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Abstract 19 

Computer-aided de novo drug design holds promise to significantly accelerate the drug 20 

discovery process and bring down its costs. Thanks to this outlook, the field has thrived in the 21 

past few years and has seen a surge of new method development due to the proliferation of 22 
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generative deep neural networks. However, the widespread adoption of new de novo drug 23 

design techniques has been slow in fields like medicinal chemistry or chemical biology. Such 24 

development is not surprising since in order to successfully integrate de novo drug design in 25 

existing processes and pipelines, a close collaboration between diverse groups of 26 

experimental and theoretical scientists needs to be established. Therefore, to accelerate the 27 

adoption of both modern and traditional de novo molecular generators, we developed GenUI 28 

(Generator User Interface), a software platform that makes it possible to integrate molecular 29 

generators within a feature-rich graphical user interface that is easy to use by experts of 30 

varying backgrounds. GenUI is implemented as a web service and its interfaces offer tools for 31 

data preprocessing, model building, molecule generation, and interactive chemical space 32 

visualization. Moreover, the platform is easy to extend with customizable frontend React.js 33 

components and backend Python extensions. GenUI is open source and a recently developed 34 

de novo molecular generator, DrugEx, was integrated as a proof of principle. In this work, we 35 

present the architecture and implementation details of the GenUI platform and discuss how it 36 

can facilitate collaboration in the disparate communities interested in de novo drug design and 37 

molecule generation. 38 
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Introduction 43 

Due to significant technological advances in the past decades, the body of knowledge on the 44 

effects and roles of small molecules in living organisms has grown tremendously [1, 2]. At 45 

present, we assume the number of entries across all databases to be in the range of hundreds 46 

of millions or billions (108-109) [3-5] and a large portion of this data has also accumulated in 47 

public databases such as ChEMBL [6, 7] or PubChem BioAssay [1]. Still, these numbers are 48 

rather small in comparison to 1033, a recently reported estimation of the size of the drug like 49 

chemical space [8]. However, it should be noted that numerous studies in the past reported 50 

numbers both bigger and smaller depending on the definition used [8-11]. In addition, 51 

considering that only 1-2 measured biological activities per compound are available [12], the 52 

characterization of known compounds also needs to be expanded.  53 

 54 

For a long time de novo molecular design algorithms for systematic and rational exploration 55 

of chemical space [13-15] and quantitative structure-activity relationship (QSAR) modeling [16] 56 

have been considered as tools that could broaden our horizons with less experimental costs 57 

and without the need to exhaustively evaluate as many as 1033 possible drug-like compounds 58 

to find the few of interest. The relevance of QSAR modeling and de novo molecular design for 59 

drug discovery has been discussed many times [13-21], but these approaches can be just as 60 

useful in the areas of chemical biology that require new tool compounds and chemical probes 61 

that might not be constrained to drug-like molecules only [22]. 62 

 63 

Thanks to the constant growth of bioactivity databases and widespread utilization of graphical 64 

processing units (GPUs) the application of powerful data-driven approaches based on deep 65 

neural networks (DNNs) has grown substantially. DNNs found many use cases in molecular 66 

virtual screening and de novo compound generation (Figure 1) [19]. This rapidly evolving 67 

class of algorithms has been influencing modern drug discovery by building more accurate 68 

QSAR models [12, 23], creating better molecular representations [24-26], predicting 3D 69 
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protein structure with impressive accuracy [27] or achieving other promising results in many 70 

medicinal and clinical applications [3, 12, 17, 21, 28-30]. 71 

 72 

 73 

 74 

Figure 1 Schematic view of a typical cheminformatics workflow involving a DNN. First, a data set of compound 75 
structures and their measured activities on the desired target molecule (most often a protein) is compiled and 76 
encoded to suitable representation. Second, the encoded data is used as input of the neural network in forward 77 
mapping. A large number of architectures can be used with recurrent neural networks (RNNs) and convolutional 78 
neural networks (CNNs) as the most popular examples. Finally, the neural network is trained by backpropagating 79 
the error of a suitable loss function to adjust the activations inside the network so that the loss is minimized. 80 
Depending on the architecture, the network is trained either as a bioactivity predictor (e.g. a QSAR model) or as 81 
a molecular generator. 82 

