identifiers at radii 0 and 1, resulting into 119 

and 19831 identifiers, respectively. Identifiers of each atom (radius 0 followed by radius 1 
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each) were then ordered into a sentence with the same atom order as present in the canonical 

SMILES representation (Figure 2). 

 

Figure 2. Depiction of identifiers obtained with the Morgan algorithm on the structure of 

glycine forming a Mol2vec sentence. Identifiers are ordered in the same order as the atoms in 

the canonical SMILES. If an atom has more than one identifier, the first identifier for that atom 

is the one for radius 0, followed by radius 1, etc. 

 

The Mol2vec model was trained utilizing all 19.9 million compounds in the corpus and using 

the gensim20 implementation of Word2vec, which is a shallow, two-layer neural network. 

Although Word2vec is an unsupervised method it still internally defines an auxiliary prediction 

task. Depending on the auxiliary task Word2vec can be trained using one of the following two 

approaches: 1) continuous bag-of-words (CBOW) if the task is to predict a word from the 

context words, and 2) Skip-gram if the context is predicted based on a word. In CBOW the 

order of words in the context is not important due to the bag-of-words assumption, while in 

skip-gram adjacent words are assigned with higher weights. Furthermore, the two parameters 

“window size” and “dimensional embeddings” were explored to find the best settings for 

Mol2vec. The window size is controlling the size of the context and was set to the in NLP 

commonly used sizes of 5 and 10 in the case of CBOW and Skip-gram, respectively. 
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Furthermore, to account for the fact that each atom is represented twice via Morgan identifiers 

(i.e. at radius 0 and 1), the effect of double window sizes (i.e. 10 for CBOW and 20 for Skip-

gram) was also evaluated. Finally, 100 and 300-dimensional embeddings were generated for 

all combinations.  

All rare words that occur less than three times in the corpus were replaced with a string 

“UNSEEN”, because 1) Word2vec is not able to get meaningful embeddings for rare words 

and 2) this enables the model to gracefully handle unseen (or unknown) words that might 

appear when performing predictions on new data. The distribution of “UNSEEN” in the corpus 

is random and hence a vector close to zero is usually learned. If an unknown identifier occurs 

during featurization of the new data, the “UNSEEN” vector is used to embed it. The vector for 

a molecule is finally obtained by summing up all vectors of the Morgan substructures of this 

molecule. 

ProtVec model. The protein corpus of 554,241 sequences was collected from UniProt.21 The 

protein sequences were afterwards featurized using the ProtVec15 approach. All possible words 

were generated by representing each sequence in the corpus as 3 sequence variants (i.e. 

sentences) that are each shifted by one amino acid, followed by the generation of all possible 

3-grams (words) (Figure 3). This yielded in 1,662,723 sentences for the protein corpus. 

ProtVec model was trained with the gensim Word2vec implementation, using a Skip-gram 

architecture with a window size of 25 and output vector size of 300. To handle potentially new 

3-grams the model was trained on “UNSEEN” words in a similar way as the Mol2vec models. 

The final model resulted in high-dimensional embeddings of 9,154 unique 3-grams. 
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Figure 3. Protein sequence processing. Each sequence is represented as n sequences (i.e. 

sentences) with shifted reading frame and split in n-grams (i.e. words), with n = 3. 

PCM vectors. For the PCM approach Mol2vec was combined with ProtVec by concatenating 

both vectors (called PCM2vec below). Baseline PCM vectors were concatenated Morgan FPs 

(2048 bits) and z-scales 22 which are sequence-based physicochemical protein descriptors. 

Since the use of z-scales relies on a sequence alignment they were only used for the kinase data 

set. Following the study described in ref. 7, kinase sequences were aligned and z-scales (Z3) 

calculated only for the 85 binding site residues defined in KLIFS.23 The length of the target 

descriptor was adjusted to 2048 using a WTA-hash function to match the dimensionality of the 

Morgan FP. 24 

Benchmarking data sets. The performance of Mol2vec in subsequent ML models were 

evaluated using the ESOL, Ames, and Tox21 data sets as well as one curated kinase data set:  

- ESOL solubility data set25 was chosen to evaluate the performance of Mol2vec in a 

regression task to predict aqueous solubility of 1144 compounds. 

