
1

GenUI: Interactive and Extensible 1

Open Source Software Platform for 2

De Novo Molecular Generation 3

M. Sicho1,2,†, X. Liu3,†, D. Svozil1,2, G.J.P. van Westen3,* 4

1CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics 5

and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology 6

Prague, Technická 5, 166 28, Prague, Czech Republic 7

2CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular 8

Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic 9

3Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 10

Leiden, The Netherlands 11

†These authors contributed equally to this work 12

*corresponding author, e-mail: gerard@lacdr.leidenuniv.nl 13

Email addresses: 14

MŠ: martin.sicho@vscht.cz, ORCID: 0000-0002-8771-1731 15

XL: liu.x@lacdr.leidenuniv.nl, ORCID: 0000-0003-2368-4655 16

DS: daniel.svozil@vscht.cz, ORCID: 0000-0003-2577-5163 17

GvW: gerard@lacdr.leidenuniv.nl, ORCID: 0000-0003-0717-1817 18

Abstract 19

Computer-aided de novo drug design holds promise to significantly accelerate the drug 20

discovery process and bring down its costs. Thanks to this outlook, the field has thrived in the 21

past few years and has seen a surge of new method development due to the proliferation of 22

2

generative deep neural networks. However, the widespread adoption of new de novo drug 23

design techniques has been slow in fields like medicinal chemistry or chemical biology. Such 24

development is not surprising since in order to successfully integrate de novo drug design in 25

existing processes and pipelines, a close collaboration between diverse groups of 26

experimental and theoretical scientists needs to be established. Therefore, to accelerate the 27

adoption of both modern and traditional de novo molecular generators, we developed GenUI 28

(Generator User Interface), a software platform that makes it possible to integrate molecular 29

generators within a feature-rich graphical user interface that is easy to use by experts of 30

varying backgrounds. GenUI is implemented as a web service and its interfaces offer tools for 31

data preprocessing, model building, molecule generation, and interactive chemical space 32

visualization. Moreover, the platform is easy to extend with customizable frontend React.js 33

components and backend Python extensions. GenUI is open source and a recently developed 34

de novo molecular generator, DrugEx, was integrated as a proof of principle. In this work, we 35

present the architecture and implementation details of the GenUI platform and discuss how it 36

can facilitate collaboration in the disparate communities interested in de novo drug design and 37

molecule generation. 38

Keywords 39

graphical user interface, de novo drug design, molecule generation, deep learning, web 40

application 41

42

3

Introduction 43

Due to significant technological advances in the past decades, the body of knowledge on the 44

effects and roles of small molecules in living organisms has grown tremendously [1, 2]. At 45

present, we assume the number of entries across all databases to be in the range of hundreds 46

of millions or billions (108-109) [3-5] and a large portion of this data has also accumulated in 47

public databases such as ChEMBL [6, 7] or PubChem BioAssay [1]. Still, these numbers are 48

rather small in comparison to 1033, a recently reported estimation of the size of the drug like 49

chemical space [8]. However, it should be noted that numerous studies in the past reported 50

numbers both bigger and smaller depending on the definition used [8-11]. In addition, 51

considering that only 1-2 measured biological activities per compound are available [12], the 52

characterization of known compounds also needs to be expanded. 53

 54

For a long time de novo molecular design algorithms for systematic and rational exploration 55

of chemical space [13-15] and quantitative structure-activity relationship (QSAR) modeling [16] 56

have been considered as tools that could broaden our horizons with less experimental costs 57

and without the need to exhaustively evaluate as many as 1033 possible drug-like compounds 58

to find the few of interest. The relevance of QSAR modeling and de novo molecular design for 59

drug discovery has been discussed many times [13-21], but these approaches can be just as 60

useful in the areas of chemical biology that require new tool compounds and chemical probes 61

that might not be constrained to drug-like molecules only [22]. 62

 63

Thanks to the constant growth of bioactivity databases and widespread utilization of graphical 64

processing units (GPUs) the application of powerful data-driven approaches based on deep 65

neural networks (DNNs) has grown substantially. DNNs found many use cases in molecular 66

virtual screening and de novo compound generation (Figure 1) [19]. This rapidly evolving 67

class of algorithms has been influencing modern drug discovery by building more accurate 68

QSAR models [12, 23], creating better molecular representations [24-26], predicting 3D 69

4

protein structure with impressive accuracy [27] or achieving other promising results in many 70

medicinal and clinical applications [3, 12, 17, 21, 28-30]. 71

 72

 73

 74

Figure 1 Schematic view of a typical cheminformatics workflow involving a DNN. First, a data set of compound 75
structures and their measured activities on the desired target molecule (most often a protein) is compiled and 76
encoded to suitable representation. Second, the encoded data is used as input of the neural network in forward 77
mapping. A large number of architectures can be used with recurrent neural networks (RNNs) and convolutional 78
neural networks (CNNs) as the most popular examples. Finally, the neural network is trained by backpropagating 79
the error of a suitable loss function to adjust the activations inside the network so that the loss is minimized. 80
Depending on the architecture, the network is trained either as a bioactivity predictor (e.g. a QSAR model) or as 81
a molecular generator. 82

 83

In the field of de novo drug design, the most attractive feature of DNNs is their ability to 84

probabilistically generate compound structures [13, 31]. DNNs are able to take non-trivial 85

structure-activity patterns into account, thereby increasing the potential for scaffold hopping 86

and the diversity of designed molecules [32, 33]. A large number of generators based on DNNs 87

were developed recently demonstrating the ability of various network architectures to generate 88

compounds of given properties (biological activity included) [13, 31, 34-37]. 89

 90

Even though deep learning has been dominating de novo drug design in the recent years, it 91

should be noted that the field also has a long history of evolutionary heuristic methods such 92

5

as genetic algorithms on the forefront [20]. These traditional methods are still being 93

investigated and developed [38-43] and it is yet to be established how they compare to the 94

novel approaches based on deep learning [13]. Due to the simpler nature of these traditional 95

approaches non-obvious relationships can be easily missed, which may affect the quality of 96

the suggested chemical structures. However, simplicity can also be an advantage since 97

interpretation of simpler methods is easier. This is especially problematic for deep learning 98

models that can have more than thousands of parameters [44]. Moreover, a simpler method 99

requires less training data [38] without sacrificing chemical space coverage [45]. 100

 101

One of the open questions for both traditional and deep learning molecular generators is also 102

how they should be benchmarked, compared and interpreted [40]. Therefore, benchmarking 103

studies of de novo drug design approaches are also the subject of ongoing research [46-48] 104

and much needed to ensure that these methods have conclusive real impact on new ligand 105

discovery [49, 50]. However, the ultimate test of a de novo drug design method should always 106

be prospective application in real projects with experimental validation of the generated 107

molecules. 108

 109

Although de novo molecular design algorithms have been in development for multiple 110

decades [51] and experimentally validated active compounds have been proposed [18, 52-111

59], these success stories are still far away from the envisaged performance of the ‘robot 112

scientist’ [60-62]. Successful development of a completely automated and sufficiently accurate 113

process has been elusive and hindered mostly by the computational expense and poor 114

synthetic availability of the generated compounds [18]. Despite increasing efforts to automate 115

the scientific process of decision making [18, 63-65], human insight and manual labor are still 116

necessary to further refine the compounds generated by de novo molecular design algorithms. 117