 83 

In the field of de novo drug design, the most attractive feature of DNNs is their ability to 84 

probabilistically generate compound structures [13, 31]. DNNs are able to take non-trivial 85 

structure-activity patterns into account, thereby increasing the potential for scaffold hopping 86 

and the diversity of designed molecules [32, 33]. A large number of generators based on DNNs 87 

were developed recently demonstrating the ability of various network architectures to generate 88 

compounds of given properties (biological activity included) [13, 31, 34-37]. 89 

 90 

Even though deep learning has been dominating de novo drug design in the recent years, it 91 

should be noted that the field also has a long history of evolutionary heuristic methods such 92 
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as genetic algorithms on the forefront [20]. These traditional methods are still being 93 

investigated and developed [38-43] and it is yet to be established how they compare to the 94 

novel approaches based on deep learning [13]. Due to the simpler nature of these traditional 95 

approaches non-obvious relationships can be easily missed, which may affect the quality of 96 

the suggested chemical structures. However, simplicity can also be an advantage since 97 

interpretation of simpler methods is easier. This is especially problematic for deep learning 98 

models that can have more than thousands of parameters [44]. Moreover, a simpler method 99 

requires less training data [38] without sacrificing chemical space coverage [45]. 100 

 101 

One of the open questions for both traditional and deep learning molecular generators is also 102 

how they should be benchmarked, compared and interpreted [40]. Therefore, benchmarking 103 

studies of de novo drug design approaches are also the subject of ongoing research [46-48] 104 

and much needed to ensure that these methods have conclusive real impact on new ligand 105 

discovery [49, 50]. However, the ultimate test of a de novo drug design method should always 106 

be prospective application in real projects with experimental validation of the generated 107 

molecules. 108 

 109 

Although de novo molecular design algorithms have been in development for multiple 110 

decades [51] and experimentally validated active compounds have been proposed [18, 52-111 

59], these success stories are still far away from the envisaged performance of the ‘robot 112 

scientist’ [60-62]. Successful development of a completely automated and sufficiently accurate 113 

process has been elusive and hindered mostly by the computational expense and poor 114 

synthetic availability of the generated compounds [18]. Despite increasing efforts to automate 115 

the scientific process of decision making [18, 63-65], human insight and manual labor are still 116 

necessary to further refine the compounds generated by de novo molecular design algorithms. 117 

In particular, human intervention is of utmost importance in the process of compound scoring 118 

in which best candidates are prioritized for synthesis and experimental validation [18, 65].  119 

 120 
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Though many in silico compound generation and optimization tools are available for free [66], 121 

it is still an exception that these approaches are routinely used. The vast majority of methods 122 

described in the literature serve only as a proof of concept. Hence, they lack a proper graphical 123 

user interface (GUI) through which non-experts could easily access the algorithms and 124 

analyze their inputs and outputs in a convenient way. Even if such a GUI exists, it is often 125 

simplistic and intended to be used only with one particular method [41, 43, 67, 68]. Lack of 126 

easy to explain and auditable information systems is a factor leading to some level of 127 

disconnection between medicinal and computational chemists [69], which can hinder tighter 128 

collaboration that can stand in the way of effective utilization of many promising de novo drug 129 

design methods. Many molecular generators would also benefit from a comprehensive and 130 

easy to use application programming interface (API) that would enable easier integration with 131 

existing computational infrastructures. Recently a tool called Flame was presented that offers 132 

many of the aforementioned features in the field of predictive QSAR modeling [70], but while 133 

there are closed-source solutions like BRADSHAW [71] or Chemistry42 [72] to the best of our 134 

knowledge there is no such solution in the realm of open source software for de novo drug 135 

design. However, there has been effort to develop interactive databases of generated 136 

structures as evidenced by the most recent example, cheML.io [73]. 137 

 138 

In this work we present the development of GenUI, a software framework that provides 139 

a general-purpose GUI for molecular generators and enables easy integration of such 140 

algorithms with existing drug discovery pipelines as well. The GenUI framework integrates 141 

solutions for import, generation, storage and retrieval of compounds, visualization of the 142 

created molecular data sets and basic utilities for QSAR modeling. All features can be easily 143 

accessed through the web-based GUI or REST API to ensure that both human users and 144 

automated processes can interact with the application easily. Integration of new molecular 145 

generators and other features is facilitated by a Python API and GUI customization is possible 146 

via custom components implemented with the React.js JavaScript library. To demonstrate the 147 

features of the GenUI framework, our recently published molecular generator DrugEx [74] was 148 
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integrated within the GenUI ecosystem. The source code of the GenUI platform is distributed 149 

under the MIT open-source license [75-77] and several Docker [78-80] images are also 150 

available online for quick deployment [81]. 151 

Implementation 152 

Software Architecture 153 

User interaction with GenUI happens through the frontend web client which issues REST API 154 

calls to the backend, which comprises five services (Figure 2). However, advanced users may 155 

also implement clients and automated processes that use the REST API directly.  156 

