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Abstract 
Fusion to host cells and infection caused by Severe Acute Respiratory Syndrome coronavirus (SARS)-CoV2  was inhibited in vitro by PP 
mutations stabilizing prefusion states of their spike (S) protein native conformation, as reported by several authors. However, the possible 
stabilization of S by binding-ligands, rather than by mutations, have not been explored, nor it is yet known if it would be possible. In this work, 
the so called “spring-loaded switch-folding” (SLSF) expanding S amino acid residues 960-1010 was computationally targeted because SLSF 
surrounded the previously described PP mutations. The SLSF trimeric prefusion conformation consisted in 3x3 α-helices that require a 
transition to 3  longer α-helices before viral/host membrane fusion, similarly to what occurs in other enveloped viruses.  Results of a double 
computational screening among hundred of thousands of natural compounds for binding to the wild-type isolated SLSF conformer predicted 
more leads for its trimers than for monomers. Further ranked by the number of SLSF-conformers bound, some of the predicted top-leads may 
deserve experimental validation. Additional screening among thousands of drugs identified Tinosorb, an star-shaped molecule, as the lowest 
binding-score lead to SLSF in the low nM range. However, despite its lower binding-score, 3-fold molecular symmetry and fitting the inner part 
of the SLSF α-helices,  we were unable to experimentally show any specific inhibition of S-mediated membrane fusion using an VSV-
pseudotyped infectivity assay, nor any virtual binding to S-SLSF using docking to whole native S trimers. Further exploring the star-shaped 
features may provide new molecular alternatives to cross-bind the α-helices of S-SLSF to hypothetically inhibit coronavirus fusion. 
 
Keywords: S; conformers; prefusion; coronavirus; computational screening; ligands; SARS CoV-19; spring-loaded switch folding; Tinosorb   
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Introduction 
The surface of infectious SARS-CoV2 (Severe Acute Respiratory 

Syndrome coronavirus 2), is surrounded by spike (S)  glycoprotein trimers forming 
a corona-like structure. Most of the S trimers in the native virions are in a host-
receptor non-accessible closed prefusion conformation, having their 3 receptor-
binding domains (RBD) all-down 1. Nevertheless, S trimers often displays some 
RBD epitopes targeted by many neutralizing antibodies 2-7, most probably because 
there may exist RBD spontaneous transitions from closed (down) to exposed (up) 
receptor-accessible  conformations (1, 2 or 3-up)  8. Upon binding to the host 
protein receptor, proteolysis separate the S1/S2 subunits, which become non-
covalently associated in another prefusion state (Figure 1). In SARS-CoV2, the S2 
subunit (residues 686-1273) contains the fusion peptide (788–806), the amino-
terminal heptad repeat HR1 (910 to 988, with non-helix residues at 939-947 and 
968-986), the central helix CH (986-1033), the C-terminal HR2 (1162 to 1213), the 
transmembrane domain (1214–1237) and the cytoplasmic domain (1238–1273) 
(Figure 1). All these domains participate in several prefusion conformational 
changes to expose RBDs and trigger viral-host membrane fusion 9, 10. 

Infectious coronaviruses can be inactivated by stabilizing their S 
prefusion all-down conformations by specific mutations 10-13. For instance, 
mutations to prolines (P) in some of the residues located in HR1-CH generated 
prefusion-stabilized  non-infectious MERS 10 and SARS-CoV2  11-13. The inhibition 
of infectivity by double PP mutations is most likely due to the blocking of the 
“spring-loaded switch” (SLS) unfolding, required for fusion-competent 
conformations, similarly to those present in many other enveloped virions. In wild-
type coronavirus, after RBD binding to host receptors, the unfolding of SLS 
prepares the virion S for viral-host membrane fusion. Although the PP mutants 
maintained the virion morphology, they were non-infectious. The PP-based 
strategy may be  advantageous for the development of vaccines than other 
described mutations, since it also increased recombinant S yield and stability. 
Those two reasons may explain why most of the presently available S 3D-
structures were solved using PP mutants (Table S1).  

The HR1-CH sequence of SARS-COV2  contains the SLS 10, 14 which 
maintain  3 α-helices per monomer folded and separated by non-helix residues 
(spring-loaded) (Figure S1 and 3). Once the SLS folding (SLSF) is unfolded 
(Figure 1C), refolding inside the S trimer generates three unique longer α-helices 
(3x3 to 3x1 S-SLSF α-helices transition per trimer). Then HR1-CH-HR2 complexes 
form a fusion-competent 6-helix core of coiled-coils (one antiparallel complex of 3 
internal HR2 + 3 external HR1-CH). A S2’ protease-mediated cleavage liberates 
the internal fusion peptide to be inserted into the host-cell membrane to proceed 
with viral/host membrane fusion.  

