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Highlights 

 Disruption of interactions between the PICK1 PDZ domain and GluA2 subunit of AMPA receptor 

alters the synaptic plasticity of neurons. 

 Ten molecular libraries were virtually screened against the PDZ domain of PICK1 protein to find 

the best hits. 

 Molecular docking, molecular dynamic simulation, and ADME analyses were performed for the 

identified four hits. 

 The detailed investigations suggest that Hit_III (MolPort-005-050-255) has a significant binding 

affinity for the PDZ domain and showed drug-likeness. 

Abstract 

PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of 

AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds 

numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon 

disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the 

cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such 

diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have 

been utilized to prevent these interactions, the number of such molecules is inadequate. Hence, in this 

study, ten molecular libraries containing large number of molecules were screened against the PDZ domain 

using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking 

and molecular dynamic simulation studies revealed that Hit_III shows efficient binding with PDZ and 

considerably deviates the binding position of GluA2 subunit tail in the domain. Additionally, we performed 

ADME (Absorption, distribution, metabolism, and excretion) analysis and it was noted that Hit_III (MolPort-

005-050-255) overcomes all the barriers except P-gp (Permeability-glycoprotein) substrate to show its drug-

likeness. This study suggests that tested hits may have potency against the PDZ domain and can be 

considered effective to treat neurological disorders. 
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Introduction 

Protein interacting with C kinase-1 (PICK1) is a membrane protein and present in a wide array of 

species from C. elegans to humans.  It is abundantly expressed in brain and testis tissues in 

humans.  In the cellular region, it is found at the perinuclear site and the neural presynaptic and 

postsynaptic sections of the Central nervous system (CNS)(Xu & Xia, 2007). PICK1 contains two 

vital domains, membrane binding N-BAR (Bin/amphiphysin/rvs) and PDZ (PSD-95/Dlg/ZO1) which 

binds to the PDZ motifs of other proteins (Herlo et al., 2018; Li et al., 2016). The PDZ domain of 

PICK1 interacts with various transport proteins, neurotransmitter receptors, and other enzymes 

(Erlendsson et al., 2014; Xu & Xia, 2007). Since PICK1 is involved in the regulation of proteins that 

are linked with neuropsychiatric and neurological conditions, it can be considered a potential target 

for novel therapeutics (Thorsen et al., 2010). 

The disruption of protein-protein interactions implicated in cell-cell adhesion, cell death, signal transduction, 

and other biomolecular processes by small organic molecules can solve many biological challenges for 

numerous diseases (Arkin & Wells, 2004; Berg, 2008; Wells & McClendon, 2007). PDZ domain is involved 

in therapeutically targeted protein-protein interactions (Blazer & Neubig, 2009; Dev, 2004; Houslay, 2009) 

and it helps cellular trafficking and providing scaffolding sites for large assembly forming proteins inside the 

cell. This domain identifies the C-terminal region of interacting proteins to facilitate further functions and it 

is highly expressed in eukaryotes (Kornau et al., 1993; Kim et al., 1995; Songyang et al., 1997). Research 

shows that PICK1 plays a vital role in different forms of synaptic plasticity (Daw et al., 2000; Gardner et al., 

2005; Terashima et al., 2008; Xia et al., 2000) involving LTD (Long- term depression) and LTP (Long-term 

potentiation) through its binding with α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) 

receptors and, it has also been reported as therapeutic target for pain alleviation (Garry et al., 2003), brain 

ischemia (Bell et al., 2009; Dixon et al., 2009), and cocaine addiction (Bellone & Lüscher, 2006). Glutamate 

receptor (GluA2) subunit of AMPA interacts with the PDZ domain of PICK1 through its C-terminal which is 

necessary for the AMPA internalization in the cell (Hanley & Henley, 2005). This enhanced internalization 

of AMPA through GluA2 mediated mechanism leads to further synaptic depression by Amyloid-beta (Aβ) 

which results in a reduction of dendritic spine density (Hsieh et al., 2006). Study showed that small molecule 

inhibitors mitigate the effects of Aβ on synapse through disrupting PDZ-GluA2 interactions which indicates 

the role of these interactions as vital to Aβ effects on synaptic functions (Alfonso et al., 2014). Hence, 

preventing the interactions between AMPA and PICK1 by small molecules can be considered a significant 

approach to treat diseases and disorders.   