 157 

 158 

Figure 2 Schematic depiction of the GenUI platform. On the frontend (A), users interact with the web-based GUI 159 
to access the backend server services (B). All actions and data exchange are facilitated through REST API calls 160 
so that any automated process can also interact with GenUI. The backend application comprises five REST API 161 
services each of which has access to the data storage and task queue subsystems. The services can issue 162 
computationally intensive and long-running asynchronous tasks to backend workers to ensure sufficient 163 
responsiveness and scalability. In the current implementation, tasks can be submitted to two queues: (1) the default 164 
CPU queue, which handles all tasks by default, or (2) the GPU queue, intended for tasks that can be accelerated 165 
by the use of GPUs. 166 

 167 
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 168 

The five backend services form the core parts of GenUI and can be described as follows: 169 

1. “Projects” service handles user account management, authorization, and workflows. It 170 

is used to log users in and organize their work into projects. 171 

2. “Compounds” service manages the compound database including deposition, 172 

standardization, and retrieval of molecules and the associated data (i.e. bioactivities, 173 

physicochemical properties, or chemical identifiers). 174 

3. “QSAR Models” service facilitates the training and use of QSAR models. They can be 175 

used to predict biological activities of the generated compounds, but they are also 176 

integral to training of many molecular generators. 177 

4. “Generators” service is responsible for the integration of de novo molecular generators. 178 

It is meant to be used to set up and train generative algorithms whether they are based 179 

on traditional approaches or deep learning. 180 

5. “Maps” service enables the creation of 2D chemical space visualizations and 181 

integration of dimensionality reduction algorithms. 182 

 183 

In the following sections, the design and implementation of each part of the GenUI platform 184 

will be described in more detail. 185 

Frontend 186 

Graphical User Interface (GUI) 187 

The GUI is implemented as a JavaScript application built on top of the React.js [82] web 188 

framework. The majority of graphical components is provided by the Vibe Dashboard open-189 

source project [83], but the original collection of Vibe components was considerably expanded 190 

with custom components to fetch, send, and display data exchanged with the GenUI backend 191 
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REST API. In addition, frameworks Plotly.js [84], Charts.js [85] and ChemSpace.js [86] are 192 

used to provide helpful interactive figures. 193 

 194 

The GUI reflects the structure of the GenUI backend services (Figure 2 and Figure 3). Each 195 

backend service (Projects, Compounds, QSAR, Generators, and Maps) is represented as 196 

a separate item in the navigation menu on the left side of the interface (Figure 3a). Upon 197 

clicking a menu item, the corresponding page opens rendering a grid of cards (Figure 3b) that 198 

represent the objects corresponding to the selected backend service. Various actions related 199 

to the particular service can be performed from the action menu in the top right of the interface 200 

(Figure 3c). 201 

Projects 202 

The “Projects” interface serves as a simple way to organize user workflows. For example, 203 

a project can encapsulate a workflow for the generation of novel ligands for one protein target 204 

(Figure 3). Each project contains imported compounds, QSAR models, molecular generators 205 

and chemical space maps. The number of projects per user is not limited and they can be 206 

deleted or created as needed. 207 

 208 

 209 
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Figure 3 A screenshot showing part of the GenUI web GUI. In the figure, the GUI is in a state where the “A2A 210 
Receptor” project is already open so the menu on the left can be used to access its data. The GUI consists of three 211 
main parts: a) navigation menu, b) card grid and c) action menu. The navigation menu is used to browse data 212 
associated with various GenUI services (“Projects” in this case). If a link is clicked in the navigation menu, the data 213 
of the selected service is displayed as a grid of interactive cards. Each card allows the users to manage particular 214 
data items (a project in this case). The action menu in the top right is also updated depending on the service 215 
selected in the navigation menu and performs actions not related to a particular data item. In this case, the action 216 
menu was used to bring up the project creation form on the bottom left of the card grid.  217 

Compounds 218 

Each project may contain any number of compound sets (Figure 4). Each set of compounds 219 

can have a different purpose in the project and come from a different source. Therefore, the 220 

contents of each card on the card grid depend on the type of compound set the card represents. 221 

Compounds can be generated by generators, but also imported from SDF files, CSV files or 222 

obtained directly from the ChEMBL database [6, 7]. New import filters can be easily added by 223 

extending the Python backend and customizing the components of the React API accordingly 224 

