
  

 

 

   

 

 

 

 

 

How toxicity of nanomaterials towards different species could be 
simultaneously evaluated: Novel multi-nano-read-across 
approach 

Natalia Sizochenko,a,b,c Alicja Mikolajczyk,a,b Karolina Jagiello,a Tomasz Puzyn,a Jerzy Leszczynskib† 
and Bakhtiyor Rasulevb,c† 

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that 

investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been 

discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-

nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and 

mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) 

nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that 

combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns 

of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based 

on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised 

and unsupervised machine learning techniques to find underlying factors responsible for toxicity. 

Introduction 

Significance of nanotechnology is rapidly increasing along with 

the development of new nanomaterials.1 There are several 

important issues that should be addressed prior to introduction 

of new nanomaterials to the market. Such issues are related to 

the comprehension of interactions patterns between 

nanoparticles and living cells and organisms. This influences 

toxicity and environmental effects on nanomaterials. Unusual 

structures, a large diversity of nanomaterials and variations of 

their physicochemical properties are major obstacles on the 

way of development of the appropriate guidelines or standards 

for safety testing of nanomaterials.2 Studies reported in the 

literature have delivered limited principles that could be applied 

to comprehend complex biological action of nanoparticles.3 

Moreover, considering that the process of nanoparticles 

investigation is complicated, time consuming and limited due to 

high cost of in vivo and in vitro tests, it is still difficult to provide 

a sufficient safety information for each particular type of 

nanoparticles. In consequence, it means, that available datasets 

have data gaps that need to be filled in order to perform the 

comprehensive safety assessment of nanomaterials. 

The implementation of REACH (Registration, Evaluation, 

Authorisation and Restriction of Chemicals) legislation policy 

aims at filling of the gaps in the toxicity data. Various 

experimental and theoretical tools have been developed to 

tackle the problem of scarce data. In particular, REACH policy 

works through the combination of the cheminformatics 

approaches with experimental testing.4–7 Such combination 

leads to the significant minimization of the required number of 

animal tests. 

Within the last ten years, cheminformatics experts 

developed more than fifty models related to nanoparticles’ 

toxicity (so-called nano-QSAR, QNAR, nano-categorization, and 

nano-read-across models).7,8 However, most of these models 

are applicable only to prediction of one type of organism/cell 

response, each. Moreover, these predictive models did not 

address the problem of the missing data in these datasets. 

Hence, there is a lack of models for nanoparticles that could be 

applied to fill data gaps for two or more endpoints 

simultaneously. At the same time, previously, it has been 

successfully done for organic compounds, so indeed one 

expects that it also possible to generate global models for 

nanomaterials.9  

However, there are still a lot of difficulties to correlate 

descriptors (for example, theoretical physicochemical 

properties of nanoparticles) with multiple toxicities. This is 

because mechanisms of nanoparticle’s action could be different 

for different species and at different external environmental 

conditions (such as pH, protein corona, etc.).10 

Based on the above, the careful evaluation of nanoparticles’ 

datasets using data mining techniques is highly needed to 

overcome uncertainties related to similarity/dissimilarity in 
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patterns of nanoparticle’s action. For this purpose, the 

categorization tools could be applied. Categorization 

approaches are techniques that predict endpoint information 

for one chemical by using data from the same endpoint from 

another chemical, which is considered to be ‘similar’ in some 

way.11 For instance, the relevant attributes may include 

cytotoxicity outcomes, environmental endpoints (e.g., aquatic 

toxicity), physicochemical parameters, etc. Recently, four 

categories of concepts of grouping, equivalence, read-across 

and non-classified concept have been introduced.11 

All mentioned concepts are based on idea of dataset 

splitting between different groups. The group represents the 

pool of nanomaterials that share a commonality relevant for 

risk assessment. It can be one or more common property(ies) in 

a physical, chemical, exposure, (eco)toxicological, toxicokinetics 

or environmental fate sense.12 Results of preliminary 

categorization of metal oxide nanoparticles (MeOx NPs) could 

be a useful tool for early detection of hazardous or safe 

materials as it was demonstrated by Gajewicz et al.,13 Oomen et 

al. ,12 Arts et al.14 and Fjodorova et al.15 

However, data science also stumbled upon some limitations 

related to unknown or missing values in available datasets. 