To target the PDZ domain, researchers have designed and investigated short peptides, modified peptides, 

cyclic peptides, and peptidomimetics but due to their restricted cell permeability, results were not quite 

promising (Ducki & Bennett, 2009). Moreover, Bach and his team (Bach et al., 2012) synthesized dimeric 

peptide that showed high binding affinity (Ki = 4.6 nM) with the PDZ domain of PICK1. But, these inhibitors 

have poor potency, less selectivity, and distribution problems (Lin et al., 2018). To overcome these 
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challenges, researchers have started to synthesize non-peptide small organic molecules against the PDZ 

domains (Bach et al., 2010; Marcotte et al., 2018; Thorsen et al., 2010; Wang et al., 2021). Thorsen et al. 

also used Fluorescence polarization (FP) based screening of 43,380 small organic molecules and got 

promising results targeting this domain (Thorsen et al., 2011). 

We still have a very few candidates that inhibit the PDZ domain compared to the availability of small   

 

molecule databases. Thus, in this present study, we utilized Computer-aided drug design (CADD) tools to 

screen a vast number of small organic molecules and their conformers to identify potential hits for the PDZ 

domain. Computational analysis spotted four best hits that shows efficient binding towards PDZ and, they 

significantly decrease the interactions between GluA2 and PDZ domain. Additionally, through ADME 

analysis, it was confirmed that Hit_III (MolPort-005-050-255) shows druglikeness among all the hits. Fig. 1 

represents the workflow of present study. 

Materials and methods 

Protein preparation 

The crystal structure of PICK1 PDZ domain (PDB ID: 6AR4) (Lin et al., 2018) with its inhibitor (BQA: N-[4-

(4-Bromophenyl)-1-{[2-(trifluoromethyl)phenyl]methyl}piperidine-4-carbonyl]-3-cyclopropyl-L-alanine) was 

retrieved from the Protein data bank (PDB) (https://www.rcsb.org/). It is in a dimeric form so, one monomer 

with its ligand and solvent molecules were deleted from the structure during protein preparation using 

PyMOL v2.4.1 (Schrödinger LLC., 2010). The missing residues (a.a.: 1-18 & 105-109) were added using 

MODELLER AutoModel class (Webb & Sali, 2016) and implicit hydrogens were added in PyMOL. 

Additionally, the crystal structure (PDB ID: 2PKU, Rattus norvegicus) (Pan et al., 2007) of PICK1 PDZ 

domain in complex with the C-terminal tail of AMPA GluA2 subunit was retrieved from the PDB database 

and its sequence and structure was aligned (Fig. 5A-B) with the previous structure (PDB ID:6AR4, Homo 

Fig. 1. Methodology schema used in this study to identify the best hits against the PICK1 PDZ domain. PICK1 PDZ domain with its 

inhibitor BQA was retrieved from the PDB database. Then, PDZ domain and BQA were uploaded to the Pharmit, a pharmacophore-

based virtual screening web server. Pharmacophore was constructed using seven features of the BQA inhibitor. Then, ten molecular 

libraries were screened against the PDZ domain. Obtained four best hits were further analyzed for the binding affinity towards the 

PDZ domain using DockThor molecular docking web server. Finally, all-atom 50 ns molecular dynamic simulation was performed 

using the GROMACS 2020.1 tool to investigate the dynamic behavior of protein-ligand complexes along with control (BQA) complex. 

Finally, four hits and control (BQA) were analyzed for drug-likeness using SwissADME web server. 

https://www.rcsb.org/
https://www.rcsb.org/search?q=rcsb_entity_source_organism.taxonomy_lineage.name:Rattus%20norvegicus
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sapiens). The Root mean square deviation (RMSD) was found to 0.625 Å. To determine the protein surface 

property, Electrostatic potential (ESP) (Fig. 5C-D) was computed using eF-surf-PDBj (https://pdbj.org/eF-

surf/top.do) web server. 

Structure-based pharmacophore modeling and virtual screening 
 
Pharmacophore-based small molecule virtual screening was carried out using Pharmit web server 

(Sunseri & Koes, 2016) available at http://pharmit.csb.pitt.edu/. For the construction of the 

pharmacophore model, a prepared protein with its BQA ligand was uploaded to the server. Out of 

nine features, one feature (hydrogen acceptor) at the carboxylic acid group of BQA was excluded, 

and remaining parameters were kept unchanged for the pharmacophore modeling. This 

pharmacophore was further utilized for virtual screening of ten chemical libraries with having 

340,731,400 molecules and 1,603,779,177 conformers (Table 1). After the virtual screening, four 

hits (RMSD ≤ 4.5 Å) were identified and their structures (SDF format) were saved for further 

analysis.  