(see Python API and JavaScript API). For each compound in the compound set the interface 225 

can display its 2D representation (Figure 4), molecular identifiers (i.e. SMILES, InChI, and 226 

InChIKey), reported and predicted activities (Figure 4) and physicochemical properties (i.e. 227 

molecular weight, number of heavy atoms, number of aromatic rings, hydrogen bond donors, 228 

hydrogen bond acceptors, logP and topological polar surface area). 229 

 230 

 231 
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Figure 4 A screenshot showing part of the “Compounds” GUI. In this page, users can import data sets from various 232 
sources. A card representing an already imported data set from the ChEMBL database [7] is shown. The position 233 
and size of each displayed card can be modified by either dragging the card (reposition) or adjusting the bottom 234 
right corner (size change). The card shown is currently expanded over two rows of the card grid (Figure 3b) in 235 
order to accommodate the displayed data better. The “Activities” tab in the compound overview shows summary 236 
of the biological activity data associated with the compound. The activities are grouped by type and aside from 237 
experimentally determined activities the interface also displays activity predictions of available QSAR models. For 238 
example, in the view shown the “Active Probability” activity type is used to denote the output probability from 239 
a classification QSAR model. Each activity value also contains information about its origin (the “Source” column) 240 
so that it can be tracked back to its source. 241 

QSAR Models 242 

All QSAR models trained or imported in the given project are available from the “QSAR Models” 243 

page (Figure 5, Figure 6). Each QSAR model is represented by a card with several tabs. The 244 

“Info” tab contains model metadata, as well as a serialized model file to download (Figure 5). 245 

The “Performance” tab lists various performance measures of the QSAR model obtained by 246 

cross-validation or on an independent hold out test set (Figure 6). The validation procedure 247 

can be adjusted by the user during model creation (Figure 5). Making predictions with the 248 

model is possible under the “Predictions” tab. Each QSAR model can be used to make 249 

predictions for any compound set listed on the “Compounds” page and the calculated 250 

predictions will then become visible in that interface as well (Figure 4). 251 

 252 

 253 

Figure 5 A screenshot showing part of the “QSAR Models” GUI. The card on the left side of the screen shows how 254 
training data is chosen for a new model while the card on the right shows metadata about an already trained model. 255 
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 256 

Figure 6 Performance evaluation view for a) regression and b) classification QSAR model. In a) the mean-squared 257 
error (MSE) and the coefficient of determination (R2) are used as validation metrics. In b) the performance is 258 
measured on a hold out independent validation test set with the Matthews correlation coefficient (MCC) and the 259 
area under the receiver operating characteristic (ROC) curve (AUC). The ROC curve itself is also displayed above 260 
the metrics.  261 

New QSAR models are submitted for training with a creation card (Figure 5) that helps users 262 

choose model hyperparameters and a suitable training strategy (i.e. the characteristics of the 263 

independent hold out validation set, the number of cross-validation folds or the choice of 264 

validation metrics). The “Info” tab of a trained model contains important metadata as well as 265 

a hyperlink to export the model and save it as a reusable Python object. This import/export 266 

feature enables users to archive and share their work, enhancing the reusability and 267 

reproducibility of the developed models [87]. The “Performance” tab can be used to observe 268 

model performance data according to the chosen validation scheme (Figure 6). This 269 

information is different depending on the chosen model type (regression vs. classification, 270 

Figure 6a vs. Figure 6b) and the parameters used (i.e. the choice of validation metrics). 271 

Additional performance measures and machine learning algorithms can be integrated with the 272 

backend Python API. Creation of such extensions does not even require editing of the GUI for 273 

many standard algorithms (see Python API). 274 
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Generators 275 

Under the “Generators” menu item, the users find a list of individual generators implemented 276 

in the GenUI framework (Figure 7). Currently, only the DrugEx generator [74] is available, but 277 

other  generators can be added easily by extending the Python backend and customizing the 278 

existing React components. In fact, the GUI for DrugEx is based on the same React 279 

components as the “QSAR Models” view. 280 

 281 

 282 

Figure 7 A screenshot showing part of the “DrugEx” GUI with a model creation card with a) DrugEx training 283 
parameters and b) performance overview of a trained DrugEx network. In a) the fields to define the compound set 284 
for the process of fine-tuning the ‘parent’ recurrent neural network trained on the ZINC data set [74] are shown. In 285 
addition, the form provides fields to set the number of learning epochs, training batch size, frequency of 286 
performance monitoring and size of the validation set. In b) the “Performance” tab tracks model performance. It 287 
shows values of the loss function on the training set and validation set (top) and the SMILES error rate (bottom) at 288 
each step of the training process. The performance view is updated according to the chosen monitoring frequency 289 
in real time as the model is being trained. Each model also has the “Info” tab which holds the same information as 290 
for QSAR models. 291 