- Ames mutagenicity data set26 contains 6511 compounds that were determined to be either 

mutagenic (3481) or non-mutagenic (2990), and thus represent a balanced data set for 

classification. 

- Tox21 data set27 consists out of 12 targets which were associated with human toxicity and 

contains a total of 8192 compounds. Tox21 was retrieved as a part of the DeepChem 

package28 to enable a comparison with established methods. 

- Kinase data set. A kinase data set was compiled using ChEMBL v23 and evaluated with 

respect to classification tasks.18 Bioactivities for 284 kinases (list see Supporting 
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Information) were extracted and filtered to keep only IC50, Kd and Ki values from binding 

assays and with a target confidence of at least 8. Bioactivities were converted to pIC50 and 

an activity threshold of 6.3 was employed. 

 

Validation of models based on Mol2Vec vectors. All machine learning models using on 

compound data were trained using 20x 5-fold cross validation and compared using the 

Wilcoxon signed rank test. Employed performance metrics are for the regression tasks: 

coefficient of determination (R2
ext), mean absolute error (MAE), and mean squared error 

(MSE), and for classification tasks: area under the curve (AUC) of receiver operating 

characteristic curve (ROC), sensitivity (i.e. true positive rate) and specificity (i.e. true negative 

rate). Compounds in all data sets were processed using RDKit to remove compounds with less 

than 3 heavy atoms, to remove all salts (i.e. counter ions) and solvents, and to generate 

canonical SMILES. Compounds were encoded as vectors (featurization) by summing up 

vectors of Morgan substructures retrieved from the pre-trained Mol2vec model. Morgan FPs 

with radius 2 and hashed to 4096 (2048 for PCM experiments due to memory constraints) bits 

were used as baseline features to train fingerprint based ML models.  

A PCM approach was evaluated for the two data sets with several targets (i.e. Tox21 and 

kinase bioactivities) to assess the influence of adding protein information by concatenating 

compound descriptors (Morgan FP or Mol2vec) with protein descriptors (Z-scales or ProtVec). 

ProtVec descriptors for the proteins in the Tox21 (List S1) and kinase (List S2) data sets were 

calculated based on the entire protein and catalytic domain, respectively. The performance of 

the PCM models was evaluated by a rigorous 4-level (CV1-CV4) validation scheme.7 Briefly, 

CV1 tests the model performance on new compound-target pairs, CV2 on new targets, CV3 on 

new compounds and CV4 on by the model new compounds and targets.  
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Machine learning methods. Three different machine learning methods (i.e. Random forest 

(RF), Gradient Boosting Machine (GBM) and Deep Neural Network (DNN)) were evaluated 

using Mol2vec embeddings as compound features. RF implementation in scikit-learn29 was 

used with 500 estimators, square root of number of features as maximum number of features, 

and balanced class weight. The XGBoost implementation30 of GBM was used with 2000 

estimators and setting maximum depth of trees to 3 and learning rate to 0.1. For the GBM 

classifier the weight of the positive samples was adjusted to reflect the ratio of actives/inactives 

in the respective data set. Several feed-forward DNNs were built using Keras31 with the 

TensorFlow32 backend. After an initial benchmarking, variations of two different DNNs 

architectures were used based on the input data and prediction task. 1) DNNs trained with 

Morgan FPs (radius 2) had one hidden layer with 512 neurons each and an output layer with 

one neuron. All layers had normal initialization and employed rectified linear unit (ReLU)33 

activation function except for the output neuron in the case of classification tasks which 

employed a sigmoid activation function. Adam optimizer34 was used to minimize Poisson loss 

function for classification and to minimize mean squared error (MSE) for regression. 2) DNNs 

trained with Mol2vec embeddings had 4 hidden layers with 2000 neurons each and one output 

neuron. All layers had normal initialization and employed ReLU activation function except for 

the output neuron in the case of classification tasks which again employed a sigmoid activation 

function. Adamax optimizer34 was used to minimize binary cross entropy loss function for 

classification and to minimize MSE for regression. All DNNs used a dropout value of 0.1 to 

avoid overfitting.35 In the case of the DNN classifiers, the weight of the actives was adjusted 

to reflect the imbalance in the data.  
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Results and discussions 