Incomplete observations can adversely affect the operation of 

machine learning algorithms. It is important to find if the 

features of endpoints were missed at induction time (“training 

set”) or at the prediction time (“external validation set” or “test 

set”).16 To handle this, the exploration of imputation methods 

is highly recommended. In general, common imputation 

methods are based on: 1) removing entire observations with 

missed values; 2) filling in the missed data with the most 

frequent values; 3) filling in unknown values by correlations; 4) 

filling in missed values by similarities between cases. In 

cheminformatics, third and fourth cases are often applied. For 

instance, the read-across approach is data gap filling technique 

that is based on external predictions for untested compounds 

using data of toxicity or any other endpoint. In other words, 

read-across is able to predict information on one or more 

endpoints of one nanoparticle or more nanoparticles using data 

(experimental or calculated) from other nanoparticles. 

Currently, cluster analysis and self-organizing maps (SOM) 

categorization approaches represent useful and proven data 

science tools for analysis of hidden patterns within 

multidimensional data.17,18 SOM analysis provides an ordered 

two-dimensional visualization of data, where nanoparticles 

with similar patterns of action are grouped in SOM units.17 

In our study, multi-task nano-read across approach is 

developed to analyze and fill gaps in vital fifteen toxicity 

datasets. A SOM analysis combined with the interspecies 

correlation was applied for data mining of the nanoparticles’ 

toxicities library. Here, we attempted to compare toxicity 

mechanisms for malicious and healthy cells, bacteria, algae and 

protozoa. This study is a logical continuation and significant 

extension of our previous articles, when the differences 

between the mechanisms of toxicity of metal oxide 

nanoparticle for two species: prokaryotic and eukaryotic 

systems were analyzed.10,19 

Materials and methods 

Datasets 

The main text of the article should appear here with headings 

as appropriate. In this study the in vitro cytotoxicity data 

(denoted as EC50/IC50 – the effective concentration of a 

compound that brings about a 50% reduction in bacteria/cell 

viability) of various metal oxide nanoparticles were gathered 

from different sources. We considered fifteen datasets: 

bacteria Escherichia coli (four datasets),20–22 bacteria 

Photobacterium phosphoreum,23 bacteria Vibrio fischeri,24 

human keratinocyte cell line HaCaT,19,25 epithelial cell line A549 

(two datasets),26,27 human epithelial colorectal cell line Caco2 

(two datasets),26,27 murine fibroblast cell line Balb/c 3T3 (two 

datasets),26,27 microalga Pseudokirchneriella subcapitata,24 and 

protozoan Tetrahymena thermophile.24 

In the case of E. coli, dataset №1, the duration of exposure 

was two hours in dark conditions20 and in the case of E. coli, 

datasets №2 and №3, the duration of exposure was thirty 

minutes under dark conditions and under light conditions, 

respectively.21 In the case of E. coli, dataset №4, the duration of 

exposure was 24h under dark conditions.22 For A549 cells, 

Caco2 cells and Balb/c 3T3 cells we gathered two datasets. For 

datasets denotes as № 1 the exposure time was 12 hours, for 

datasets with mark № 2 the exposure time was 24 hours.26,27 

Initial data was grouped and standardized. The IC50 and EC50 

values were converted to the same molar scale [mol/L]. The 

inverse data of the IC50 and EC50 were transformed to the 

logarithmic scale (negative-transformed): log 1/EC50 and log 

1/IC50. Collected and standardized data is presented in Table 1. 

Experimental data, such as mode of action, assay, type of the 

cell and time of exposition are presented in Supplementary 

information file. 

 

Structural descriptors 

As it was previously reported, properties of released metal ions 

play a critical role in toxicity of metal oxide nanoparticles and 

are considered as essential to understand toxicity mechanism 

of MeOx NPs.17,24,28–30 In this connection, several ionic 

characteristics were calculated: ionic radius (𝑟), charge of metal 

ion (Z), electronegativity of metal (χ), covalent index (CI), cation 

polarizing power (CPP).31 These parameters indirectly reflect 

the ability of metal ion to bind with biochemical ligands.31,32 This 

includes interactions with protein-bonded sulfhydryl’s or 

oxygen, as well as the process of depletion of glutathione. 