Like QSAR models, DrugEx networks can also be serialized and saved as files. For example, 292 

a cheminformatics researcher can build a DrugEx model outside of the GenUI ecosystem (i.e. 293 

using a script published with the original paper [74]) and provide the created model files to 294 

another researcher who can import and use the model from the GenUI web-based GUI. 295 

Therefore, it is easy to share work and accommodate various groups of users in this way. 296 
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Maps 297 

Interactive visualization of chemical space is available under the “Maps” menu item. The menu 298 

separates the creation of the chemical space visualization, the “Creator” page (Figure 8), and 299 

its exploration, the “Explorer” page (Figure 9). 300 

 301 

Figure 8 The “Creator” interface of GenUI “Maps” page. On the left a form to create a new t-SNE [88] mapping of 302 
two sets of compounds using Morgan fingerprints is shown while information about an existing map can be seen 303 
on the right. 304 

 305 

Figure 9 A screenshot showing the “Explorer” part of the “Maps” GUI. The interactive plot on the left side of the 306 
screen is provided by the ChemSpace.js library [86]. Each point in this visualization corresponds to one molecule. 307 
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In this particular configuration, the shapes and colors of the points indicate the compound set to which the 308 
compounds belong to. The color scheme of points can be changed with the menu in the top left corner of the plot. 309 
It is possible to color points by biological activities, physicochemical properties and other data associated with the 310 
compounds. The same can also be done with the size of the points. The points drawn in the map are interactive 311 
and hovering over a point shows a box with information about the compound inside and on the right side of the 312 
map. Groups of points can also be selected by drawing a rectangle over them in which case a list of selected 313 
compounds is shown in the “Selection List” tab (Figure 10) and their bioactivity data is summarized under the 314 
“Selection Activities” tab (Figure 11). 315 

 316 

The “Creator” page is implemented as a grid of cards each of which represents an embedding 317 

of chemical compounds in 2D space (Figure 8). Implicitly, the GenUI platform enables t-SNE 318 

[88] embedding (provided by openTSNE [89]). However, new projection methods can be easily 319 

added to the backend through the GenUI Python API with no need to modify the GUI 320 

(see Python API) [90]. 321 

 322 

The purpose of the “Explorer” page is to interactively visualize chemical space embedding 323 

prepared in the “Creator” (Figure 9). In the created visualization the users can explore 324 

compound bioactivities, physicochemical properties, and other measurements for various 325 

representations and parts of chemical space. Thanks to ChemSpace.js [86] up to 5 326 

dimensions can be shown in the map at the same time: X and Y coordinates, point color, point 327 

size and point shape. The map can be zoomed in by drawing a rectangle over a group of 328 

points. Such points form a selection and their detailed information is then displayed under the 329 

“Selected List” (Figure 10) and “Selected Activities” tabs (Figure 11). 330 
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 331 

Figure 10 View of the “Selected List” tab of the “Explorer” page. The tab shows the selected molecules in the map 332 
as a list which is the same as the one used in the “Compounds” view (Figure 4). For easier navigation, the 333 
compounds are also grouped by the compound set they belong to and the view for each set can be accessed by 334 
switching tabs above the displayed list (only one compound set, CHEMBL251, is present in this case). 335 

 336 
Figure 11 View of the “Selection Activities” tab of the “Explorer” page. In this view, violin plots representing 337 
distributions of activities in the set of selected compounds are displayed. Each violin plot corresponds to one 338 
compound set and  one activity type. The violin plots are also interactive and hovering over points updates the 339 
compound structure and its physicochemical properties are displayed on the right. 340 

JavaScript API 341 

Two main considerations in the development of GenUI are reusability and extensibility. 342 

Therefore, the frontend GUI comprises a large library of over 50 React components that are 343 
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encapsulated in a standalone package (Figure 12). The package is organized into 344 

subpackages that follow the structure and hierarchy of design elements in the GenUI interface. 345 

In the following sections, we use the two most important groups of the React API components 346 

as case studies to illustrate how the frontend GUI can be extended. The presented 347 

components are “Model Components”, used to add new trainable models, and the “REST API 348 

