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Organic materials with a high index of refraction (RI) are attracting considerable interest due to
their potential application in optic and optoelectronic devices. However, most of these applications
require an RI value of 1.7 or larger, while typical carbon-based polymers only exhibit values in
the range of 1.3–1.5. This paper introduces an efficient computational protocol for the accurate
prediction of RI values in polymers to facilitate in silico studies that can guide the discovery and
design of next-generation high-RI materials. Our protocol is based on the Lorentz-Lorenz equation
and is parametrized by the polarizability and number density values of a given candidate compound.
In the proposed scheme, we compute the former using first-principles electronic structure theory
and the latter using an approximation based on van der Waals volumes. The critical parameter in
the number density approximation is the packing fraction of the bulk polymer, for which we have
devised a machine learning model. We demonstrate the performance of the proposed RI protocol
by testing its predictions against the experimentally known RI values of 112 optical polymers. Our
approach to combine first-principles and data modeling emerges as both a successful and highly
economical path to determining the RI values for a wide range of organic polymers.

I. INTRODUCTION

Organic small molecules, oligomers, and polymers are
emerging materials and of significant interest for numer-
ous fields of application due to their unique or otherwise
desirable properties [1]. Unlike most conventional inor-
ganic materials, they are generally flexible, light-weight,
mechanically stable on impact, easy to process, and in-
expensive to produce [2, 3]. Perhaps most importantly,
their properties can be tailored towards specific demands
by controlling their molecular structure [4]. A particu-
lar area of interest is the application of organic materials
in optic and optoelectronic devices [5], such as (image)
sensors [6, 7], displays [8], and light sources (including
organic light-emitting diodes) [9], in which they can be
introduced in situ as microlenses [10], waveguides [11],
microresonators [12], interferometers [13], anti-reflective
coatings [14], optical adhesives [15], and substrates [16].
Some of the optical properties that are relevant for these
applications are the refractive index (RI), Abbe number,
birefringence, absorption spectrum, and color [17].
The RI value dictates the shape and size of many op-

tical components, in particular those with lens function.
Most of the aforementioned applications require materi-
als with large RI values (i.e., larger than 1.7), and there
are several applications that require very large ones (i.e.,
larger than 1.8) [18]. Unfortunately, the vast majority
of organic polymers only offer RI values ranging from
1.3 to 1.5 [4] (compared to inorganic materials, which
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can feature values up to ∼4). The development of high-
RI polymers has thus gained attention, and several ap-
proaches have been proposed to overcome the RI-value
limitations of typical organic polymers. They include the
notion to incorporate highly polarizable moieties, such
as rigid aromatic fragments [19], heteroatoms [20, 21],
or organometallics [22], into the polymer scaffold. An-
other strategy that has been pursued is to reinforce the
polymer matrix with metal alkoxides (e.g., TiO2, Fe3O4)
[23, 24] or other high-RI molecules (e.g., ZnS, diamon-
doids) [25, 26]. While these approaches have resulted in
a few systems with RI values between 1.6 and 1.8, most
of them are of limited utility for practical applications
due to a variety of materials, processability, or prepara-
tion issues [4]. Increasing the RI values of organic poly-
mers beyond 1.8 has remained a completely elusive task
and continues to be an important challenge in synthetic
chemistry [20].

The traditional, experimentally focused discovery pro-
cess for new materials is very time-, labor-, and resource-
intensive, which limits the number and diversity of can-
didate compounds that can be explored. Progress thus
tends to be slow and incremental, in particular for ad-
vanced materials systems, which require more and more
intricate property profiles. However, chemical and mate-
rials research has been undergoing a significant transfor-
mation in recent years that can alleviate many of these
shortcomings: After decades of continuous advances in
methods, algorithms, and computer hardware, the fields
of modeling and simulation have reached a tipping point,
and they are finally at a stage where they can make ac-
curate predictions for systems that are both realistic and
relevant. Progress is now increasingly driven by compu-
tational studies, which have become crucial assets in the
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pursuit of next-generation materials and chemistry. By
making guiding predictions, they can significantly boost
the efficiency of research endeavors, and uncover promis-
ing targets for investigations in the laboratory (see, e.g.,
Ref. [27–34]). The White House Materials Genome Ini-
tiative [35] underscores the value of integrated joint ven-
tures between experimentalists and theoreticians in tack-
ling complex discovery and design challenges and deliv-
ering revolutionary new materials.
A prerequisite for the computationally-driven develop-