In particular, human intervention is of utmost importance in the process of compound scoring 118

in which best candidates are prioritized for synthesis and experimental validation [18, 65]. 119

 120

6

Though many in silico compound generation and optimization tools are available for free [66], 121

it is still an exception that these approaches are routinely used. The vast majority of methods 122

described in the literature serve only as a proof of concept. Hence, they lack a proper graphical 123

user interface (GUI) through which non-experts could easily access the algorithms and 124

analyze their inputs and outputs in a convenient way. Even if such a GUI exists, it is often 125

simplistic and intended to be used only with one particular method [41, 43, 67, 68]. Lack of 126

easy to explain and auditable information systems is a factor leading to some level of 127

disconnection between medicinal and computational chemists [69], which can hinder tighter 128

collaboration that can stand in the way of effective utilization of many promising de novo drug 129

design methods. Many molecular generators would also benefit from a comprehensive and 130

easy to use application programming interface (API) that would enable easier integration with 131

existing computational infrastructures. Recently a tool called Flame was presented that offers 132

many of the aforementioned features in the field of predictive QSAR modeling [70], but while 133

there are closed-source solutions like BRADSHAW [71] or Chemistry42 [72] to the best of our 134

knowledge there is no such solution in the realm of open source software for de novo drug 135

design. However, there has been effort to develop interactive databases of generated 136

structures as evidenced by the most recent example, cheML.io [73]. 137

 138

In this work we present the development of GenUI, a software framework that provides 139

a general-purpose GUI for molecular generators and enables easy integration of such 140

algorithms with existing drug discovery pipelines as well. The GenUI framework integrates 141

solutions for import, generation, storage and retrieval of compounds, visualization of the 142

created molecular data sets and basic utilities for QSAR modeling. All features can be easily 143

accessed through the web-based GUI or REST API to ensure that both human users and 144

automated processes can interact with the application easily. Integration of new molecular 145

generators and other features is facilitated by a Python API and GUI customization is possible 146

via custom components implemented with the React.js JavaScript library. To demonstrate the 147

features of the GenUI framework, our recently published molecular generator DrugEx [74] was 148

7

integrated within the GenUI ecosystem. The source code of the GenUI platform is distributed 149

under the MIT open-source license [75-77] and several Docker [78-80] images are also 150

available online for quick deployment [81]. 151

Implementation 152

Software Architecture 153

User interaction with GenUI happens through the frontend web client which issues REST API 154

calls to the backend, which comprises five services (Figure 2). However, advanced users may 155

also implement clients and automated processes that use the REST API directly. 156

 157

 158

Figure 2 Schematic depiction of the GenUI platform. On the frontend (A), users interact with the web-based GUI 159
to access the backend server services (B). All actions and data exchange are facilitated through REST API calls 160
so that any automated process can also interact with GenUI. The backend application comprises five REST API 161
services each of which has access to the data storage and task queue subsystems. The services can issue 162
computationally intensive and long-running asynchronous tasks to backend workers to ensure sufficient 163
responsiveness and scalability. In the current implementation, tasks can be submitted to two queues: (1) the default 164
CPU queue, which handles all tasks by default, or (2) the GPU queue, intended for tasks that can be accelerated 165
by the use of GPUs. 166

 167

8

 168

The five backend services form the core parts of GenUI and can be described as follows: 169

1. “Projects” service handles user account management, authorization, and workflows. It 170

is used to log users in and organize their work into projects. 171

2. “Compounds” service manages the compound database including deposition, 172

standardization, and retrieval of molecules and the associated data (i.e. bioactivities, 173

physicochemical properties, or chemical identifiers). 174

3. “QSAR Models” service facilitates the training and use of QSAR models. They can be 175

used to predict biological activities of the generated compounds, but they are also 176

integral to training of many molecular generators. 177

4. “Generators” service is responsible for the integration of de novo molecular generators. 178

It is meant to be used to set up and train generative algorithms whether they are based 179

on traditional approaches or deep learning. 180

5. “Maps” service enables the creation of 2D chemical space visualizations and 181

integration of dimensionality reduction algorithms. 182

 183

In the following sections, the design and implementation of each part of the GenUI platform 184

will be described in more detail. 185

Frontend 186

Graphical User Interface (GUI) 187

The GUI is implemented as a JavaScript application built on top of the React.js [82] web 188

framework. The majority of graphical components is provided by the Vibe Dashboard open-189

source project [83], but the original collection of Vibe components was considerably expanded 190

with custom components to fetch, send, and display data exchanged with the GenUI backend 191

9

REST API. In addition, frameworks Plotly.js [84], Charts.js [85] and ChemSpace.js [86] are 192

used to provide helpful interactive figures. 193

 194

The GUI reflects the structure of the GenUI backend services (Figure 2 and Figure 3). Each 195

backend service (Projects, Compounds, QSAR, Generators, and Maps) is represented as 196

a separate item in the navigation menu on the left side of the interface (Figure 3a). Upon 197

clicking a menu item, the corresponding page opens rendering a grid of cards (Figure 3b) that 198

represent the objects corresponding to the selected backend service. Various actions related 199

to the particular service can be performed from the action menu in the top right of the interface 200

(Figure 3c). 201

Projects 202

The “Projects” interface serves as a simple way to organize user workflows. For example, 203

a project can encapsulate a workflow for the generation of novel ligands for one protein target 204

(Figure 3). Each project contains imported compounds, QSAR models, molecular generators 205

and chemical space maps. The number of projects per user is not limited and they can be 206

deleted or created as needed. 207

 208

 209

10

Figure 3 A screenshot showing part of the GenUI web GUI. In the figure, the GUI is in a state where the “A2A 210
Receptor” project is already open so the menu on the left can be used to access its data. The GUI consists of three 211
main parts: a) navigation menu, b) card grid and c) action menu. The navigation menu is used to browse data 212
associated with various GenUI services (“Projects” in this case). If a link is clicked in the navigation menu, the data 213
of the selected service is displayed as a grid of interactive cards. Each card allows the users to manage particular 214
data items (a project in this case). The action menu in the top right is also updated depending on the service 215
selected in the navigation menu and performs actions not related to a particular data item. In this case, the action 216
menu was used to bring up the project creation form on the bottom left of the card grid. 217

Compounds 218

Each project may contain any number of compound sets (Figure 4). Each set of compounds 219

can have a different purpose in the project and come from a different source. Therefore, the 220

contents of each card on the card grid depend on the type of compound set the card represents. 221

Compounds can be generated by generators, but also imported from SDF files, CSV files or 222

obtained directly from the ChEMBL database [6, 7]. New import filters can be easily added by 223

extending the Python backend and customizing the components of the React API accordingly 224

(see Python API and JavaScript API). For each compound in the compound set the interface 225

can display its 2D representation (Figure 4), molecular identifiers (i.e. SMILES, InChI, and 226