Components”, used to fetch and send data between the frontend and the GenUI REST API 349 

services. 350 

 351 

Figure 12 Schematic depiction of the GenUI React library which contains customized styles, utility functions and 352 
the components used in the GenUI web client. The “components” subpackage organizes the components into 353 
groups related to the structure of the GenUI interface. For example, components filed under the “models” 354 
subpackage are used in the creation of the “QSAR Models” (Figure 5),  “DrugEx” (Figure 7) and “Maps” (Figure 8) 355 
interfaces while components under the “compounds” subpackage are used to implement the “Compounds” view 356 
(Figure 4). General purpose components (i.e. the card grid or the card tab widget) are in the root of the “components” 357 
subpackage. 358 

Model Components 359 

Much of the functionality of the GenUI platform is based on trained models. The “QSAR 360 

Models”, “DrugEx” and “Maps” pages all borrow from the same library of reusable GenUI 361 

React components (Figure 12). At the core of the “models” component library (Figure 12) is 362 

the ModelsPage component (Figure 13). ModelsPage manages the layout and data displayed 363 

in model cards. When the users select to build a new model, the ModelsPage component is 364 

also responsible to show a card with the model creation form. The information that the 365 

ModelsPage displays can be customized through various React properties (Figure 13) that 366 
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represent either data (data properties) or other components (component properties). Such an 367 

encapsulation approach and top-down data flow is one of the main strengths of the React 368 

framework. This design is very robust since it fosters appropriate separation of concerns by 369 

their encapsulation inside more and more specialized components. This makes the code easy 370 

to reuse and maintain. 371 

 372 

Figure 13 A simplified illustration of the high-level components in the GenUI React API for rendering model cards. 373 
The main ModelsPage component has two kinds of attributes (called “properties” in React): a) data properties and 374 
b) component properties. The values of data properties are used to display model data while the values of 375 
component properties are used as child components and injected into the GUI at appropriate places. If no 376 
component property is specified, default components are used as children instead (i.e. ModelCard and 377 
NewModelCard). The child components can accept data and component properties as well from their parent (i.e 378 
ModelsPage). This creates a hierarchy of reusable components that can be easily assembled and configured to 379 
accommodate the different needs of each model view in a standardized and consistent manner. 380 

REST API Components 381 

Because the GUI often needs to fetch data from the backend server, several React 382 

components were defined for that purpose. In order to use them, one just needs to provide 383 

the required REST API URLs as React component properties. For example, the 384 

ComponentWithResources component configured with the ‘/maps/algorithms/’ URL will get all 385 

available embedding methods as JSON and converts the result to a JavaScript object. Many 386 

components can also periodically update the fetched data, which is useful for tracking 387 

information in real time. For paginated data there is also the ApiResourcePaginator 388 

component that only fetches a new page if a given event is fired (i.e. user presses a button). 389 
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This makes it convenient to create GUIs for larger data sets. In addition, user credentials are 390 

also handled automatically. 391 

 392 

Many more specialized components are also available to fetch specific information. For 393 

example, the TaskAwareComponent tracks URLs associated with background asynchronous 394 

tasks and it regularly passes information about completed, running, or failed tasks to its child 395 

components. However, other specialized components exist that automatically fetch and format 396 

pictures of molecules, bioactivities, physicochemical properties or create, update and delete 397 

objects in the UI and the server [76]. 398 

Backend 399 

The backend services are the core of the GenUI platform and the GenUI Python API provides 400 

a convenient way to write backend extensions (i.e. new molecular generators, compound 401 

import filters, machine learning algorithms for QSAR modeling, and dimensionality reduction 402 

methods for chemical space maps). All five backend services (Figure 2) are implemented with 403 

the Django web framework [91] and Django REST Framework [92]. For data storage, a freely 404 

available Docker [80] image developed by Informatics Matters Ltd. [93] is used. The Docker 405 

image contains an instance of the PostgreSQL database system with integrated database 406 

cartridge from the RDKit cheminformatics framework [94]. The integration of RDKit with the 407 

Django web framework is handled with the Django RDKit library [95]. All compounds imported 408 

in the database are automatically standardized with the current version of the ChEMBL 409 

structure curation pipeline [96].  410 

 411 

Because the backend services also handle processing of long-running and computationally 412 

intensive tasks, the framework uses Celery distributed task queue [97] with Redis as 413 

a message broker [98] to dispatch them to workers. Celery workers are processes running in 414 

the background that consume tasks from the task queue and process them asynchronously. 415 
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Workers can either run on the same machine as the backend services or they can be 416 

distributed over an infrastructure of computers (see Deployment). 417 

Python API 418 

The GenUI backend codebase [77] is divided into multiple Python packages that each 419 

encapsulate a part of the GenUI Django project (Figure 14). Any package that resides in the 420 

root directory is referred to as the root package. Root packages facilitate many of the REST 421 