Previous successful examples on inhibition of fusion by drugs targeting 
HRs have been reported in several enveloped viruses, including SARS-COV2 15, 16. 
Perhaps the best example is Enfurtivide®, an FDA-approved peptide drug blocking 
HIV infection by inhibiting HR conformational changes in its gp41 membrane 
protein. In coronaviruses, peptides derived from HR2 and binding to HR1 also 
inhibited viral fusion and infectivity.  For instance, in SARS-CoV2, the CP-1 peptide 
showed an inhibition concentration of 19 µM in cell-fusion assays, which was 
improved to 0.19 - 0.62 µM by mutations, conjugation to lipids 9, 17 or hydrocarbon-
chain stapling 18.  

All the above mentioned reports suggests that searching for more 
potent binding ligands (i.e., in the low nM range) could be a source of possible 
prefusion inhibitor candidates for SARS-CoV2. Perhaps targeting SLSF rather than 
the HR complex core would provide some alternatives. Such possibilities may 
benefit from preliminary computational predictions. 

While most ligands with anti-coronavirus activities are being 
computationally searched among approved drugs targeting the RNA replication 
complex RdRp core (nsp12), the S1 interface of the RBD / ACE2 host-receptor 19 
and/or the viral proteases implicated in viral protein processing 20-22, to our 
knowledge,  there have been no previous reports on computational attempts to 
search for possible binding ligands targeting SLSFs. Therefore, based on the 
successful S prefusion stabilization of SARS-CoV2 by mutants on SLSF 11-13, the 
existence of putative binding-ligands in the low nM range were explored here.  
Such hypothetical ligands may be capable of stabilizing SLSF prefusion 
conformations, perhaps by non-covalent crosslinking of α-helices or by avoiding 
their displacement.  Whether such ligands binding to SLSFs do exist and could 
inhibit viral fusion remains to be demonstrated.  

The results obtained here predicted that, i) top-leads do exist that 
predict binding-scores to SLSF in the low nM range, including some known drugs, 
ii) The SLSF 6xr8 native trimers were the best targets for such ligands rather than 
monomers corresponding to any other mutated conformers, and iii) Tinosorb, a 
drug that despite being an star-shaped molecule fitting the inner site of the 3x3 
helices of SLSF with the lowest binding-score to SLSF, did not inhibited S-
dependent in vitro infection, nor showed virtual binding to S-SLSF. Nevertheless, 
among all these potential SLSF-ligands, Tinosorb-similar 3-fold symmetric 
structures and/or chemical derivatives smaller in size and more hydrophilic, may 
offer new opportunities to inhibit coronavirus fusion and infection, and/or, at least, 
offer new tools to further investigate the prefusion mechanism(s) of coronaviruses.  
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Table S2 
Drug-like properties of top-leads predicted by SwissADME 

Top-leads      1A2 3A4   
of Table 1 TPSA LIPK LogP Sol GIA inh inh PAINS  Brenk 
SN00236117 60.7 0 4.1 S High Yes Yes 0 1 
SN00333487 57.5 0 4.1 S High No Yes 0 3 
SN00030711 60.7 0 4.0 S High No No 0 1 
SN00241472 49.7 0 5.1 M High No No 0 0 
SN00339301 60.7 0 4.1 S High Yes Yes 0 1 
SN00316933 20.2 1 5.3 M High No No 0 1 
SN00350832 60.7 0 4.1 S High Yes Yes 0 1 
SN00360448 60.7 0 4.1 S High Yes No 0 1 
SN00379984 66.8 0 3.5 S High No No 0 1 
SN00037008 60.7 0 3.9 S High No No 0 1 
SN00359351 40.5 0 3.7 S High Yes No 0 1 
SN00395077 80.9 0 2.7 S High No No 0 1 
SN00020460 63.6 0 4.2 M High No Yes 0 2 
SN00024546 65.4 0 2.2 M High No No 0 1 
SN00030713 60.7 0 4.0 S High No No 0 1 
SN00031000 55.8 0 3.9 S High No Yes 0 1 
SN00071389 29.5 0 5.1 M High No Yes 0 0 
SN00071475 30.8 0 5.4 M High No No 0 1 
SN00072921 42.8 0 2.7 M High No No 0 0 
SN00072922 42.8 0 2.7 M High No No 0 0 
SN00073534 38.3 0 4.2 M High No No 0 0 
SN00236633 78.4 0 4.7 M High Yes Yes 0 1 
SN00272769 78.4 0 3.8 S High No No 0 1 
SN00306080 63.6 0 4.5 M High Yes Yes 0 0 
SN00316223 46.5 0 4.2 M High No Yes 0 2 
SN00317046 60.7 0 3.6 S High No No 0 1 
SN00327581 66.8 0 2.8 S High No No 0 1 
SN00330379 49.7 0 4.8 M High No Yes 0 1 
SN00334033 46.5 0 4.9 M High Yes Yes 0 1 
SN00334251 40.5 0 4.6 M High No No 0 1 
SN00363785 60.7 0 4.0 S High Yes Yes 0 1 