InChIKey), reported and predicted activities (Figure 4) and physicochemical properties (i.e. 227

molecular weight, number of heavy atoms, number of aromatic rings, hydrogen bond donors, 228

hydrogen bond acceptors, logP and topological polar surface area). 229

 230

 231

11

Figure 4 A screenshot showing part of the “Compounds” GUI. In this page, users can import data sets from various 232
sources. A card representing an already imported data set from the ChEMBL database [7] is shown. The position 233
and size of each displayed card can be modified by either dragging the card (reposition) or adjusting the bottom 234
right corner (size change). The card shown is currently expanded over two rows of the card grid (Figure 3b) in 235
order to accommodate the displayed data better. The “Activities” tab in the compound overview shows summary 236
of the biological activity data associated with the compound. The activities are grouped by type and aside from 237
experimentally determined activities the interface also displays activity predictions of available QSAR models. For 238
example, in the view shown the “Active Probability” activity type is used to denote the output probability from 239
a classification QSAR model. Each activity value also contains information about its origin (the “Source” column) 240
so that it can be tracked back to its source. 241

QSAR Models 242

All QSAR models trained or imported in the given project are available from the “QSAR Models” 243

page (Figure 5, Figure 6). Each QSAR model is represented by a card with several tabs. The 244

“Info” tab contains model metadata, as well as a serialized model file to download (Figure 5). 245

The “Performance” tab lists various performance measures of the QSAR model obtained by 246

cross-validation or on an independent hold out test set (Figure 6). The validation procedure 247

can be adjusted by the user during model creation (Figure 5). Making predictions with the 248

model is possible under the “Predictions” tab. Each QSAR model can be used to make 249

predictions for any compound set listed on the “Compounds” page and the calculated 250

predictions will then become visible in that interface as well (Figure 4). 251

 252

 253

Figure 5 A screenshot showing part of the “QSAR Models” GUI. The card on the left side of the screen shows how 254
training data is chosen for a new model while the card on the right shows metadata about an already trained model. 255

12

 256

Figure 6 Performance evaluation view for a) regression and b) classification QSAR model. In a) the mean-squared 257
error (MSE) and the coefficient of determination (R2) are used as validation metrics. In b) the performance is 258
measured on a hold out independent validation test set with the Matthews correlation coefficient (MCC) and the 259
area under the receiver operating characteristic (ROC) curve (AUC). The ROC curve itself is also displayed above 260
the metrics. 261

New QSAR models are submitted for training with a creation card (Figure 5) that helps users 262

choose model hyperparameters and a suitable training strategy (i.e. the characteristics of the 263

independent hold out validation set, the number of cross-validation folds or the choice of 264

validation metrics). The “Info” tab of a trained model contains important metadata as well as 265

a hyperlink to export the model and save it as a reusable Python object. This import/export 266

feature enables users to archive and share their work, enhancing the reusability and 267

reproducibility of the developed models [87]. The “Performance” tab can be used to observe 268

model performance data according to the chosen validation scheme (Figure 6). This 269

information is different depending on the chosen model type (regression vs. classification, 270

Figure 6a vs. Figure 6b) and the parameters used (i.e. the choice of validation metrics). 271

Additional performance measures and machine learning algorithms can be integrated with the 272

backend Python API. Creation of such extensions does not even require editing of the GUI for 273

many standard algorithms (see Python API). 274

13

Generators 275

Under the “Generators” menu item, the users find a list of individual generators implemented 276

in the GenUI framework (Figure 7). Currently, only the DrugEx generator [74] is available, but 277

other generators can be added easily by extending the Python backend and customizing the 278

existing React components. In fact, the GUI for DrugEx is based on the same React 279

components as the “QSAR Models” view. 280

 281

 282

Figure 7 A screenshot showing part of the “DrugEx” GUI with a model creation card with a) DrugEx training 283
parameters and b) performance overview of a trained DrugEx network. In a) the fields to define the compound set 284
for the process of fine-tuning the ‘parent’ recurrent neural network trained on the ZINC data set [74] are shown. In 285
addition, the form provides fields to set the number of learning epochs, training batch size, frequency of 286
performance monitoring and size of the validation set. In b) the “Performance” tab tracks model performance. It 287
shows values of the loss function on the training set and validation set (top) and the SMILES error rate (bottom) at 288
each step of the training process. The performance view is updated according to the chosen monitoring frequency 289
in real time as the model is being trained. Each model also has the “Info” tab which holds the same information as 290
for QSAR models. 291

Like QSAR models, DrugEx networks can also be serialized and saved as files. For example, 292

a cheminformatics researcher can build a DrugEx model outside of the GenUI ecosystem (i.e. 293

using a script published with the original paper [74]) and provide the created model files to 294

another researcher who can import and use the model from the GenUI web-based GUI. 295

Therefore, it is easy to share work and accommodate various groups of users in this way. 296

14

Maps 297

Interactive visualization of chemical space is available under the “Maps” menu item. The menu 298

separates the creation of the chemical space visualization, the “Creator” page (Figure 8), and 299

its exploration, the “Explorer” page (Figure 9). 300

 301

Figure 8 The “Creator” interface of GenUI “Maps” page. On the left a form to create a new t-SNE [88] mapping of 302
two sets of compounds using Morgan fingerprints is shown while information about an existing map can be seen 303
on the right. 304

 305

Figure 9 A screenshot showing the “Explorer” part of the “Maps” GUI. The interactive plot on the left side of the 306
screen is provided by the ChemSpace.js library [86]. Each point in this visualization corresponds to one molecule. 307

15

In this particular configuration, the shapes and colors of the points indicate the compound set to which the 308
compounds belong to. The color scheme of points can be changed with the menu in the top left corner of the plot. 309
It is possible to color points by biological activities, physicochemical properties and other data associated with the 310
compounds. The same can also be done with the size of the points. The points drawn in the map are interactive 311
and hovering over a point shows a box with information about the compound inside and on the right side of the 312
map. Groups of points can also be selected by drawing a rectangle over them in which case a list of selected 313
compounds is shown in the “Selection List” tab (Figure 10) and their bioactivity data is summarized under the 314
“Selection Activities” tab (Figure 11). 315

 316

The “Creator” page is implemented as a grid of cards each of which represents an embedding 317

of chemical compounds in 2D space (Figure 8). Implicitly, the GenUI platform enables t-SNE 318

[88] embedding (provided by openTSNE [89]). However, new projection methods can be easily 319

added to the backend through the GenUI Python API with no need to modify the GUI 320

(see Python API) [90]. 321

 322

The purpose of the “Explorer” page is to interactively visualize chemical space embedding 323

prepared in the “Creator” (Figure 9). In the created visualization the users can explore 324

compound bioactivities, physicochemical properties, and other measurements for various 325

representations and parts of chemical space. Thanks to ChemSpace.js [86] up to 5 326

dimensions can be shown in the map at the same time: X and Y coordinates, point color, point 327

size and point shape. The map can be zoomed in by drawing a rectangle over a group of 328

points. Such points form a selection and their detailed information is then displayed under the 329

“Selected List” (Figure 10) and “Selected Activities” tabs (Figure 11). 330

16

 331

Figure 10 View of the “Selected List” tab of the “Explorer” page. The tab shows the selected molecules in the map 332
as a list which is the same as the one used in the “Compounds” view (Figure 4). For easier navigation, the 333
compounds are also grouped by the compound set they belong to and the view for each set can be accessed by 334
switching tabs above the displayed list (only one compound set, CHEMBL251, is present in this case). 335