API endpoints (Figure 2), but they also contain reusable classes that are intended to be 422 

extended by extensions (see Generic Views and Viewsets, for example). In the following 423 

sections, some important features of the backend Python API are briefly highlighted. However, 424 

a much more detailed description with code examples is available on the documentation page 425 

of the project [90]. 426 

 427 
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 428 

Figure 14 Schematic depiction of the GenUI backend Python code. The backend is formed by a single Django 429 
project which is designated by its settings package and the urls and wsgi modules. The GenUI code itself is divided 430 
into a number of root packages. Each root package has a predefined structure with the code of the package 431 
organized in its own modules and packages. Each root package of the GenUI framework also has the extensions 432 
subpackage, which is a collection of extension modules. GenUI extensions and packages can also define the 433 
genuisetup module, which is used to automatically configure the individual package or extension. 434 

Extensions 435 

Just like in the case of the GenUI React API, modularity and extensibility were also the main 436 

concerns during the design of the GenUI backend services. Each of the aforementioned root 437 

packages contains a Python package called extensions (Figure 14). The extensions package 438 

can contain any number of Django applications or Python modules, which ensures that the 439 

extending components of the GenUI framework are well-organized and loosely coupled.  440 

 441 

Provided that GenUI extensions are structured a certain way they can take advantage of 442 

automatic configuration and integration (see Automatic Code Discovery). Before the Django 443 
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project is deployed, GenUI applications and extensions are detected and configured with the 444 

genuisetup command, which makes sure that the associated REST API endpoints are 445 

exposed under the correct URLs. The genuisetup command is executed with the manage.py 446 

script (a utility script provided by the Django library). 447 

Automatic Code Discovery 448 

The root packages of the GenUI backend library define many abstract and generic base 449 

classes to implement and reuse in extensions. These classes either implement the REST API 450 

or define code to be run on the worker nodes inside Celery tasks. Automatic code discovery 451 

uses several introspection functions and methods to find the derived classes of the base 452 

classes found in the root packages. By default, this is done when the genuisetup command is 453 

executed (see Extensions).  454 

 455 

For example, if the derived class defines a new machine learning algorithm to be used in 456 

QSAR modelling, automatic code discovery utilities make sure that the new algorithm appears 457 

as a choice in the QSAR modelling REST API and that proper parameter values are collected 458 

via the endpoint to create the model. Moreover, all changes also get automatically propagated 459 

to the web-based GUI because it uses the REST API to obtain algorithm choices for the model 460 

creation form. Thus, no JavaScript code has to be written to integrate a new machine learning 461 

algorithm. These mechanisms are also used when adding molecular generators, 462 

dimensionality reduction methods, or molecular descriptors. 463 

Generic Views and Viewsets 464 

When developing REST API services with the Django REST Framework, a common practice 465 

is using generic views and sets of views (called viewsets). In Django applications, views are 466 

functions or classes that handle incoming HTTP requests. Viewsets are classes defined by 467 

the Django REST Framework that bring functionality of several views (such as creation, 468 

update or deletion of objects) into one single class. Generic views and viewsets are then 469 
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classes that usually do not stand on their own, but are designed to be further extended and 470 

customized. 471 

 472 

The GenUI Python library embraces this philosophy and many REST API endpoints are 473 

encapsulated in generic views or viewsets. This ensures that the functionality can be reused 474 

and that no code needs to be written twice, as stated by the well-known DRY (“Don’t Repeat 475 

Yourself”) principle [99]. An example of such a generic approach is the ModelViewSet class 476 

that handles the endpoints for retrieval and training of machine learning models. This viewset 477 

is used by the qsar and maps applications, but also by the DrugEx extension. All these 478 

applications depend on some form of a machine learning model so they can take advantage 479 

of this interface, which automatically checks the validity of user inputs and sends model 480 

training jobs to the task queue. 481 

Asynchronous Tasks 482 

Many of the GenUI backend services take advantage of asynchronous tasks which are 483 

functions executed in the background without blocking the main application. Moreover, tasks 484 

do not even have to be executed on the same machine as the caller of the task, which allows 485 

for a great deal of flexibility and scalability (see Deployment).  486 

 487 

The Celery task queue [97] makes creating asynchronous tasks as easy as defining a Python 488 

function [100]. In addition, some GenUI views already define their own tasks and no explicit 489 

task definition is needed in the derived views of the extensions. For example, the compounds 490 

root package defines a generic viewset that can be used to create and manage compound 491 

sets. The import and creation of compounds belonging to a new compound set is handled by 492 

implementing a separate initializer class, which is passed to the appropriate generic viewset 493 

class [90]. The initialization of a compound set can take a long time or may fail and, thus, 494 

should be executed asynchronously. Therefore, the viewset of the compounds application 495 
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automatically executes the methods of the initializer class asynchronously with the help of an 496 

available Celery worker.  497 

Deployment 498 

Docker Images 499 

Since the GenUI platform consists of several components with many dependencies and spans 500 

multiple programming languages, it can be tedious to set up the whole project on a new system. 501 