Mol2vec is an unsupervised pre-training method to generate an information rich 

representation of molecular substructures. Since it is an unsupervised method, it does not 

require labeled data as input and can leverage from larger amounts like the here employed 19.9 

million compounds. The obtained embeddings from the pre-training can be used for instance 

to explore the relationships between different substructures, while derived compound vectors 

can be used for assessing compound similarity or as features for supervised ML predictions. 

Mol2vec training and hyperparameter evaluation. The evaluation of different parameters for 

Mol2vec revealed that the best settings are overlapping with those recommended for Word2vec 

in NLP on text data and comprise the Skip-gram model with a window size of 10 and 300-

dimensional embeddings of Morgan substructures. The quality of the individual embeddings 

was assessed by using them as features in supervised ML tasks on the Tox21 data set 

(Supporting Information Table S1). As it was observed for NLP applications,14 also in our case 

Skip-gram yielded higher performing embeddings compared to CBOW, possibly because it 

captures spatial relationships better due to the weighting of words in the context. Higher 

dimensionality of embeddings also had beneficial effect on the performance while varying the 

window size had almost no effect. The final Mol2vec model was trained on a corpus of 19.9 

million molecules.  

Chemical intuition of Mol2vec descriptors. A key assumption of the Mol2vec approach is 

that related functional groups and molecules are close in the generated vector space. This was 

visually investigated as well as quantified by extracting the 25 most common substructures 

from the compound corpus as well as featurizing standard amino acids via Mol2vec descriptors. 

Encouragingly, the Mol2vec vectors of the 25 most common substructures cluster in expected 

relationships (Figure 4). Aromatic carbon types are correctly identified to be chemically related 

(red identifiers) as well as aliphatic carbons in ring systems (purple), non-ring aliphatic carbons 
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(green), and carbonyl carbon and oxygen (turquoise). Further interesting relationships could be 

explored by looking at more substructures concurrently (not shown). 

 

Figure 4. Dendrogram showing relationships between vectors representing the 25 most 

common substructures in the compound corpus. Substructures are depicted (central atoms in 

green and surrounding atoms in light green) on a representative compound from a pool of FDA 

approved drugs. 

Similarly, also 2D projections of vector representations obtained for the 20 proteinogenic 

amino acids agree with chemical intuition and capture the similarity between related amino 

acids (Figure 5; Table S2). For instance, Pro is an obvious outlier while other amino acids are 

nicely grouped based on their functional groups and properties. Also interesting is that the 

transition distance between Glu and Gln is similar to the distance between Asp and Asn, which 

is line with the underlying change of the carboxylic acid group to an amide. 

Next, the prediction capabilities of Mol2vec vectors are demonstrated on several compound 

property and activity data sets and compared with results obtained for the Morgan fingerprints 

as reference compound representation.  
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Figure 5. 2D projection (t-SNE) of Mol2vec vectors of amino acids (bold arrows). Vectors 

were obtained by summing up the vectors of the Morgan substructures (small arrows) present 

in the respective molecule (amino acids in the present example). The directions of the vectors 

provide a visual representation of similarities. A quantitative assessment can be obtained via 

cosine angle calculations (Supporting Information Table S2). 

 

Mol2vec compound vectors as features for supervised ML tasks. Employing Mol2vec vectors 

as input for different ML tasks (Figure 1), such as classification and regression, and on a variety 

of data sets indicated overall that Mol2vec vectors yield state-of-the-art performance. The 

combination with GBM seems to be very suitable for regression task (i.e. Ames data set) while 

the combination with RF can be recommended for classification tasks including 

proteochemometric (PCM) approaches. 