 336
Figure 11 View of the “Selection Activities” tab of the “Explorer” page. In this view, violin plots representing 337
distributions of activities in the set of selected compounds are displayed. Each violin plot corresponds to one 338
compound set and one activity type. The violin plots are also interactive and hovering over points updates the 339
compound structure and its physicochemical properties are displayed on the right. 340

JavaScript API 341

Two main considerations in the development of GenUI are reusability and extensibility. 342

Therefore, the frontend GUI comprises a large library of over 50 React components that are 343

17

encapsulated in a standalone package (Figure 12). The package is organized into 344

subpackages that follow the structure and hierarchy of design elements in the GenUI interface. 345

In the following sections, we use the two most important groups of the React API components 346

as case studies to illustrate how the frontend GUI can be extended. The presented 347

components are “Model Components”, used to add new trainable models, and the “REST API 348

Components”, used to fetch and send data between the frontend and the GenUI REST API 349

services. 350

 351

Figure 12 Schematic depiction of the GenUI React library which contains customized styles, utility functions and 352
the components used in the GenUI web client. The “components” subpackage organizes the components into 353
groups related to the structure of the GenUI interface. For example, components filed under the “models” 354
subpackage are used in the creation of the “QSAR Models” (Figure 5), “DrugEx” (Figure 7) and “Maps” (Figure 8) 355
interfaces while components under the “compounds” subpackage are used to implement the “Compounds” view 356
(Figure 4). General purpose components (i.e. the card grid or the card tab widget) are in the root of the “components” 357
subpackage. 358

Model Components 359

Much of the functionality of the GenUI platform is based on trained models. The “QSAR 360

Models”, “DrugEx” and “Maps” pages all borrow from the same library of reusable GenUI 361

React components (Figure 12). At the core of the “models” component library (Figure 12) is 362

the ModelsPage component (Figure 13). ModelsPage manages the layout and data displayed 363

in model cards. When the users select to build a new model, the ModelsPage component is 364

also responsible to show a card with the model creation form. The information that the 365

ModelsPage displays can be customized through various React properties (Figure 13) that 366

18

represent either data (data properties) or other components (component properties). Such an 367

encapsulation approach and top-down data flow is one of the main strengths of the React 368

framework. This design is very robust since it fosters appropriate separation of concerns by 369

their encapsulation inside more and more specialized components. This makes the code easy 370

to reuse and maintain. 371

 372

Figure 13 A simplified illustration of the high-level components in the GenUI React API for rendering model cards. 373
The main ModelsPage component has two kinds of attributes (called “properties” in React): a) data properties and 374
b) component properties. The values of data properties are used to display model data while the values of 375
component properties are used as child components and injected into the GUI at appropriate places. If no 376
component property is specified, default components are used as children instead (i.e. ModelCard and 377
NewModelCard). The child components can accept data and component properties as well from their parent (i.e 378
ModelsPage). This creates a hierarchy of reusable components that can be easily assembled and configured to 379
accommodate the different needs of each model view in a standardized and consistent manner. 380

REST API Components 381

Because the GUI often needs to fetch data from the backend server, several React 382

components were defined for that purpose. In order to use them, one just needs to provide 383

the required REST API URLs as React component properties. For example, the 384

ComponentWithResources component configured with the ‘/maps/algorithms/’ URL will get all 385

available embedding methods as JSON and converts the result to a JavaScript object. Many 386

components can also periodically update the fetched data, which is useful for tracking 387

information in real time. For paginated data there is also the ApiResourcePaginator 388

component that only fetches a new page if a given event is fired (i.e. user presses a button). 389

19

This makes it convenient to create GUIs for larger data sets. In addition, user credentials are 390

also handled automatically. 391

 392

Many more specialized components are also available to fetch specific information. For 393

example, the TaskAwareComponent tracks URLs associated with background asynchronous 394

tasks and it regularly passes information about completed, running, or failed tasks to its child 395

components. However, other specialized components exist that automatically fetch and format 396

pictures of molecules, bioactivities, physicochemical properties or create, update and delete 397

objects in the UI and the server [76]. 398

Backend 399

The backend services are the core of the GenUI platform and the GenUI Python API provides 400

a convenient way to write backend extensions (i.e. new molecular generators, compound 401

import filters, machine learning algorithms for QSAR modeling, and dimensionality reduction 402

methods for chemical space maps). All five backend services (Figure 2) are implemented with 403

the Django web framework [91] and Django REST Framework [92]. For data storage, a freely 404

available Docker [80] image developed by Informatics Matters Ltd. [93] is used. The Docker 405

image contains an instance of the PostgreSQL database system with integrated database 406

cartridge from the RDKit cheminformatics framework [94]. The integration of RDKit with the 407

Django web framework is handled with the Django RDKit library [95]. All compounds imported 408

in the database are automatically standardized with the current version of the ChEMBL 409

structure curation pipeline [96]. 410

 411

Because the backend services also handle processing of long-running and computationally 412

intensive tasks, the framework uses Celery distributed task queue [97] with Redis as 413

a message broker [98] to dispatch them to workers. Celery workers are processes running in 414

the background that consume tasks from the task queue and process them asynchronously. 415

20

Workers can either run on the same machine as the backend services or they can be 416

distributed over an infrastructure of computers (see Deployment). 417

Python API 418

The GenUI backend codebase [77] is divided into multiple Python packages that each 419

encapsulate a part of the GenUI Django project (Figure 14). Any package that resides in the 420

root directory is referred to as the root package. Root packages facilitate many of the REST 421

API endpoints (Figure 2), but they also contain reusable classes that are intended to be 422

extended by extensions (see Generic Views and Viewsets, for example). In the following 423

sections, some important features of the backend Python API are briefly highlighted. However, 424

a much more detailed description with code examples is available on the documentation page 425

of the project [90]. 426

 427

21

 428

Figure 14 Schematic depiction of the GenUI backend Python code. The backend is formed by a single Django 429
project which is designated by its settings package and the urls and wsgi modules. The GenUI code itself is divided 430
into a number of root packages. Each root package has a predefined structure with the code of the package 431
organized in its own modules and packages. Each root package of the GenUI framework also has the extensions 432
subpackage, which is a collection of extension modules. GenUI extensions and packages can also define the 433
genuisetup module, which is used to automatically configure the individual package or extension. 434

Extensions 435

Just like in the case of the GenUI React API, modularity and extensibility were also the main 436

concerns during the design of the GenUI backend services. Each of the aforementioned root 437

packages contains a Python package called extensions (Figure 14). The extensions package 438

can contain any number of Django applications or Python modules, which ensures that the 439

extending components of the GenUI framework are well-organized and loosely coupled. 440

 441

Provided that GenUI extensions are structured a certain way they can take advantage of 442

automatic configuration and integration (see Automatic Code Discovery). Before the Django 443

22

project is deployed, GenUI applications and extensions are detected and configured with the 444

genuisetup command, which makes sure that the associated REST API endpoints are 445

exposed under the correct URLs. The genuisetup command is executed with the manage.py 446

script (a utility script provided by the Django library). 447

Automatic Code Discovery 448

The root packages of the GenUI backend library define many abstract and generic base 449

classes to implement and reuse in extensions. These classes either implement the REST API 450

or define code to be run on the worker nodes inside Celery tasks. Automatic code discovery 451

uses several introspection functions and methods to find the derived classes of the base 452

classes found in the root packages. By default, this is done when the genuisetup command is 453

executed (see Extensions). 454

 455

For example, if the derived class defines a new machine learning algorithm to be used in 456