Docker makes deployment of larger projects like this easier by encapsulating different parts 502 

of the deployment environment inside Docker images [78-80]. Docker images are simply 503 

downloaded and deployed on the target system without the need to install any other tools 504 

beside Docker. GenUI uses many official Docker images available on the Docker image 505 

sharing platform Docker Hub [101]. The PostgreSQL database with built-in RDKit cartridge 506 

[93], Redis [102] and the NGINX web server [103, 104] are all obtained by this standard 507 

channel. In addition, we defined the following images to support the deployment of the GenUI 508 

platform itself [81]: 509 

 510 

1. genui-main: Used to deploy both the frontend web application and the backend 511 

services. 512 

2. genui-worker: Deploys a basic Celery worker without GPU support. 513 

3. genui-gpuworker: Deploys a Celery worker with GPU support. It is the same as the 514 

genui-worker, but it has the NVIDIA CUDA Toolkit already installed. 515 

 516 

The tools to build these images are freely available [81]. Therefore, developers can create 517 

images for extended versions of the GenUI that fit the needs of their organizations. In addition, 518 

the separation of the main application (genui-main) from workers also allows distributed 519 

deployment over multiple machines, which opens up the possibility to create a scalable 520 

architecture that can quickly accommodate teams of varying sizes. 521 



25 
 

Future Directions 522 

Although the GenUI framework already implements much of the functionality needed to 523 

successfully integrate most molecular generators, there are still many aspects of the 524 

framework that can be improved. For instance, it would be beneficial if more sources of 525 

molecular structures and bioactivity information are integrated in the platform besides 526 

ChEMBL (i.e PubChem [105], ZINC [106], DrugBank [107], BindingDB [108] or Probes and 527 

Drugs [109]). Currently, GenUI also lacks features to perform effective similarity and 528 

substructure searches, which we see as a crucial next step to improve the appeal of the 529 

platform to medicinal chemists. The current version of GenUI would also benefit from 530 

extending the sets of descriptors, QSAR machine learning algorithms and chemical space 531 

projections since the performance of different methods can vary across data sets. Finally, the 532 

question of synthesizability of the generated structures should also be addressed and 533 

a system for predicting chemical reactions and retrosynthetic pathways could also be very 534 

useful to medicinal chemists if integrated in the GUI (i.e. by facilitating connection to a service 535 

such as the IBM RXN [110] or PostEra Manifold [111]). 536 

 537 

Even though it is hard to determine the requirements of every project where molecular 538 

generators might be applied, many of the aforementioned features and improvements can be 539 

readily implemented with the GenUI React components (see JavaScript API) and the Python 540 

API (see Python API). In fact, the already presented extensions and the DrugEx interface are 541 

useful case studies that can be used as templates for integration of many other 542 

cheminformatics tools and de novo molecular generators. Therefore, we see GenUI as 543 

a flexible and scalable framework that can be used by organizations to quickly integrate tools 544 

and data the way it suits their needs the most. However, we would also like GenUI to become 545 

a new useful way to share the progress in the development of novel de novo drug design 546 

methods and other cheminformatics approaches in the public domain. 547 
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Conclusions 548 

We implemented a full stack solution for integration of de novo molecular generation 549 

techniques in a multidisciplinary work environment. The proposed GenUI software platform 550 

provides a GUI designed to be easily understood by experts outside the cheminformatics 551 

domain, but it also offers a feature-rich REST API for programmatic access and 552 

straightforward integration with automated processes. The presented solution also provides 553 

extensive Python and JavaScript extension APIs for easy integration of new molecular 554 

generators and other cheminformatics tools. We envision that the field of molecular generation 555 

will likely expand in the future and that an open source software platform such as this one is 556 

a crucial step towards more widespread adoption of novel algorithms in drug discovery and 557 

related research. We also believe that GenUI can facilitate more engagement between 558 

different groups of users and inspire new directions in the field of de novo drug design. 559 

 560 
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