Covalent index (CI) reflects the relative influence of covalent 

interactions in the binding process: 

(𝐶𝐼) = 𝜒2 ∙ 𝑟        (1) 

Cation polarization power (CPP) indirectly reflects the 

relative importance of covalent interaction with bio-ligands: 

(𝐶𝑃𝑃) =
𝑍2

𝑟
        (2) 

Previously it was also demonstrated, that intracellular redox 

state has a high influence on toxicity.33,34 4 Using 

thermodynamics equation, the band gap (𝐸𝑔) was calculated 

 



  

 

 

   

 

 

Table 1. Selected experimental toxicity data on various metal oxide nanoparticles 

NP E.C.1  

(№ 1) 

E.C.2 

 (№ 2) 

E.C.3  

(№ 3) 

E.C.4  

(№ 4) 

H.5 P.P.6 A.7  

(№ 1) 

A.8  

(№ 2) 

C.9  

(№ 1) 

C.10  

(№ 2) 

B.11  

(№ 1) 

B.12  

(№ 2) 

P.S.13 T.T.14 V.F.15 

Al2O3 2.49 2.42 2.75 2.31 1.85  3.01  3.01  3.01  3.31 3.01 3.01 

Bi2O3 2.82 3.55 4.02  2.50           

CeO2    2.54            

Co3O4    3.24  3.27 3.26 3.36 3.29 3.38 3.25 3.38 3.38 3.38 3.38 

CoO 3.51 3.13 3.33 3.24 2.83           

Cr2O3 2.51 2.06 2.06 2.82 2.30 2.76          

CuO 3.20 4.24 5.71 3.31  2.32 3.62 3.32 3.80 2.90 3.83 3.86 5.20 5.05 4.75 

Fe2O3 2.29 2.40 2.54 2.50 2.05 2.23          

Fe3O4    2.67  3.44 3.36  3.36  3.36  3.76 3.76 3.37 

Gd2O3    2.86            

HfO2    2.62            

In2O3 2.81 2.83 3.48 2.74 2.92           

La2O3 2.87 4.96 5.56 2.81 2.87           

MgO       2.60  2.60  2.60  2.60 2.60 2.60 

Mn2O3    3.35 2.64           

Mn3O4       3.53 3.20 3.53 3.20 3.65 3.50 4.89 3.20 3.20 

Nd2O3      2.93          

Ni2O3    2.96            

NiO 3.45 3.79 3.87 2.17 2.49 1.93          

Pr6O11      3.65          

Sb2O3 2.64 3.12 3.66 2.77 2.31  3.56 3.46 3.70 3.46 3.82 4.28 3.46 3.46 3.51 

SiO2 2.20 2.54 2.92 2.08 2.12  2.78  2.78  2.78  3.00 2.78 2.78 

SnO2 2.01 2.53 3.24 2.48 2.67           

TiO2 1.74 2.14 4.68 2.20 1.76  2.90 2.90  2.90  2.90 4.60 3.03 2.90 

V2O3 3.14 3.48 3.78  2.24           

WO3    2.67 2.56 1.79 3.36  3.36  3.36  3.46 3.37 3.39 

Y2O3 2.87 5.79 5.84 2.66 2.21           

Yb2O3    2.90            

ZnO 3.45 5.80 6.23 3.39 3.32 5.37 3.51 2.83 3.43  3.53 3.82 5.90 4.43 4.90 

ZrO2 2.15 2.58 3.04 2.39 2.02           

E.C.1, E.C.2, E.C.3, E.C.4 – cases for Escherichia coli; H.5 – HaCaT cells; P.P.6 - Photobacterium phosphoreum; A.7, A.8 – cases for A549 cells; C.9, C.10 – cases for Caco2 cells; 

B.11, B.12 – cases for Balb/c 3T3 cells; P.S.13 – Pseudokirchneriella subcapitata; T.T.14 – Tetrahymena thermophile; V.F.15 – Vibrio fischeri. 

using Portier’s schema:33,35 

𝐸𝛥𝐻0 =
−2∙𝛥𝐻𝑓

0∙2.612∙1019

𝑁𝐴∙𝑛𝑒
,      (3) 

where 𝐻𝑓
0 is the standard enthalpy of formation of the oxide, 

NA is the Avogadro number; ne is the number of electrons 

transferred in the reaction. Then, the 𝐸𝑔 is equal to: 

 

𝐸𝑔 = 𝐴 ∙ exp⁡(0.34 ∙ 𝐸𝛥𝐻0)     (4) 

The pre-exponential term A represents a property of the 

cation and it generally corresponds to a value of 1 for d-block 

elements, 0.8 for s-block elements, 1.35 for p-block elements 

and 0.5 for f-block elements.33 

Other important properties for toxicity including some 

intrinsic characteristics, such as molecular mass of single metal 

oxide (MW), bulk density (ρ), and conditional radius of minimal 

interaction, Wigner-Seitz radius (rw), were also established:19,36 

𝑟𝑤 = (
3∙𝑀𝑤

4∙𝜋∙𝜌∙𝑁𝐴
)

1

3
       (5) 

where Mw – molecular weight; ρ – mass density. 