QSAR modelling, automatic code discovery utilities make sure that the new algorithm appears 457

as a choice in the QSAR modelling REST API and that proper parameter values are collected 458

via the endpoint to create the model. Moreover, all changes also get automatically propagated 459

to the web-based GUI because it uses the REST API to obtain algorithm choices for the model 460

creation form. Thus, no JavaScript code has to be written to integrate a new machine learning 461

algorithm. These mechanisms are also used when adding molecular generators, 462

dimensionality reduction methods, or molecular descriptors. 463

Generic Views and Viewsets 464

When developing REST API services with the Django REST Framework, a common practice 465

is using generic views and sets of views (called viewsets). In Django applications, views are 466

functions or classes that handle incoming HTTP requests. Viewsets are classes defined by 467

the Django REST Framework that bring functionality of several views (such as creation, 468

update or deletion of objects) into one single class. Generic views and viewsets are then 469

23

classes that usually do not stand on their own, but are designed to be further extended and 470

customized. 471

 472

The GenUI Python library embraces this philosophy and many REST API endpoints are 473

encapsulated in generic views or viewsets. This ensures that the functionality can be reused 474

and that no code needs to be written twice, as stated by the well-known DRY (“Don’t Repeat 475

Yourself”) principle [99]. An example of such a generic approach is the ModelViewSet class 476

that handles the endpoints for retrieval and training of machine learning models. This viewset 477

is used by the qsar and maps applications, but also by the DrugEx extension. All these 478

applications depend on some form of a machine learning model so they can take advantage 479

of this interface, which automatically checks the validity of user inputs and sends model 480

training jobs to the task queue. 481

Asynchronous Tasks 482

Many of the GenUI backend services take advantage of asynchronous tasks which are 483

functions executed in the background without blocking the main application. Moreover, tasks 484

do not even have to be executed on the same machine as the caller of the task, which allows 485

for a great deal of flexibility and scalability (see Deployment). 486

 487

The Celery task queue [97] makes creating asynchronous tasks as easy as defining a Python 488

function [100]. In addition, some GenUI views already define their own tasks and no explicit 489

task definition is needed in the derived views of the extensions. For example, the compounds 490

root package defines a generic viewset that can be used to create and manage compound 491

sets. The import and creation of compounds belonging to a new compound set is handled by 492

implementing a separate initializer class, which is passed to the appropriate generic viewset 493

class [90]. The initialization of a compound set can take a long time or may fail and, thus, 494

should be executed asynchronously. Therefore, the viewset of the compounds application 495

24

automatically executes the methods of the initializer class asynchronously with the help of an 496

available Celery worker. 497

Deployment 498

Docker Images 499

Since the GenUI platform consists of several components with many dependencies and spans 500

multiple programming languages, it can be tedious to set up the whole project on a new system. 501

Docker makes deployment of larger projects like this easier by encapsulating different parts 502

of the deployment environment inside Docker images [78-80]. Docker images are simply 503

downloaded and deployed on the target system without the need to install any other tools 504

beside Docker. GenUI uses many official Docker images available on the Docker image 505

sharing platform Docker Hub [101]. The PostgreSQL database with built-in RDKit cartridge 506

[93], Redis [102] and the NGINX web server [103, 104] are all obtained by this standard 507

channel. In addition, we defined the following images to support the deployment of the GenUI 508

platform itself [81]: 509

 510

1. genui-main: Used to deploy both the frontend web application and the backend 511

services. 512

2. genui-worker: Deploys a basic Celery worker without GPU support. 513

3. genui-gpuworker: Deploys a Celery worker with GPU support. It is the same as the 514

genui-worker, but it has the NVIDIA CUDA Toolkit already installed. 515

 516

The tools to build these images are freely available [81]. Therefore, developers can create 517

images for extended versions of the GenUI that fit the needs of their organizations. In addition, 518

the separation of the main application (genui-main) from workers also allows distributed 519

deployment over multiple machines, which opens up the possibility to create a scalable 520

architecture that can quickly accommodate teams of varying sizes. 521

25

Future Directions 522

Although the GenUI framework already implements much of the functionality needed to 523

successfully integrate most molecular generators, there are still many aspects of the 524

framework that can be improved. For instance, it would be beneficial if more sources of 525

molecular structures and bioactivity information are integrated in the platform besides 526

ChEMBL (i.e PubChem [105], ZINC [106], DrugBank [107], BindingDB [108] or Probes and 527

Drugs [109]). Currently, GenUI also lacks features to perform effective similarity and 528

substructure searches, which we see as a crucial next step to improve the appeal of the 529

platform to medicinal chemists. The current version of GenUI would also benefit from 530

extending the sets of descriptors, QSAR machine learning algorithms and chemical space 531

projections since the performance of different methods can vary across data sets. Finally, the 532

question of synthesizability of the generated structures should also be addressed and 533

a system for predicting chemical reactions and retrosynthetic pathways could also be very 534

useful to medicinal chemists if integrated in the GUI (i.e. by facilitating connection to a service 535

such as the IBM RXN [110] or PostEra Manifold [111]). 536

 537

Even though it is hard to determine the requirements of every project where molecular 538

generators might be applied, many of the aforementioned features and improvements can be 539

readily implemented with the GenUI React components (see JavaScript API) and the Python 540

API (see Python API). In fact, the already presented extensions and the DrugEx interface are 541

useful case studies that can be used as templates for integration of many other 542

cheminformatics tools and de novo molecular generators. Therefore, we see GenUI as 543

a flexible and scalable framework that can be used by organizations to quickly integrate tools 544

and data the way it suits their needs the most. However, we would also like GenUI to become 545

a new useful way to share the progress in the development of novel de novo drug design 546

methods and other cheminformatics approaches in the public domain. 547

26

Conclusions 548

We implemented a full stack solution for integration of de novo molecular generation 549

techniques in a multidisciplinary work environment. The proposed GenUI software platform 550

provides a GUI designed to be easily understood by experts outside the cheminformatics 551

domain, but it also offers a feature-rich REST API for programmatic access and 552

straightforward integration with automated processes. The presented solution also provides 553

extensive Python and JavaScript extension APIs for easy integration of new molecular 554

generators and other cheminformatics tools. We envision that the field of molecular generation 555

will likely expand in the future and that an open source software platform such as this one is 556

a crucial step towards more widespread adoption of novel algorithms in drug discovery and 557

related research. We also believe that GenUI can facilitate more engagement between 558

different groups of users and inspire new directions in the field of de novo drug design. 559

 560

Declarations 561

Authors’ Contributions 562

GvW suggested the original idea of developing a graphical user interface for a molecular 563

generator and supervised the study along with DS. MŠ extended the original idea and 564

developed all software presented in this work. XL is the author of DrugEx and helped with its 565

integration as a proof of concept. MŠ and XL also prepared the manuscript, which all authors 566

proofread and agreed on. 567

Acknowledgements 568

Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA 569

LM2018140) provided within the program Projects of Large Research, Development and 570