ment of a new materials is access to suitable (i.e., accu-
rate and efficient) computational protocols for the target
property within a compound space of interest. This pa-
per presents such a protocol for the prediction of RI val-
ues of organic polymers. One of the distinctive feature of
this protocol compared to prior work by others [36, 37]
is that it fuses first-principles and data modeling.
In Sec. II, we introduce the physical foundations of

the proposed protocol (Sec. II A), motivate a number of
assumptions and approximations that are used (Sec. II B
and IIC), and discuss the details of the employed compu-
tational approach (Sec. II D). In Sec. III, we present and
discuss results for the different components that com-
prise the protocol (Sec. III A, III B, and III C) as well
as the overall protocol itself (Sec. III D). In each case
we evaluate the predictive performance of our model by
comparing its results with data from a validation set of
experimentally known compounds. Sec. III E provides a
discussion of the interplay between the physical parame-
ters of our model. Our findings are summarized in Sec.
IV.

II. BACKGROUND AND METHODS

A. Lorentz-Lorenz Equation

The RI value (nr) is defined as the ratio between the
speed of light in vacuum (c0) and in a given material (c).
For non-magnetic materials, the RI is thus the square
root of its relative permittivity (ǫr), i.e.,

nr =
c0
c

=
√
ǫr.

The permittivity is a function of the polarizability (α)
and using the Lorentz local field approximation, it can
be written as

ǫr =
1 + 2αN/3ǫ0
1− αN/3ǫ0

,

where N is the number density, i.e., the number of
molecules per volume. It follows that the RI is

nr =

√

1 + 2αN/3ǫ0
1− αN/3ǫ0

,

which is a version of the Lorentz-Lorenz equation (equiv-
alent to the Clausius-Mossotti relation). It follows, that

the Lorentz-Lorenz equation connects the macroscopic RI
value of a bulk material to the electronic polarizability α
and number density N of its molecular constituents. The
Lorentz-Lorenz equation thus offers a route to calculat-
ing the RI value of a material via α and N , and we use
it as the physical basis for the proposed computational
protocol.

B. First-Principles Molecular Polarizability

Calculations

The polarizability α of a compound can be obtained
from quantum chemical linear response calculations. An
array of electronic structure methods has been used to
determine the polarizability values of various materials
[38–44], including organic polymers [45–47]. The polariz-
ability is generally a frequency-dependent (i.e., dynamic)
property as shown in Fig. 1. The frequency-dependent
polarizability is relatively hard to compute, as it formally
involves solving the time-dependent Schrödinger equa-
tion and/or scanning through the range of relevant fre-
quencies [48]. Consequently, only relatively few studies
consider the polarizability dispersion in organic polymers
[49, 50].

FIG. 1. Dispersion characteristic of the polarizability: Ex-
cited states are marked by singularities, and in the frequency
range below, the polarizability converges asymptotically to-
wards the constant static polarizability value.

From the frequency dependence of the polarizability
follows that the RI is also a frequency-dependent prop-
erty. However, the variation of both polarizability and RI
in the visible frequency region is in fact often relatively
small [26], as long as low-lying excited states are absent.
Since the latter would render a material unsuitable for
optical applications anyways, we generally do not con-
sider materials that exhibit them. Large variations can
be observed in the ultraviolet region where resonances



3

with the excited state manifold become a dominant fea-
ture, but since stability considerations prohibit organic
polymers to be used for high-energy applications, this is
also not a relevant concern. Below the frequency range
of the excited states, the polarizability and RI value ta-
per off monotonically (cf. Fig. 1). In most cases, they
become essentially constant throughout the visible and
infrared range and converge to an asymptotic value [26].
The asymptotic RI corresponds to the value that can
be obtained from the static polarizability. The latter
can be computed much more easily than the frequency-
dependent value. It only requires a single linear response
calculation without explicit time dependence, and is thus
much less demanding in terms of computing time and
numerical stability. We can conclude that the RI val-
ues obtained from static polarizability calculations form
a close lower bound for the frequency-dependent values
in the relevant spectral range. This approach has been
used in the past and has given very good agreement with
experimental results [37, 45, 46, 51, 52].
Another challenge is to perform the polarizability cal-