 

Multi-task nano-read across 

A general approach for proposed multi-task nano-read across 

modeling is similar to recently developed nano-read across 

techniques.12,14,37 First, in this study the SOM model was 

generated. It the case of absence of reference nanoparticle 

(nanoparticle with known toxicity) in a certain group, a 

reference nanoparticle from the nearest group is selected. 

Based on available cytotoxicity information, the most accurate 

interspecies equation was selected. A Pearson correlation 



  

4  

 

 

coefficient for interspecies correlations (toxicity-toxicity 

correlations) was calculated to express relationships between 

different toxicities.38,39 Missing data was estimated by scaling 

from the empirical data and calculated descriptors for a given 

endpoint. Toxicity-toxicity correlations and SOM model are 

combined via Gaussian distribution-based process modeling to 

fill data gaps. 

Basically, SOM is the method related to a group of neural 

networks that use unsupervised learning.17,40 Also, 

unsupervised learning does not see differences between 

dependent variables and endpoints. Unsupervised learning 

means that all variables are treated in the same way and there 

is no gold standard and no test checking procedure. Each SOM 

consists of a predefined number of neurons, where each neuron 

has an associated weight vector. The number of elements of 

each vector is equal to the dimensionality of the input space. In 

our case, we used 3×4 map. In SOM the identification of clusters 

corresponds to similar patterns of signaling pathway activity. It 

could be useful for the purpose of identification of common 

mechanisms of action for different types of nanoparticles.34 In 

addition to identifying clusters, the SOM approach can aid in 

development of predictive quantitative structure-activity 

relations.17 

All calculations discussed in this paper were performed using 

KNIME Analytics Platform.41 

Results and discussion 

The visual distribution of EC50 and IC50 values (including the 

minimal and maximal values) from Table 1 is represented in 

Figure 1. As it can be seen, the variance in data is not very high, 

however the highest variance is observed for CuO, La2O3 and 

ZnO (Figure 1). 

We calculated the Pearson correlation coefficient for each pair 

of datasets to estimate their similarity (Table 2). Graphic 

representation of interspecies correlations is depicted in Figure 

2. To evaluate the quality of obtained correlation, we used a 

common criterion, stating that the absolute value of Pearson 

correlation coefficient < 0.3 indicates a weak linear correlation 

between examined tests, absolute value in the range from 0.3 

to 0.7 indicates the average relationship, and absolute value > 

0.7 indicates a strong correlation.42  

In most cases, toxicities measured in different tests 

demonstrate a strong correlation, for example: E. coli dataset 

№1 correlates well with A549 cells dataset №1 (Person 

coefficient r = 0.824), with Tetrahymena thermophile dataset (r 

= 0.851), with Vibrio fischeri dataset (r = 0.926). Next, E. coli 

dataset №2 correlates well with A549 dataset №1 (r = 0.735), 

with Pseudokirchneriella subcapitata dataset (r = 0.798), with 

Tetrahymena thermophile dataset (r = 0.821), with Vibrio 

fischeri dataset (r = 0.943). Third E. coli dataset correlates well 

with Caco2 dataset №2 (r = -0.869), with Pseudokirchneriella 

subcapitata dataset (r = 0.983), with Tetrahymena thermophile 

dataset (r = 0.839) and with Vibrio fischeri dataset (r = 0.864). 

All other connections are presented in Table 2. The strong linear 

correlation between examined tests suggests that toxic effects 

of nanomaterials are similar for these endpoints. This similarity 

may indicate that pattern of the toxic action is the same despite 

of utilized test type. Consequently, due to similarity, in this case 

one endpoint could be applied to predict toxic effect for other 

tests without necessity of experimental measurement.  

 
Figure 1.  Range of cytotoxicity values for MeOx nanoparticles 
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Table 2. Interspecies correlations between toxicity datasets 

 

E.C.1 

(№1) 

E.C.2 

 (№ 2) 

E.C.3  

(№ 3) 

E.C.4  

(№ 4) 

H.5 P.P.6 A.7  

(№ 1) 

A.8  

(№ 2) 

C.9  

(№ 1) 

C.10  

(№ 2) 

B.11  

(№ 1) 

B.12  

(№ 2) 