Innovations Infrastructures. 571

27

XL thanks Chinese Scholarship Council (CSC) for funding. 572

Competing Interests 573

The authors declare that they have no competing interests. 574

Funding 575

This work was supported from the Ministry of Education of the Czech Republic 576

(LM2018130). 577

Availability of Data and Materials 578

The complete GenUI codebase and documentation is distributed under the MIT license and 579

located in three repositories publicly accessible on GitHub: 580

• https://github.com/martin-sicho/genui (backend Python code) 581

• https://github.com/martin-sicho/genui-gui (frontend React application) 582

• https://github.com/martin-sicho/genui-docker (Docker files and deployment scripts) 583

A reference application that was described in this manuscript can be deployed with Docker 584

images that were uploaded to Docker Hub: https://hub.docker.com/u/sichom. However, the 585

images can also be built with the available Docker files and scripts (archived at 586

https://doi.org/10.5281/zenodo.4813625). The reference web application uses the following 587

versions of the GenUI software: 588

• 0.0.0-alpha.1 for the frontend React application (archived at 589

https://doi.org/10.5281/zenodo.4813608) 590

• 0.0.0.alpha1 for the backend Python application (archived at 591

https://doi.org/10.5281/zenodo.4813586) 592

References 593

1. Wang Y, Cheng T, Bryant SH (2017) PubChem BioAssay: A Decade’s Development 594
toward Open High-Throughput Screening Data Sharing. SLAS DISCOVERY: 595
Advancing the Science of Drug Discovery 22(6):655-666. 596

https://github.com/martin-sicho/genui
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui-docker
https://hub.docker.com/u/sichom
https://doi.org/10.5281/zenodo.4813625
https://doi.org/10.5281/zenodo.4813608
https://doi.org/10.5281/zenodo.4813586

28

2. Tetko IV, Engkvist O, Koch U, Reymond J-L, Chen H (2016) BIGCHEM: Challenges 597
and Opportunities for Big Data Analysis in Chemistry. Molecular Informatics 35(11-598
12):615-621. 599

3. Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T (2019) Recent 600
applications of deep learning and machine intelligence on in silico drug discovery: 601
methods, tools and databases. Brief Bioinform 20(5):1878-1912. 602

4. Hoffmann T, Gastreich M (2019) The next level in chemical space navigation: going 603
far beyond enumerable compound libraries. Drug Discov Today 24(5):1148-1156. 604

5. Tetko IV, Engkvist O, Chen H (2016) Does ‘Big Data’ exist in medicinal chemistry, and 605
if so, how can it be harnessed? Future medicinal chemistry 8(15):1801-1806. 606

6. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson F, Bellis L, 607
Overington JP (2015) ChEMBL web services: streamlining access to drug discovery 608
data and utilities. Nucleic Acids Research 43(W1):W612-W620. 609

7. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños María P, 610
Mosquera Juan F, Mutowo P, Nowotka M et al (2019) ChEMBL: towards direct 611
deposition of bioassay data. Nucleic Acids Research 47(D1):D930-D940. 612

8. Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like 613
chemical space based on GDB-17 data. Journal of Computer-Aided Molecular Design 614
27(8):675-679. 615

9. Drew KLM, Baiman H, Khwaounjoo P, Yu B, Reynisson J (2012) Size estimation of 616
chemical space: how big is it? Journal of Pharmacy and Pharmacology 64(4):490-495. 617

10. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug 618
Discovery Today 3(4):160-178. 619

11. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based 620
drug design: A molecular modeling perspective. Med Res Rev 16(1):3-50. 621

12. Lenselink EB, ten Dijke N, Bongers B, Papadatos G, van Vlijmen HWT, Kowalczyk W, 622
IJzerman AP, van Westen GJP (2017) Beyond the hype: deep neural networks 623
outperform established methods using a ChEMBL bioactivity benchmark set. Journal 624
of Cheminformatics 9(1):45. 625

13. Liu X, IJzerman AP, van Westen GJP. Computational Approaches for De Novo Drug 626
Design: Past, Present, and Future. In: Artificial Neural Networks. Edited by Cartwright 627
H. New York, NY: Springer US; 2021: 139-165. 628

14. Coley CW (2021) Defining and Exploring Chemical Spaces. Trends in Chemistry 629
3(2):133-145. 630

15. Opassi G, Gesù A, Massarotti A (2018) The hitchhiker’s guide to the chemical-631
biological galaxy. Drug Discovery Today 23(3):565-574. 632

16. Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, Oprea TI, 633
Baskin II, Varnek A, Roitberg A et al (2020) QSAR without borders. Chemical Society 634
Reviews 49(11):3525-3564. 635

17. Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X (2019) Artificial intelligence facilitates 636
drug design in the big data era. Chemometrics Intellig Lab Syst 194:103850. 637

18. Schneider G, Clark DE (2019) Automated De Novo Drug Design: Are We Nearly There 638
Yet? Angew Chem Int Ed Engl 58(32):10792-10803. 639

19. Zhu H (2020) Big Data and Artificial Intelligence Modeling for Drug Discovery. Annual 640
Review of Pharmacology and Toxicology 60(1):573-589. 641

20. Le TC, Winkler DA (2015) A Bright Future for Evolutionary Methods in Drug Design. 642
ChemMedChem 10(8):1296-1300. 643

21. Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and 644
future prospects. Drug Discov Today 24(10):2017-2032. 645

22. Schreiber SL, Kotz JD, Li M, Aubé J, Austin CP, Reed JC, Rosen H, White EL, Sklar 646
LA, Lindsley CW et al (2015) Advancing Biological Understanding and Therapeutics 647
Discovery with Small-Molecule Probes. Cell 161(6):1252-1265. 648

23. Carpenter KA, Cohen DS, Jarrell JT, Huang X (2018) Deep learning and virtual drug 649
screening. Future medicinal chemistry 10(21):2557-2567. 650

29

24. Chuang KV, Gunsalus LM, Keiser MJ (2020) Learning Molecular Representations for 651
Medicinal Chemistry. Journal of Medicinal Chemistry 63(16):8705-8722. 652

25. Winter R, Montanari F, Noé F, Clevert D-A (2019) Learning continuous and data-driven 653
molecular descriptors by translating equivalent chemical representations. Chemical 654
Science 10(6):1692-1701. 655

26. Menke J, Koch O (2021) Using Domain-Specific Fingerprints Generated Through 656
Neural Networks to Enhance Ligand-Based Virtual Screening. Journal of Chemical 657
Information and Modeling 61(2):664-675. 658

27. Callaway E (2020) ‘It will change everything’: DeepMind’s AI makes gigantic leap in 659
solving protein structures. Nature 588(7837):203-204. 660

28. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM (2019) 661
Exploiting machine learning for end-to-end drug discovery and development. Nat 662
Mater 18(5):435-441. 663

29. Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A (2020) 664
Machine learning approaches to drug response prediction: challenges and recent 665
progress. NPJ precision oncology 4:19-19. 666

30. Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans H, Clevert 667
D-A, Hochreiter S (2018) Large-scale comparison of machine learning methods for 668
drug target prediction on ChEMBL. Chem Sci 9(24):5441-5451. 669

31. Bian Y, Xie X-Q (2021) Generative chemistry: drug discovery with deep learning 670
generative models. Journal of Molecular Modeling 27(3):71. 671