Although several DNN architectures were evaluated, they were still outperformed by the tree 

based methods GBM and RF. However, we would like to note that further fine-tuning might 



 14 

improve the prediction power of the Mol2vec-DNN combination. See Tables S3-S5 for detailed 

performance numbers for all employed methods. In the following, the best predictions obtained 

for the Mol2vec vectors are described more in detail and compared with results obtained for 

the Morgan FP as baseline descriptor as well as results described in the literature for the 

employed data sets.  

ESOL solubility data set was selected to test Mol2vec in a regression task (Table 1). Mol2vec 

yields better predictions (R2
ext = 0.86) than the originally reported multiple linear regression 

(MLR) model25 as well as a molecular graph convolution method,36 and importantly 

outperforms our Morgan FP based baseline model (R2
ext = 0.66). However, the best reported 

results on the ESOL data set were so far obtained by two molecular graph convolution9,37 and 

one recurrent network based38 methods (R2
ext ≈ 0.93). 

 

Table 1. Performance of Mol2vec and other models on regression predictions of the ESOL 

data set.  

ML Features ML Method R2
ext MSE MAE Ref. 

Descriptors MLR 0.81 ± 0.01 0.82 0.69 25 

Molecular Graph CNN 0.82 - - 36 

Molecular Graph CNN - - 0.52 ± 0.07 37 

Molecular Graph CNN 0.93 0.31 ± 0.03 0.40 ± 0.00 9 

Molecular Graph RNN 0.92 ± 0.01 0.35 0.43 38 

Morgan FP GBM 0.66 ± 0.00 1.43 ± 0.00 0.88 ± 0.00  

Mol2vec GBM 0.86 ± 0.00 0.62 ± 0.00 0.60 ± 0.00  

 

Ames benchmarking data set is a classic toxicological data set used to benchmark various 

classification ML methods. Here, Mol2vec and Morgan FP result in equally good predictions 

and are in line with AUC results reported for a SVM model and a Naïve Bayes Classifier 

(NBC)39 on this data set26 but the former two achieved higher sensitivity values (Table 2). 
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Table 2. Performance of Mol2vec and other methods on classification prediction of the Ames 

data set. 

ML Features ML Method AUC Sensitivity Specificity Ref. 

Descriptors SVM 0.86 ± 0.01 - - 26 

Descriptors + 

Morgan FP 

NBC 0.84 ± 0.01 0.74 ± 0.02 0.81 ± 0.01 39 

Morgan FP RF 0.88 ± 0.00 0.82 ± 0.00 0.80 ± 0.01  

Mol2vec RF 0.87 ± 0.00 0.80 ± 0.01 0.80 ± 0.01  

 

The Tox21 data set represents a challenging classification data set covering 12 targets and 

over 8000 compounds with unbalanced classes. Here, Mol2vec and Morgan FP result in equally 

good predictions (i.e. both obtained average AUC values of 0.83) and this time outperform 

existing literature results (Table 3, Table S6). 

 

Table 3. Performance of Mol2vec and other methods on classification predictions of the Tox21 

data set. 

ML Features ML Method AUC Sensitivity Specificity Ref. 

Molecular graph CNN 0.71 ± 0.13 - - 9 

Molecular 

descriptors and FPs 

SVM 0.71 ± 0.13 - - 5 

Molecular 

descriptors and FPs 

DNN 0.72 ± 0.13 - - 5 

Morgan FP  RF 0.83 ± 0.05 0.28 ± 0.14 0.99 ± 0.01  

Mol2vec RF 0.83 ± 0.05 0.20 ± 0.15 1.00 ± 0.01  

 

Overall, Mol2vec descriptors shows competitive performance compared to the classic 

Morgan FP on the employed benchmarking data sets for classification (i.e. Ames and Tox21) 

and outperformed the Morgan FP on the regression predictions for the ESOL data set. Morgan 
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FP and Mol2vec features are both based on identifiers calculated by the Morgan algorithm. 