P.S.13 T.T.14 

E.C.2(№2) 0.646              

E.C.3(№3) 0.425 0.874             

E.C.4(№4) 0.660 0.521 0.470            

H.5 0.647 0.552 0.435 0.725           

P.P.6 0.237 0.632 0.496 0.586 0.737          

A.7(№1) 0.824 0.735 0.631 0.830 0.722 0.010         

A.8(№2) 0.097 -0.249 -0.576 0.180 -0.268 -0.927 0.437        

C.9(№1) 0.688 0.524 0.662 0.730 0.499 -0.231 0.983 0.356       

C.10(№2) 0.125 -0.047 -0.869 0.230 0.999 0.999 0.300 0.702 -0.523      

B.11(№1) 0.691 0.547 0.663 0.708 0.518 -0.058 0.982 0.221 0.993 -0.400     

B.12(№2) 0.678 0.451 -0.136 0.490 0.517 0.139 0.863 0.502 0.692 0.488 0.747    

P.S.13 0.608 0.798 0.983 0.588 0.627 0.586 0.625 -0.714 0.674 -0.850 0.700 -0.042   

T.T.14 0.851 0.821 0.839 0.822 0.916 0.198 0.763 -0.015 0.761 -0.397 0.735 0.489 0.732  

V.F.15 0.926 0.943 0.864 0.867 0.934 0.452 0.749 -0.162 0.710 -0.285 0.704 0.536 0.779 0.955 

In bold are strong correlation measures. 

As per common sense, the toxicity trends for the same 

species should be the same. However, in cases for E. coli 

datasets we found only average connection (0.425 < r < 0.660). 

We suggest that inconsistencies between datasets are related 

to different experimental conditions. For example, in the case 

of E. coli dataset №1, the duration of exposure was two hours 

in dark conditions20 and for the case of E. coli datasets №2 and 

№3, the experiments were conducted under dark conditions 

and under light conditions, respectively.21 

In the case of E. coli dataset №4 the duration of exposure 

was 24h under dark conditions.22 At the same time, high 

correlation was observed for E. coli dataset №2 and E. coli 

dataset №3, where both tests were conducted for about 30 min 

under dark conditions and under light conditions, 

respectively).21 It one more time confirms the importance of 

experimental conditions during the tests. 

 

Figure 2.  Interspecies correlations between toxicity datasets 
(based on Table 2) 

The same situation was observed for A549 cells (r = 0.437 for 

two datasets) and Caco2 cells (r = -0.523 for two datasets).26,27 

For those cases the exposure time was different: 12 hours and 

24 hours, respectively.26,27  

Initially nanoparticles were treated with fetal bovine serum, 

therefore we link inconsistencies in data to protein corona 

formation process. It is widely known, that the protein corona 

formation dramatically changes the toxicity of 

nanoparticles.43,44 

In contrary, there was an agreement between Balb/c 3T3 

cells datasets (r = 0.747).26,27 Two datasets for Balb/c 3T3 cells 

were also treated 12 and 24 hours,26,27 but all investigations 

were carried on the serum-free assay. 

We found that the weakest connections were observed for 

different classes of bacteria, for instance, for E. coli dataset №1 

and Photobacterium phosphoreum dataset (r = 0.237), 

Photobacterium phosphoreum dataset and Vibrio fischeri 

dataset (r = 0.452). In the case of Photobacterium phosphoreum 

and Vibrio fischeri which are members of same Vibrionaceae 

family, observed correlation can lead to misclassification. 

However, mentioned datasets share only 5 data points and only 

one of these points was anomalously different from the entire 

trend. We suppose that this amount of data is not sufficient to 

develop any trend for toxicity action. 

From all 15 species, the bacteria Photobacterium 

phosphoreum shared the least number of strong connections. 

Eukaryotes (all cells, algal Pseudokirchneriella subcapitata and 

protozoa Tetrahymena thermophile) in most cases do 

demonstrate strong and average connections. 

Above mentioned observations allow us to conclude that 

there are similar and dissimilar patterns of toxic action. The 

same nanoparticle may act in the similar way for different cells 

and bacteria, demonstrating similar patterns of the toxic action. 

However, some of mentioned trends are not representative, as 

some pairs shared data for small number of nanoparticles (less 

than 5 data points, see Table 1). Visualization of similar trends 

between metal oxide nanoparticles for different datasets is 

presented in Figure 3. 

 



  

 

 

   

 

 

 

Figure 3. Trends of the cytotoxicity of MeOx nanoparticles towards different species 

As it can be seen from Figure 2 and Figure 3, our results 

indicate that QSAR models developed in previous 

contributions19,20,25,28,36,37 with some approximations are able to 

describe the cytotoxicity for different types of cells. To find 

possible links between nanoparticles in space of toxic 

responses, the SOM model was generated. Moreover, Figure 3 

shows some interesting trends, confirming that most of the 

MeOx nanoparticles show similar cytotoxicity values for 

different types of cells. 