32. Zheng S, Lei Z, Ai H, Chen H, Deng D, Yang Y (2020) Deep Scaffold Hopping with 672
Multi-modal Transformer Neural Networks. 673

33. Stojanović L, Popović M, Tijanić N, Rakočević G, Kalinić M (2020) Improved Scaffold 674
Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning. 675
Journal of Chemical Information and Modeling 60(10):4629-4639. 676

34. Baskin II (2020) The power of deep learning to ligand-based novel drug discovery. 677
Expert Opin Drug Discov 15(7):755-764. 678

35. Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for molecular 679
design—a review of the state of the art. Mol Syst Des Eng 4(4):828-849. 680

36. Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J (2019) Deep learning for 681
molecular generation. Future Med Chem 11(6):567-597. 682

37. Jørgensen PB, Schmidt MN, Winther O (2018) Deep Generative Models for Molecular 683
Science. Mol Inform 37(1-2). 684

38. Gantzer P, Creton B, Nieto-Draghi C (2020) Inverse-QSPR for de novo Design: A 685
Review. Mol Inform 39(4):e1900087. 686

39. Yoshikawa N, Terayama K, Sumita M, Homma T, Oono K, Tsuda K (2018) Population-687
based De Novo Molecule Generation, Using Grammatical Evolution. Chem Lett 688
47(11):1431-1434. 689

40. Jensen JH (2019) A graph-based genetic algorithm and generative model/Monte Carlo 690
tree search for the exploration of chemical space. Chem Sci 10(12):3567-3572. 691

41. Spiegel JO, Durrant JD (2020) AutoGrow4: an open-source genetic algorithm for de 692
novo drug design and lead optimization. J Cheminform 12(1):25. 693

42. Leguy J, Cauchy T, Glavatskikh M, Duval B, Da Mota B (2020) EvoMol: a flexible and 694
interpretable evolutionary algorithm for unbiased de novo molecular generation. J 695
Cheminform 12(1):55. 696

43. Hoksza D, Skoda P, Voršilák M, Svozil D (2014) Molpher: a software framework for 697
systematic chemical space exploration. J Cheminform 6(1):7. 698

44. Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with explainable 699
artificial intelligence. Nature Machine Intelligence 2(10):573-584. 700

45. Henault ES, Rasmussen MH, Jensen JH (2020) Chemical space exploration: how 701
genetic algorithms find the needle in the haystack. PeerJ Phy Chem 2:e11. 702

46. Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: Benchmarking 703
Models for de Novo Molecular Design. Journal of Chemical Information and Modeling 704
59(3):1096-1108. 705

30

47. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B, Golovanov S, Tatanov O, Belyaev 706
S, Kurbanov R, Artamonov A, Aladinskiy V, Veselov M et al (2020) Molecular Sets 707
(MOSES): A Benchmarking Platform for Molecular Generation Models. Frontiers in 708
Pharmacology 11:1931. 709

48. Bush JT, Pogany P, Pickett SD, Barker M, Baxter A, Campos S, Cooper AWJ, Hirst D, 710
Inglis G, Nadin A et al (2020) A Turing Test for Molecular Generators. Journal of 711
Medicinal Chemistry 63(20):11964-11971. 712

49. Walters WP, Murcko M (2020) Assessing the impact of generative AI on medicinal 713
chemistry. Nature Biotechnology 38(2):143-145. 714

50. Zhavoronkov A, Aspuru-Guzik A (2020) Reply to ‘Assessing the impact of generative 715
AI on medicinal chemistry’. Nature Biotechnology 38(2):146-146. 716

51. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like 717
molecules. Nature Reviews Drug Discovery 4(8):649-663. 718

52. Li X, Xu Y, Yao H, Lin K (2020) Chemical space exploration based on recurrent neural 719
networks: applications in discovering kinase inhibitors. J Cheminform 12(1):42. 720

53. Grisoni F, Neuhaus CS, Hishinuma M, Gabernet G, Hiss JA, Kotera M, Schneider G 721
(2019) De novo design of anticancer peptides by ensemble artificial neural networks. 722
J Mol Model 25(5):112. 723

54. Wu J, Ma Y, Zhou H, Zhou L, Du S, Sun Y, Li W, Dong W, Wang R (2020) Identification 724
of protein tyrosine phosphatase 1B (PTP1B) inhibitors through De Novo Evoluton, 725
synthesis, biological evaluation and molecular dynamics simulation. Biochem Biophys 726
Res Commun 526(1):273-280. 727

55. Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, 728
Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A (2018) Entangled Conditional 729
Adversarial Autoencoder for de Novo Drug Discovery. Molecular Pharmaceutics 730
15(10):4398-4405. 731

56. Merk D, Friedrich L, Grisoni F, Schneider G (2018) De Novo Design of Bioactive Small 732
Molecules by Artificial Intelligence. Molecular Informatics 37(1-2):1700153. 733

57. Putin E, Asadulaev A, Vanhaelen Q, Ivanenkov Y, Aladinskaya AV, Aliper A, 734
Zhavoronkov A (2018) Adversarial Threshold Neural Computer for Molecular de Novo 735
Design. Molecular Pharmaceutics 15(10):4386-4397. 736

58. Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K (2018) Hunting for Organic 737
Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation 738
Energies. ACS Central Science 4(9):1126-1133. 739

59. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, 740
Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A et al (2019) Deep learning 741
enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology 742
37(9):1038-1040. 743

60. Sparkes A, Aubrey W, Byrne E, Clare A, Khan MN, Liakata M, Markham M, Rowland 744
J, Soldatova LN, Whelan KE et al (2010) Towards Robot Scientists for autonomous 745
scientific discovery. Autom Exp 2:1. 746

61. Coley CW, Eyke NS, Jensen KF (2020) Autonomous Discovery in the Chemical 747
Sciences Part I: Progress. Angewandte Chemie International Edition 59(51):22858-748
22893. 749

62. Coley CW, Eyke NS, Jensen KF (2020) Autonomous Discovery in the Chemical 750
Sciences Part II: Outlook. Angewandte Chemie International Edition 59(52):23414-751
23436. 752

63. Henson AB, Gromski PS, Cronin L (2018) Designing Algorithms To Aid Discovery by 753
Chemical Robots. ACS Cent Sci 4(7):793-804. 754

64. Dimitrov T, Kreisbeck C, Becker JS, Aspuru-Guzik A, Saikin SK (2019) Autonomous 755
Molecular Design: Then and Now. ACS Appl Mater Interfaces 11(28):24825-24836. 756

65. Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17(2):97-113. 757
66. Willems H, De Cesco S, Svensson F (2020) Computational Chemistry on a Budget: 758

Supporting Drug Discovery with Limited Resources. J Med Chem 63(18):10158-10169. 759

31

67. Chu Y, He X (2019) MoleGear: A Java-Based Platform for Evolutionary De Novo 760
Molecular Design. Molecules 24(7). 761

68. Douguet D (2010) e-LEA3D: a computational-aided drug design web server. Nucleic 762
Acids Research 38(suppl_2):W615-W621. 763

69. Griffen EJ, Dossetter AG, Leach AG (2020) Chemists: AI Is Here; Unite To Get the 764
Benefits. Journal of Medicinal Chemistry 63(16):8695-8704. 765