culations for quasi-infinite polymers. Realistic systems
are amorphous and may thus not be well represented
by periodic boundary condition calculations, while non-
periodic calculations on long-chain oligomer models are
generally cost-prohibitive. However, for systems with a
relatively short correlation length (e.g., due to finite con-
jugation and delocalization of the π-electron backbone),
we can expect an early onset of extensivity in the optical
properties. We can exploit this behavior through an ex-
trapolation scheme. In this scheme, we perform a series
of relatively simple monomer and small oligomer calcula-
tions until we observe a linear trend in the polarizability
results, based on which we can project to the polymer
limit.
The molecular polarizability calculations in the pro-

posed protocol utilize Kohn-Sham density functional the-
ory (DFT) for its advantageous trade-off of cost and ac-
curacy [53]. The former includes its low-order polynomial
scaling with system size and its relatively modest basis
set demands (compared to high-level wavefunction meth-
ods). Given the molecular-level disorder in amorphous
polymers, we forgo the expensive first-principles opti-
mization of idealized geometries of our candidate com-
pounds in favor of an inexpensive molecular mechanics
approach. A simple, yet efficient way to identify (and
exclude) compounds with potentially low-lying excited
states is to assess the gap between the highest occupied
molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). The HOMO–LUMO gap is
a first approximation for the lowest excitation, and it is
readily obtained in DFT at no additional cost.

C. Data Model for the Number Density

The number density N for amorphous polymers is typ-
ically computed using classical molecular dynamics simu-

lations. However, this approach is relatively cumbersome
and computationally demanding. As an alternative, we
pursue an approach based on the molecular volume (ap-
proximated by the van der Waals volume VvdW ), i.e.,

N =
Kp

VvdW

,

where Kp is the packing fraction in the bulk polymer,
which has shown good agreement with experimental re-
sults in other work [54, 55]. There are a number of ways
to compute the van der Waals volume, ranging from com-
plicated electronic structure calculations with subsequent
partitioning of the electron density to simplistic fragment
methods [56, 57]. A benchmark study that we will detail
elsewhere has shown that the differences in results from
different methods are generally small. For the present
work, we thus adopt the latter, i.e., we calculate VvdW by
adding tabulated atomic values [58] and subtracting off
the overlap in the bonding region. The average packing
fraction Kp for organic polymers is given in the literature
as 0.68 [59], however, the actual values of different poly-
mers show a significant spread and are known to range
at least from 0.5 to 0.8. (Kp is generally also a function
of the degree of polymerization, but except for shorter
oligomers, this only plays a minor role.) As the average
value of this critical parameter is thus essentially mean-
ingless, we have devised a machine learning model to cor-
relate the polymer structure with its packing fraction.
Due to the relatively small volume of available training
data, we chose a comparatively inflexible (but exceed-
ingly fast) support vector regression (SVR) approach to
avoid overfitting.

D. Computational Details

The polarizability calculations of the proposed proto-
col use an all-electron, restricted DFT framework with
the PBE0 hybrid functional [60] in combination with the
triple-ζ quality def2-TZVP basis set by the Karlsruhe
group [61]. We include Grimme’s D3 correction [62] to
account for dispersion interaction. The proof-of-principle
study shown in the following section was carried out us-
ing the ORCA 3.0.2 quantum chemistry program package
[63] with default settings. We optimized the geometries
of all monomers and oligomers using the universal force
field (UFF) [64] as implemented in the OpenBabel soft-
ware [65]. We calculated the van der Waals volumes us-
ing Slonimskii’s method detailed in Ref. [66], for which
we implemented a Python script. We generated the pack-
ing fraction model using SVR within a feature space of
43 constitutional descriptors on a training data set of
84 polymers with experimentally known Kp values com-
piled from the literature. The available data was divided
into 80% training and 20% test set for cross-validation.
The data modeling was performed using ChemML 0.9
[67], our program suite for machine learning and infor-
matics in chemical and materials research. In this work,
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ChemML employed the scikit-learn 0.17 SVR library [68]
and descriptors from Dragon 7 [69]. Further details of the
data model can be found in the Supplementary Material.
The proof-of-principle study involved about 450 individ-
ual calculations, which we performed using ChemHTPS
0.6 [70], our program suite for automated virtual high-
throughput screening in chemical and materials research.