For the purpose of SOM modeling the available toxicity data 

were utilized as descriptors. The best SOM model was chosen 

on the grounds of consistence with experimental data. The SOM 

representation (as two-dimensional projection) of the 

multidimensional data is presented in Figure 4. Although, we 

used the developed model to fill the gaps in the initial database. 

Results of predictions are presented in Table 3. 

Analysis of the developed model revealed twelve groups of 

nanoparticles corresponding to four main risk categories (Figure 

4): 1) non-toxic (green clusters, nanoparticles demonstrate low 

toxicity in all tests); 2) moderately hazardous (blue clusters, in 

some cases demonstrated toxicity); 3) highly hazardous (red 

clusters, nanoparticles demonstrate high toxicity in majority of 

tests); 4) imprecise (yellow cluster, nanoparticles demonstrate 

both low and high toxicity for different tests).  

In overall, the SOM model consists of descriptors that relate 

to release of ion from the nanoparticle’s surface (CI, CPP, etc). 

As it was demonstrated in our previous contribution, the most 

important outcome is the cause-effect relationships between 

the enthalpy of cation’s formation and toxicity.28 At the same 

time, the enthalpy has a clear connection with ion’s charge and 

CPP and those descriptors indirectly describe the same 

processes. Since the calculations presented in current paper are 

simpler and faster when compared with the computation of 

enthalpy, it might be more efficient instead of enthalpy to use 

ion charge and CPP in modeling the toxicity. 

 

Figure 4. A representation of similarity in toxicity between 
MeOx nanoparticles applying SOM clustering technique 

 



  

 

 

   

 

 

Table 3. Toxicity data with additional number obtained by applying the suggested methodology to fill experimental gaps 

NP E.C.1 E.C.2 E.C.3 E.C.4 H.5 P.P.6 A.7 A.8 C.9 C.10 B.11 B.12 P.S.13 T.T.14 V.F.15 

Al2O3 2.49 2.42 2.75 2.31 1.85 out 3.01 3.21 3.01 out 3.01 out 3.31 3.01 3.01 

Bi2O3 2.82 3.55 4.02 2.76 2.50 2.16 3.42 3.39 3.48 3.38 3.50 4.01 3.36 3.52 3.39 

CeO2 2.49 3.43 4.09 2.54 2.48 2.89 3.20 3.02 3.33 3.08 3.37 3.39 4.14 3.30 3.27 

Co3O4 2.89 3.36 3.73 3.24 2.57 3.27 3.26 3.36 3.29 3.38 3.25 3.38 3.38 3.38 3.38 

CoO 3.51 3.13 3.33 3.24 2.83 3.06 3.36 3.25 3.32 3.25 3.35 3.95 4.09 3.89 3.94 

Cr2O3 2.51 2.06 2.06 2.82 2.30 2.76 3.40 3.30 3.46 3.28 3.50 3.76 3.93 3.59 3.56 

CuO 3.20 4.24 5.71 3.31 2.73 2.32 3.62 3.32 3.8 2.90 3.83 3.86 5.20 5.05 4.75 

Fe2O3 2.29 2.40 2.54 2.50 2.05 2.82 3.35 3.30 3.46 3.25 3.50 3.81 3.81 3.57 3.48 

Fe3O4 2.80 3.48 3.99 2.67 2.52 3.44 3.36 3.27 3.36 3.30 3.36 3.77 3.76 3.76 3.37 

Gd2O3 2.71 out out 2.86 2.37 2.87 3.19 3.16 3.27 3.25 3.31 3.69 3.77 3.04 2.97 

HfO2 2.48 out out 2.62 2.45 2.19 3.21 3.10 3.26 3.11 3.28 3.28 3.98 3.29 3.28 

In2O3 2.81 2.83 3.48 2.74 2.92 2.75 3.39 3.26 3.43 3.32 3.46 3.82 3.83 3.53 3.50 

La2O3 2.87 4.96 5.56 2.81 2.87 3.47 3.22 3.07 3.31 3.22 3.36 3.69 4.09 3.18 3.17 

MgO out out out 2.80 2.66 out 2.60 3.12 2.60 out 2.60 out 2.60 2.60 2.60 

Mn2O3 2.72 3.49 out 3.35 2.64 out 3.23 3.15 3.24 3.22 out out out out out 

Mn3O4 2.75 3.65 4.13 2.74 2.22 3.27 3.53 3.20 3.53 3.20 3.65 3.50 4.90 3.20 3.20 

Nd2O3 2.73 3.91 4.35 2.86 2.52 2.93 3.30 3.15 3.43 3.20 3.47 3.67 3.94 3.28 3.18 

Ni2O3 2.71 3.21 3.83 2.96 2.50 3.33 3.35 3.20 3.39 3.17 3.43 3.52 4.09 3.591 3.59 