While these identifiers are hashed to a binary fingerprint in the case of the Morgan FP, they 

form a vector with continuous values in the case of the Mol2vec approach. Since the final 

Mol2vec vector is a sum of substructure vectors, it implicitly captures substructure counts as 

well as substructure importance via the vector amplitude. In addition, Mol2vec also has the 

advantage of lower dimensionality of final vectors which significantly speeds up the training 

and lowers memory requirements. Further tuning of the Mol2vec approach, for example by 

using Morgan identifiers with bigger radii might further improve the prediction performance. 

Mol2vec compound and ProtVec protein vectors as features for PCM. Earlier studies using 

the PCM approach, where compound and protein descriptors are employed as concatenated 

features, indicate that the additional use of protein information can improve the prediction 

quality.40 To test the benefit of Mol2vec for PCM applications, Mol2vec vectors were coupled 

with ProtVec vectors. Such PCM2vec models (Table 4-5) were compared with results obtained 

for Morgan FP, Mol2vec, and in the case of the kinase data set also with a classical PCM 

approach (i.e. Morgan FP for compounds combined with z-scales for proteins). In each scenario 

one model was trained on the entire training data for several targets allowing to quantify the 

benefit of protein descriptors. Several ML methods were evaluated (Tables S7 and S8) of which 

RF yielded overall the best results and employed for the results below. 

So far existing PCM models required sequence alignments and were thus build for conserved 

target classes such as kinases and GPCRs.40 Thus, it is worth noting that ProtVec is alignment 

independent and can thus not only be directly applied on the kinase data set (Table 5), but also 

on the Tox21 data set (Table 4) which consists of unrelated proteins with low sequence 

similarity. On both data sets, PCM2vec outperforms the compound features in CV1 and CV3 

which indicates that the added protein information improves the extrapolation to new 

compound-target pairs and new compounds (Table 4-5). In CV2, the here employed PCM2vec 
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approach performs slightly worse than Morgan FP and Mol2vec on the Tox21 data set and 

performs equally well on the kinase data set. For CV4, PCM2vec achieves compared to the 

compound fingerprints similar performance on the Tox21 data and better predictions on the 

kinase data.  

 

Table 4. Summary of prediction performance of PCM models in comparison to compound 

features on Tox21. 

Validation Level ML Features AUC Sensitivity Specificity 

CV1 Morgan FP  0.79 ± 0.01 0.73 ± 0.01 0.74 ± 0.00 

Mol2vec  0.78 ± 0.01 0.73 ± 0.00 0.72 ± 0.02 

PCM2vec  0.87 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 

CV2 Morgan FP  0.73 ± 0.07 0.63 ± 0.08 0.71 ± 0.03 

Mol2vec  0.72 ± 0.07 0.65 ± 0.09 0.68 ± 0.04 

PCM2vec  0.70 ± 0.04 0.55 ± 0.02 0.69 ± 0.04 

CV3 Morgan FP  0.78 ± 0.02 0.65 ± 0.03 0.77 ± 0.02 

Mol2vec  0.79 ± 0.01 0.70 ± 0.02 0.74 ± 0.01 

PCM2vec  0.85 ± 0.01 0.75 ± 0.01 0.80 ± 0.01 

CV4 Morgan FP  0.76 ± 0.03 0.59 ± 0.06 0.77 ± 0.05 

Mol2vec  0.73 ± 0.06 0.62 ± 0.10 0.74 ± 0.05 

PCM2vec  0.75 ± 0.02 0.61 ± 0.12 0.73 ± 0.11 

Validation levels - CV1: new compound-target pairs, CV2: new targets, CV3: new compounds, 

and CV4: new compounds and targets. Highlighted cases mark the validation levels where 

PCM2vec outperforms the ML models based on compound features only.  