III. RESULTS AND DISCUSSION

We developed the proposed RI protocol on two com-
mon non-conjugated polymers – polyethylene (PE) and
polystyrene (PS) – as prototype systems. Subsequently,
we performed a study of 112 non-conjugated polymers
for which experimental RI values are known in order to
validate the predictive performance of the RI protocol as
well as its individual components.

A. Polarizabilities

The PBE0/def2-TZVP-D3 polarizability results for PE
and PS from monomer to heptamer are shown in Fig. 2.
The linear trend with respect to the number of monomer
units n (due to extensivity) is easily recognized. The
correlation coefficient R2 for the linear regression is ≫
0.99. For all cases studied in this work, extensivity was
observed for very short oligomer sequences, and we based
our extrapolation scheme on the linear regression slope
obtained from the monomer to tetramer results.

FIG. 2. Linear relationship between number of monomer
units and polarizability for polyethylene (PE) and polystyrene
(PS) as prototypes for non-conjugated polymers.

Note that for conjugated polymers with longer corre-
lation lengths, the onset of extensivity can occur at sig-
nificantly longer chain length, i.e., values for a sequence
of shorter oligomers will not show a linear trend [71, 72].
The scheme can still be used in these cases, but it re-
quires the calculation of longer oligomer sequences until
a linear trend for extrapolation is found.

B. Number Densities and Densities

Using Slonimskii’s method we could readily compute
the van der Waals volumes VvdW for the prototype sys-
tems PE and PS. Assuming the average packing fraction
of Kp = 0.68, we obtain the number density values N as
a function of the number of monomer units n shown in
Fig. 3. The plots illustrate that N decreases monotoni-
cally with increasing number of monomer units, and the
inverse 1/N ∝ VvdW is evidently extensive.

FIG. 3. Change of number density values for increasing degree
of polymerization for the PE and PS prototype systems.

Note that we can use this approach to compute an-
other property of interest in organic materials research,
i.e., the density ρ of amorphous polymers in the bulk
(via ρ = N ·NA/M with the Avogadro number NA and
molecular weight M). The density results for our proto-
type systems are presented in Fig. 4. The plots show that
ρ increases and ultimately convergences towards asymp-
totically constant values. This finite size effect due to the
terminal groups is typically of limited magnitude. The
results of the oligomers with n = 50 offer a good rep-
resentation of the polymer limit and can thus be used
as the default for determining ρ. The resulting densities
are in very good agreement with experimentally known
values [73]. We can also use ρ to work backwards and
obtain the actual Kp values. For PE and PS we obtain
0.64 and 0.66, respectively, i.e., using the average pack-
ing fraction of 0.68 happened to be a valid assumption in
these particular cases.

C. Packing Fractions

AsKp is generally not known and the average value ref-
erenced in the literature [59] is of limited utility, we have
devised an SVR data model that correlates the polymer
structure with the packing fraction as outlined in Sec.
II C and IID. Fig. 5 displays the range and distribu-
tion of Kp values for the 84 polymers for which we found
experimental results. This data – ranging from 0.53 to
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FIG. 4. Change of density for increasing degree of polymer-
ization for the PE and PS prototype systems. Note the char-
acteristic asymptotic convergence to a constant value.

0.79 with an average value of 0.67 – formed the basis for
our data-derived Kp prediction model. (Note that the
average Kp for our data set is nearly identical with the
average Kp = 0.68 cited in Ref. [59]).

FIG. 5. Range and distribution of experimental packing frac-
tion values for 84 polymers used in the creation of our data-
derived prediction model.

The model gives an R2 of 0.97 for the training and
0.87 for the test set. The performance drop for the latter
is reasonable and acceptable given the small size of the
available data set. The computational demand for theKp

prediction model is negligible and results for even large-
scale compound libraries can be obtained in minutes on
a single processor.

D. Refractive Indices

Given the modeling protocols and resulting data for α,
VvdW , Kp, and N , we use the Lorentz-Lorenz equation to
make RI predictions. Using the α and N values obtained
for our PE and PS prototype systems as shown in Figs. 2
and 3, we calculate the RI values and their variation with
the number of monomer units n given in Fig. 6. The RI
increases for longer oligomers before reaching a plateau
for n = 20 to 30.

FIG. 6. Change of refractive index (RI) with increasing de-
gree of polymerization for the PE and PS prototype systems.
Note the characteristic asymptotic convergence to the con-
stant value at the polymer limit, that is in excellent agreement
with the experimental data.