NiO 3.45 3.79 3.87 2.17 2.49 1.93 3.34 3.33 3.31 3.20 3.34 4.00 3.94 3.86 3.82 

Pr6O11 3.04 4.92 4.90 3.21 2.54 3.65 3.63 3.41 3.72 3.55 3.78 3.99 3.51 3.01 2.80 

Sb2O3 2.64 3.12 3.66 2.77 2.31 2.37 3.56 3.46 3.70 3.46 3.82 4.28 3.46 3.46 3.51 

SiO2 2.20 2.54 2.92 2.08 2.12 3.50 2.78 3.14 2.78 3.39 2.78 3.20 3.00 2.78 2.78 

SnO2 2.01 2.53 3.24 2.48 2.67 2.39 3.27 3.22 out out out out out out out 

TiO2 1.74 2.14 4.68 2.20 1.76 3.35 2.90 2.90 3.48 2.90 3.52 2.90 4.60 3.03 2.90 

V2O3 3.14 3.48 3.78 2.86 2.24 3.34 3.40 3.16 3.45 3.17 3.49 3.54 4.32 3.61 3.63 

WO3 1.82 1.40 2.65 2.67 2.56 1.79 3.36 3.21 3.36 3.17 3.36 2.86 3.46 3.37 3.39 

Y2O3 2.87 5.79 5.84 2.66 2.21 3.56 3.11 3.07 3.19 3.16 3.24 3.66 4.09 3.09 3.09 

Yb2O3 2.73 4.05 4.23 2.90 2.42 2.49 3.23 3.18 3.27 3.24 3.31 3.58 3.81 3.08 3.02 

ZnO 3.45 5.80 6.23 3.39 3.32 5.37 3.51 2.83 3.43 3.11 3.53 3.82 5.90 4.43 4.90 

ZrO2 2.15 2.58 3.04 2.39 2.02 2.78 3.20 3.09 out out out out out 3.27 out 

Predicted values are in bold 

Even though there are similar patterns of action in different 

species, differences in exposure scenarios may still exist for 

different cells or organisms. For instance, it is clear that 

eukaryotes and prokaryotes handle the uptake of metal ions in 

different ways.19,45 Let us discuss each cluster and potential 

scenarios in detail. 

In general, five major mechanisms of nanoparticles’ toxicity 

are reported: 1) direct damages by released ions, such as DNA 

induction or depletion of glutathione and bonding to sulfhydryl 

or oxygen-containing groups of proteins; 2) oxidative stress 

induced by excessive production of reactive forms of oxygen by 

released ions or surface of nanoparticle; 3) adsorption of 

biologically active molecules onto  nanoparticle’s surface; 4) 

molecular structure related effects (due to band gap or 

crystalline form) that result in photochemical and redox 

properties; and 5) Trojan horse effects.19,33,46–48 

Red group (clusters 1, 2, 3, 4 and 7) could be divided among 

three subsets: subset with cluster 1, subset with clusters 2, 3, 7, 

and subset with cluster 4, respectively. 

As per cluster 4, that included ZnO and CuO nanoparticles, 

the lethal genotoxic responses were associated with release of 

ions and high solubility of nanoparticles (mechanisms № 1 and 

№ 2).17,26,32 

Certain amount of both Cu2+ and Zn2+ is necessary for 

biological function; therefore, the balance between 

intracellular and extracellular contents of these ions is regulated 

at the cellular level. However, increasing concentration of ions 

entering the cell will result in increasing toxicity. Similar 

outcomes were reported by other researchers.49,50 Next, 

cytotoxicity of Zn2+ and Cu2+ comes from the fact, that copper 

ions are prone to participate in the formation of reactive oxygen 

species via Fenton reaction.19 
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According to Nieboer, metal ions from clusters 1, 2 and 3 are 

oxygen-seeking (mechanism № 1).31 Nanoparticles Gd2O3, Y2O3, 

Yb2O3 and La2O3 in cluster 1 belong to group 3 in the periodic 

table of elements. Cluster 1 shares similar values of standard 

reduction potential in reaction Mex+ + xē↔ Me0: -2.279 for Gd3+, 

-2.379 for La3+, -2.372 for Y3+ and -2.19 for Yb3+ (mechanism № 

4). Next group 2 also contains three lanthanides CeO2, Nd2O3, 

Pr6O11 and two transition-metal oxides HfO2 and Mn3O4. Third 

cluster includes only Mn2O3 nanoparticle. 