 

Since kinases share high sequence similarity, Morgan FP + z-scales was added as baseline 

PCM approach when evaluating the impact of the employed features on the prediction of kinase 

data set. The comparison of PCM2vec with a classical PCM model for kinases 

(i.e. Morgan + z) revealed that the latter yield equally good results in CV1 and CV2 (i.e. new 

compound-target pairs and new targets) and slightly better results in CV3 and CV4 (i.e. new 

compounds, and new compounds and targets). One reason for the better prediction of the 
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classical PCM models might be that it considers binding site residues only, while ProtVec was 

build based on the entire kinase domain. However, although there is performance difference 

between PCM2vec and Morgan FP + z-scales, practically PCM2vec yields in the present case 

more balanced models with roughly equal sensitivity and specificity (i.e. in CV2 and CV4). 

Furthermore, it can be also directly applied on distant protein classes such as the Tox21 data 

set, resulting in general into better predictions for new compound + target pairs as well 

compounds compared to using only compound based features. 

 

Table 5. Summary of prediction performance of PCM models in comparison to compound 

features on kinase data set. 

Validation level ML Features AUC Sensitivity Specificity 

CV1 Morgan FP  0.91 ± 0.00 0.82 ± 0.00 0.85 ± 0.00 

Mol2vec  0.91 ± 0.00 0.83 ± 0.00 0.84 ± 0.00 

Morgan + z 0.96 ± 0.00 0.89 ± 0.00 0.90 ± 0.00 

PCM2vec  0.95 ± 0.00 0.89 ± 0.00 0.87 ± 0.00 

CV2 Morgan FP  0.88 ± 0.00 0.76 ± 0.01 0.85 ± 0.01 

Mol2vec  0.89 ± 0.00 0.80 ± 0.01 0.83 ± 0.00 

Morgan + z 0.89 ± 0.00 0.37 ± 0.03 0.96 ± 0.00 

PCM2vec  0.89 ± 0.00 0.65 ± 0.01 0.90 ± 0.01 

CV3 Morgan FP  0.82 ± 0.00 0.94 ± 0.00 0.41 ± 0.01 

Mol2vec  0.78 ± 0.01 0.97 ± 0.00 0.24 ± 0.01 

Morgan + z 0.94 ± 0.00 0.86 ± 0.01 0.89 ± 0.00 

PCM2vec  0.91 ± 0.00 0.92 ± 0.01 0.63 ± 0.02 

CV4 Morgan FP  0.74 ± 0.02 0.87 ± 0.02 0.43 ± 0.02 

Mol2vec  0.73 ± 0.02 0.94 ± 0.01 0.26 ± 0.03 

Morgan + z 0.84 ± 0.02 0.35 ± 0.04 0.96 ± 0.01 

PCM2vec  0.77 ± 0.02 0.68 ± 0.04 0.72 ± 0.02 

Highlighted cases mark the validation levels where PCM models (i.e. Morgan + z and 

PCM2vec) outperforms the ML models based on compound features only (i.e. Morgan FP and 

Mol2vec).  
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Conclusion 

Inspired by natural language processing (NLP) techniques, Mol2vec represents a novel way 

of embedding compound substructures as information rich vectors. The substructures were 

extracted in the present study by employing the Morgan algorithm and, in the context of NLP, 

represent words while the complete molecules are sentences. To describe new compounds 

substructure vectors from a pre-trained Mol2vec model are retrieved and summed up. 

The Mol2vec model itself is an unsupervised pre-training method that is trained on all 

available chemical structures, yielding high quality embeddings of molecules. Results on 

common substructures as well as amino acids nicely illustrate that the derived substructure 

vectors of chemically related substructures and compounds occupy similar vector space. This 

result is not unexpected since Word2vec vectors representing similar words also end up near 

in vector space. Substructure vectors can be simply summed up to obtain compound vectors 

which can be used to calculate compound similarity or as features in supervised ML tasks. A 

thorough evaluation of Mol2vec on different chemical data sets showed that it can achieve 

state-of-the-art performance and compared to the Morgan FP fingerprint seems to be especially 

suited for regression tasks. Additionally, Mol2vec combined with ProtVec (i.e. PCM2vec) 

performs well in proteochemometrics approaches, and can be directly applied for data sets with 

unrelated targets with low sequence similarities. 
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