70. Pastor M, Gómez-Tamayo JC, Sanz F (2021) Flame: an open source framework for 766
model development, hosting, and usage in production environments. Journal of 767
Cheminformatics 13(1):31. 768

71. Green DVS, Pickett S, Luscombe C, Senger S, Marcus D, Meslamani J, Brett D, Powell 769
A, Masson J (2020) BRADSHAW: a system for automated molecular design. Journal 770
of Computer-Aided Molecular Design 34(7):747-765. 771

72. Ivanenkov YA, Zhebrak A, Bezrukov D, Zagribelnyy B, Aladinskiy V, Polykovskiy D, 772
Putin E, Kamya P, Aliper A, Zhavoronkov A (2021) Chemistry42: An AI-based platform 773
for de novo molecular design. arXiv preprint arXiv:210109050. 774

73. Zhumagambetov R, Kazbek D, Shakipov M, Maksut D, Peshkov VA, Fazli S (2020) 775
cheML.io: an online database of ML-generated molecules. RSC Advances 776
10(73):45189-45198. 777

74. Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP (2019) An exploration 778
strategy improves the diversity of de novo ligands using deep reinforcement learning: 779
a case for the adenosine A2A receptor. J Cheminform 11(1):35. 780

75. MIT License. https://opensource.org/licenses/MIT. Accessed 2021-03-12. 781
76. GenUI Frontend Application. By Šícho M. https://github.com/martin-sicho/genui-gui. 782

Accessed 2021-03-12. 783
77. GenUI Backend Application. https://github.com/martin-sicho/genui Accessed 2020-05-784

03. 785
78. Merkel D (2014) Docker: lightweight Linux containers for consistent development and 786

deployment. Linux J 2014(239):Article 2. 787
79. Cito J, Ferme V, Gall HC: Using Docker Containers to Improve Reproducibility in 788

Software and Web Engineering Research. In: Web Engineering: 2016// 2016; Cham. 789
Springer International Publishing: 609-612. 790

80. Docker. https://github.com/docker/docker-ce. Accessed 2020-05-03. 791
81. GenUI Docker Files. By Šícho M. https://github.com/martin-sicho/genui-docker. 792

Accessed 2020-05-03. 793
82. React: A JavaScript Library for Building User Interfaces. By Facebook I. 794

https://reactjs.org/. Accessed 2020-12-16. 795
83. Vibe: A beautiful react.js dashboard build with Bootstrap 4. By Salas J. 796

https://github.com/NiceDash/Vibe. Accessed 2020-05-03. 797
84. Tétreault-Pinard ÉO (2019) Plotly JavaScript Open Source Graphing Library. 798
85. Chart.js: Simple yet flexible JavaScript charting for designers & developers. 799

https://www.chartjs.org/. Accessed 2020-05-03. 800
86. ChemSpace JS. https://openscreen.cz/software/chemspace/home/. Accessed 2020-801

05-03. 802
87. Schaduangrat N, Lampa S, Simeon S, Gleeson MP, Spjuth O, Nantasenamat C (2020) 803

Towards reproducible computational drug discovery. J Cheminform 12(1):9. 804
88. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. Journal of Machine 805

Learning Research 9:2579-2605. 806
89. Poličar PG, Stražar M, Zupan B (2019) openTSNE: a modular Python library for t-SNE 807

dimensionality reduction and embedding. bioRxiv:731877. 808
90. GenUI Python Documentation. https://martin-sicho.github.io/genui/docs/index.html. 809

Accessed 2021-03-12. 810
91. Foundation DS (2019) Django (Version 2.2). 811
92. Encode OSS L (2019) Django REST Framework. 812

https://opensource.org/licenses/MIT
https://github.com/martin-sicho/genui-gui
https://github.com/martin-sicho/genui
https://github.com/docker/docker-ce
https://github.com/martin-sicho/genui-docker
https://reactjs.org/
https://github.com/NiceDash/Vibe
https://www.chartjs.org/
https://openscreen.cz/software/chemspace/home/
https://martin-sicho.github.io/genui/docs/index.html

32

93. Debian-based images containing PostgreSQL with the RDKit cartridge. 813
https://hub.docker.com/r/informaticsmatters/rdkit-cartridge-debian. Accessed 2020-814
05-03. 815

94. RDKit: Open-source cheminformatics toolkit. By http://www.rdkit.org/. Accessed 2020-816
05-03. 817

95. Django RDKit. https://github.com/rdkit/django-rdkit. Accessed 2020-05-03. 818
96. Bento AP, Hersey A, Félix E, Landrum G, Gaulton A, Atkinson F, Bellis LJ, De Veij M, 819

Leach AR (2020) An open source chemical structure curation pipeline using RDKit. J 820
Cheminform 12(1):51. 821

97. CELERY: Distributed Task Queue. https://github.com/celery/celery. Accessed 2020-822
05-03. 823

98. Redis: in-memory data structure store. By https://github.com/redis/redis. Accessed 824
2020-05-03. 825

99. Hunt A, Thomas D (2000) The Pragmatic Programmer: From Journeyman to Master. 826
Addison-Wesley Longman Publishing Co. Inc. 827

100. Celery: Get Started. https://docs.celeryproject.org/en/stable/getting-828
started/introduction.html#get-started. Accessed 2020-12-16. 829

101. Docker Hub. https://hub.docker.com/. Accessed 2020-12-16. 830
102. Redis: Docker Official Images. By https://hub.docker.com/_/redis. Accessed 2020-05-831

03. 832
103. NGINX Web Server. By https://github.com/nginx/nginx. Accessed 2020-05-03. 833
104. NGINX: Official Docker Images. By https://hub.docker.com/_/nginx. Accessed 2020-834

05-03. 835
105. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, 836

Yu B et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic 837
Acids Research 47(D1):D1102-D1109. 838

106. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: A Free Tool 839
to Discover Chemistry for Biology. Journal of Chemical Information and Modeling 840
52(7):1757-1768. 841

107. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, 842
Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery 843
and exploration. Nucleic Acids Research 34(suppl_1):D668-D672. 844

108. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: 845
A public database for medicinal chemistry, computational chemistry and systems 846
pharmacology. Nucleic Acids Research 44(D1):D1045-D1053. 847

109. Skuta C, Popr M, Muller T, Jindrich J, Kahle M, Sedlak D, Svozil D, Bartunek P (2017) 848
Probes & Drugs portal: an interactive, open data resource for chemical biology. Nature 849
Methods 14(8):759-760. 850

110. IBM RXN for Chemistry. https://rxn.res.ibm.com/. Accessed 2021-03-12. 851
111. PostEra Manifold. https://postera.ai/manifold/. Accessed 2021-03-12. 852
 853

https://hub.docker.com/r/informaticsmatters/rdkit-cartridge-debian
http://www.rdkit.org/
https://github.com/rdkit/django-rdkit
https://github.com/celery/celery
https://github.com/redis/redis
https://docs.celeryproject.org/en/stable/getting-started/introduction.html#get-started
https://docs.celeryproject.org/en/stable/getting-started/introduction.html#get-started
https://hub.docker.com/
https://hub.docker.com/_/redis
https://github.com/nginx/nginx
https://hub.docker.com/_/nginx
https://rxn.res.ibm.com/
https://postera.ai/manifold/