Сluster 7 grouped Fe3O4, Co3O4, CoO, In2O3, V2O3 and Ni2O3 

nanoparticles. Ivask et al. supposed that toxic effects of Mn3O4 

and Co3O4 could be attributed to the ROS-inducing ability of 

surface or released ions (mechanisms № 1 and № 2).26 In this 

group, Fe3O4, CoO and In2O3 could be moderately soluble 

(mechanism № 1).17,46,51 It was found that vanadium and cobalt 

can undergo redox-cycling reactions (mechanism № 4).47 

As it can be seen from the Figure 3, TiO2, MgO, ZrO2, Al2O3 

and SiO2 (clusters 5, 6, 9, 10) were grouped as safe 

nanomaterials. These results are in agreement with current 

theories of nanotoxicology.52–54 The remarkable fact is that all 

mentioned nanoparticles are safe for different species. In the 

case of cluster 10 (Figure 3), results were identical to previously 

developed cheminformatics model as it was earlier 

demonstrated by Rallo et al.17 In mentioned contribution, safe 

responses to Al2O3 and SiO2 nanoparticles were related to the 

low production rate of ROS. ZrO2 from cluster 6 and TiO2 from 

cluster 9 are the most insoluble oxides (mechanism №1). 

In seems that diverse toxicities of species in cluster 8 (NiO, 

Bi2O3) were related to differences of the natural resistance of 

different organisms/cells. For instance, NiO demonstrated high 

toxicity towards E. coli, but toxicity towards HaCaT cells and 

Photobacterium phosphoreum were low.21,23,25 Nickel replaces 

the essential metal of metalloproteins in E. coli, inducing the 

toxicity.55 At the same time, Photobacterium phosphoreum is 

nikel-tolerant.56 In the case of cells (HaCaT cells, Table 1), Ni2+ 

produces rather low, but measurable levels of free radicals.57 

Both NiO and Bi2O3 are moderately soluble, which may lead to 

release of ions and production of ROS (mechanisms №1 and 2). 

In the case of Zebrafish (unstudied in current paper) it has been 

proven that soluble NiO evokes the formation of free radicals 

(mechanism № 2).49  

Nanoparticles from the cluster 11 (Fe2O3, Cr2O3 and SnO2) 

are preferably stable and could release ions that demonstrate 

borderline pattern of action in terms of ionic behavior.31 Ions of 

iron and chromium can undergo redox-cycling reactions 

(mechanism № 4).47 Fe3+ and Cr3+ are normally present in cell 

cycle, the balance between intracellular and extracellular 

contents of these ions is regulated. As the solubility of these 

ions is moderate, this balance remains stable (mechanism № 1). 

Nanoparticles in cluster 12 are low toxic. WO3 is chemically 

inert and stable in aqueous media over a very wide pH range.58 

Low solubility could be the reason why WO3 and Sb2O3 from 

cluster 12 do not gain an access to the reactive cites in cells 

(mechanism №1).31 

As one can see from Table 3, in some cases, predicted values 

were out of the applicability domain. It could be explained by 

lack of certain cases (values of toxicity) in initial database, that 

limited predictive ability of developed space of descriptors. 

Conclusions 

In this study, we have presented a comprehensive, predictive 

multi-nano-read-across model of metal oxide nanoparticles’ 

toxicity. Using the developed approach, we have analysed 

hidden patterns of multidimensional toxicological data and 

found the similarity within datasets. All nanoparticles were 

categorized to four main patterns of nanotoxicological action. 

Based on similarity of toxic action, we have estimated the 

cytotoxicity for experimentally untested nano-sized metal 

oxides. Presented approach provides both qualitative and 

quantitative categorization of nanoparticles towards different 

cells and bacteria. Developed model also reveals the differences 

in the mechanisms of toxicity of metal oxide nanoparticles 

towards different prokaryotes and eukaryotes. The mechanistic 

insight of the developed models lies within known theories of 

nanotoxicity.  

We also demonstrated that it is very important to have data 

that measured at same conditions. However, variation of 

endpoints due to different experimental conditions does not 

abrogate the same pattern of action of nanomaterials. Using 

similarity measures we found and discussed differences in the 

mechanisms of toxic action of nanoparticles for prokaryotes and 

eukaryotes. 

The proposed combined approach may be helpful to 

broaden knowledge on toxicity of nanomaterials and can be 

used for safe-by-design approach. Developed multi-nano-read-

across approach could be beneficial for cross-species prediction 

of toxicity of nano-sized metal oxides as well as a useful tool for 

early risk assessment of metal oxide nanoparticles. 
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