  
Top-leads      1A2 3A4   
of Table 2 TPSA LIPK LogP Sol GIA  inh inh PAINS Brenk 
SN00249430 80.9 0 3.3 M High No No 0 1 
SN00241472 49.7 0 5.1 P High No No 0 0 
SN00400153 40.5 1 5.0 P High Yes Yes 0 1 
SN00278612 60.7 0 4.1 M High Yes No 0 1 
SN00359607 40.5 0 4.8 M High Yes Yes 0 1 
SN00300994 37.3 0 5.0 P High Yes Yes 0 0 
SN00282570 37.3 0 5.0 P High Yes Yes 0 2 
SN00254120 69.9 0 4.1 P High Yes No 0 0 
SN00335571 60.7 0 4.0 M High No No 0 1 
SN00316933 20.2 1 5.3 P High No No 0 1 
SN00307456 80.9 0 3.6 M High Yes No 0 1 
SN00030711 60.7 0 4.0 M High No No 0 1 
SN00272486 80.9 0 3.3 M High No Yes 0 1 
SN00333487 57.5 0 4.1 M High No Yes 0 3 
SN00312704 40.5 0 4.8 P High Yes Yes 0 1 
SN00362440 49.7 0 5.1 P High Yes No 0 0 
SN00356917 70.1 0 3.4 M High No No 0 2 
SN00334964 87.0 0 2.9 S High No No 0 1 
SN00073534 38.3 0 4.2 M High No No 0 0 
SN00046678 46.6 0 3.7 M High No Yes 0 0 
SN00400131 40.5 0 3.6 M High No No 0 1 

Top-leads 1A2 3A4 
of Table 3 TPSA LIPK LogP Sol GIA  inh inh PAINS Brenk 
SN00171986 131.4 0 2.7 M Low Yes No 0 0 
SN00237200 124.3 0 3.0 M High Yes No 1 1 
SN00139699 96.5 0 3.4 M High No No 0 2 
SN00279624 116.5 0 1.1 S High No No 0 1 
SN00052785 119.7 0 2.7 M High Yes No 0 1 
SN00025089 90.9 0 1.4 M High No Yes 0 0 
SN00064143 108.7 0 2.6 S High No Yes 0 1 
SN00001854 147.4 0 1.3 S Low No No 1 2 
SN00147258 88.1 0 3.6 M High Yes Yes 0 1 
SN00023927 103.8 0 -0.3 S High No No 0 1 
SN00022518 108.2 0 2.1 M High No Yes 0 1 
SN00118894 120.7 0 2.4 M High Yes No 0 2 
SN00123877 91.4 0 3.3 M High Yes No 1 3 
SN00161487 139.8 1 0.6 S High No No 0 1 
SN00126519 143.8 0 2.4 M Low No No 1 2 
SN00002685 42.9 0 3.6 M High Yes No 0 0 
SN00120545 117.9 0 3.8 M Low Yes No 0 1 
SN00236177 144.5 0 1.6 S Low No No 1 2 
SN00261691 125.7 0 0.9 S High No No 0 0 
SN00234593 154.0 0 1.0 S Low No No 1 4 
SN00133277 108.7 0 3.5 M Low No Yes 1 2 
SN00262902 116.5 0 1.0 S High No No 0 1 
SN00121318 68.0 0 4.2 M High Yes No 0 0 
SN00031647 92.1 0 1.5 S High No Yes 0 0 
SN00131462 88.7 0 3.7 M High No No 0 2 
SN00263240 110.4 0 2.2 S High No No 0 0 
SN00005569 100.4 0 1.5 S High No Yes 0 0 
SN00031715 60.7 0 2.0 M High Yes Yes 0 0 
SN00031719 73.6 0 1.4 S High No Yes 0 0 
SN00132791 136.1 0 2.9 M Low No No 1 3 
SN00139629 83.0 0 3.4 M High No No 0 1 
SN00014964 89.9 0 1.7 S High No No 0 1 
SN00164272 114.3 0 0.9 S High No No 0 1 

The corresponding 2D structures to the SuperNatural II SN numbers can be consulted at Figure 2,4 
and 5 or at http://bioinf-applied.charite.de/supernatural_new/index.php.  
TPSA, estimates of the amount of topological polar molecular surface area, lowest values facilitate 
permeation of cell membranes (best to be <90 Å2 ).   
LIPK, number of  violations of Lipinski rules that would make the ligand less likely to be an orally 
administrable drug if >5. It counts the number of Nitrogen (N) and oxygen (O) Hydrogen (H)-bond 
acceptors (best to have <10) and H-bond donors (best to have <5), the molecular weight (best if < 
500) and the logP (best to be <5).  
LogP, consensus value of multiple predictions of lipophilicity.   
Sol,  solubilities in water classified in general classes 
GIA, prediction of gastro-intestinal adsorption.   
1A2, 3A4, inhibition of the main detoxyfying cytochromes P450.   
PAINS, Pan Assay Interference Structures (PAINS), alerting of the number of chemical fragments 
that return false positive signals in virtual binding.  
Brenk, alerting of the number of chemical moieties known to be toxic and/or unstable. 
Green, favorable.  
Yellowish, moderate.  
Reddish, unfavorable. 
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Figure S4 

Binding-profiles of drug leads to conformers  
Each set of nM binding-scores per conformer were ordered from lower to higher and the first 27th 
represented. Other details as in Figure S3. 
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