Our modeling protocol predicts the RI values for PE
and PS to be 1.468 and 1.590, respectively, which is in
outstanding agreement with the experimental RI values
of 1.476 and 1.592, respectively [73]. We further validate
our modeling protocol by predicting the RI values of 112
polymers for which we could find experimental data for
comparison (see Fig. 7).
The R2 of 0.94 shows that the model is in very good

agreement with the experimental RI values. The bench-
mark comparison gives a mean absolute deviation (MAD)
of 0.010 (0.9%), a root mean square deviation (RMSD)
of 0.018 (0.1%), and a maximum deviation (MaxD) of
0.045 or 3.0%, respectively, i.e., our modeling protocol is
quite accurate and affords at least semi-quantitative pre-
dictions (in particular since typically only two decimals in
the RI values are considered as significant). The average
deviation (AD) is very small with +0.004 (+0.3%), i.e.,
our model is not significantly biased towards systematic
over- or under-predictions. A result of particular impor-
tance for studies that focus on candidate rankings rather
than quantitative predictions for individual candidates is
that the trends in the data are generally well captured.
We stress that the experimental RI data is independent
of the data used for the creation of the SVR model for
N , i.e., the SVR model was not biased towards providing
good RI results.
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FIG. 7. Validation of the proposed RI prediction model
(based on the data-derived model for the packing fraction)
through comparison with 112 experimental data points.

For comparison, using the average packing fraction
value of 0.68 – as is oftentimes cited in related work –
instead of our SVR model leads to the results shown
in Fig. 8. This model is considerably worse, as can be
seen from the R2 of 0.78, MAD of 0.019 (1.9%), RMSD
of 0.026 (0.3%), MaxD of 0.139 and 6.9%, and AD of
−0.009 (−0.6%).

FIG. 8. Validation of an RI prediction model based on a
constant average packing fraction.

E. Interplay between Polarizability and Number

Density

As the Lorentz-Lorenz equation relies on α and N as
input parameters, we analyze their interplay for the 112
polymers in our validation and benchmark data set. Fig.
9 shows the calculated α and N values as well as the
contour lines for the resulting RI values in this parameter
space.

FIG. 9. Parameter space of polarizability α and number den-
sity N as well as resulting RI value domains with examples
from our validation and benchmark data.

To achieve high RI values, a candidate compound must
feature both large number density and polarizability val-
ues (as is also apparent from the structure of the Lorentz-
Lorenz equation). Optimizing both properties simultane-
ously is a challenging task as extensivity couples α and
N , i.e., the longer a polymer, the larger α (as α increases
with the number of contributing monomer units), but the
smaller N (as fewer molecules fit into a given volume el-
ement). A design strategy that can be derived from this
notion is to incorporate highly polarizable moieties that
have a limited effect on the number density. The data
set at hand is tilted towards a larger spread in α while N
is more clustered. It is worth noting that the RI regions
in the α vs N parameter space are relatively narrow and
most compounds in the data set group around the con-
tour line for RI=1.5. The high-RI examples primarily
stand out for large polarizability values rather than large
number densities, which supports the before-mentioned
design strategy.

IV. CONCLUSIONS

We have successfully developed an in silico modeling
protocol for the accurate and efficient prediction of the RI
values of organic polymeric materials and have demon-
strated its performance by faithfully reproducing the ex-
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perimentally known RI values of 112 compounds. Our
work is an example for the synergistic benefits of fus-
ing physical and data models, with the former providing
the general structure of the approach (i.e., the Lorentz-
Lorenz equation) and a significant part of the required in-
put parameters (i.e., polarizabilities from first-principles

quantum chemistry and van der Waals volumes from
Slonimskii’s method), while the latter provides rapid ac-
cess to input data that is otherwise not readily avail-
able (i.e., an SVR model for the packing fraction and an
extrapolation scheme for molecular results towards the
polymer limit). A subset of our RI protocol can also be
used to predict the density of amorphous polymers. Our
work is furthermore an example for the great promise of
applying machine learning and modern data science in
chemical research. In subsequent work, we will utilize

this new RI protocol to conduct virtual high-throughput
screening studies on large-scale candidate libraries with
the goal of accelerating the discovery of novel organic
materials with unprecedented RI values.
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