Ligand preparation 

Identified four hits in the virtual screening were opened in Avogadro (Hanwell, et al., 2012) and, implicit 

hydrogens were added to the structures. Further, energy minimization (MMFF94s force field (Halgren, 

1996) & steepest descent algorithm (Chen et al., 2013)) was performed using Auto Optimization Tool in 

Avogadro. Optimized structures were saved as Sybyl Mol2 format for molecular docking and dynamics 

analyses. Furthermore, AMPA C-terminal tail peptide of GluA2 subunit was obtained from the PICK1 PDZ 

domain and AMPA GluA2 subunit complex (PDB ID: 2PKU) for molecular docking with the PICK1 PDZ 

domain in the absence and presence of hits and control (BQA).  

Table 1. Molecular libraries screened against the PDZ domain at Pharmit web server 

Library Molecules Conformers 

MCULE-ULTIMATE 126,471,502 378,880,344 

PubChem 93,067,404 450,708,705 

ChemSpace 50,181,678 250,205,463 

MCULE 45,045,153 222,427,706 

ZINC 13,190,317 123,399,574 

MolPort 7,719,859 110,832,826 

LabNetwork 1,794,286 22,051,020 

CHEMBL25 1,752,844 23,136,925 

ChemDiv 1,456,120 21,562,497 

NCI Open Chemical Repository 52,237 574,117 

 

 

 

https://pdbj.org/eF-surf/top.do
https://pdbj.org/eF-surf/top.do
http://pharmit.csb.pitt.edu/
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Molecular docking 

To investigate the binding affinity of previously obtained four hits (Hit_I, Hit_II, Hit_III, and Hit_IV) along with 

control (BQA), molecular docking of PICK1 PDZ domain with these small organic molecules was performed 

at a widely used flexible docking web server, DockThor (Santos et al., 2020) available at  

(https://dockthor.lncc.br/v2/). To run molecular docking, prepared protein (PDB ID: 6AR4) and hits were 

uploaded to the server. A predefined binding pocket center (x, y, z) = -15.3 Å, 6.4 Å, 5.0 Å with size (x, y, 

z) = 20 Å, 20 Å, 20 Å was set and default options (a. 12 docking runs, b. 500,000 evaluations per docking 

run, c. population of 750 individuals, and d. maximum of 20 cluster leaders on each docking run) were kept 

unchanged. Additionally, how the hits binding deflects the AMPA GluA2 C-terminal peptide from the actual 

binding pocket, molecular blind docking was performed using the same web server in the presence and the 

absence of hits and control (BQA). For each run, DockThor gives the best pose based on the binding affinity 

and clustering probability of ligand. Results were downloaded for further analysis. Finally, 2D and 3D 

interactions were obtained using Discovery Studio v.20.1 (BIOVIA, Dassault Systèmes, Discovery Studio 

Visualizer, 20.1.0.19295, San Diego: Dassault Systèmes, 2020.) 

Molecular dynamic (MD) simulation 

To probe the effects of ligand on protein dynamics, molecular dynamic simulation was performed 

using GROMACS 2020.1 version (Abraham et al., 2015) on Linux (Ubuntu 2020.1-1) system. MD 

simulations were performed for apo form (PDZ), control (PDZ-BQA), and four hits (PDZ-Hit_I to 

Hit_IV). MD simulation was carried out using CHARMM36 force field(Best et al., 2012; MacKerell 

et al., 1998) updated version (charmm36-feb2021) and TIP3P water model (Jorgensen et al., 1983).  

CHARMM general force field (CGenFF) (Allouche, 2012; Yu et al., 2012) 

(https://cgenff.umaryland.edu/) was employed to build ligand topologies. Protein and its complexes 

were placed in the center of the dodecahedron box with a 10 Å from the box edges. Positive (Na+) 

and negative (Cl-) ions were added by substituting solvent molecules to the system wherever they 

were needed to neutralize the whole system. To reduce steric clashes into the system, energy 

minimization was performed using the steepest descent algorithm (Chen et al., 2013) with Verlet 

cut-off scheme (Verlet, 1967) and Particle mesh ewald (PME) (Darden et al., 1993) long-range 

electrostatic. During energy minimization, a maximum number of steps (nsteps) were 50,000, and 

system approaching minimum energy was 10 kJ/mol. Further, NVT and NPT based equilibrations 

were carried out at 300 K temperature and for 100 ps (50,000 steps) with a 2 fs time step gap. 

Finally, MD simulation was performed for 50 ns using leap-frog integrator (Lippert et al., 2007), 

Verlet cut-off scheme, and PME at 300 K (modified Berendsen thermostat (Berendsen et al., 1984)) 

and 1 bar pressure (Parrinello-Rahman method (Parrinello & Rahman, 1981)). All the bonds were 

constrained with LINCS (Linear constraint solver) algorithm (Hess et al., 1997). Required Python 

script and CHARMM36 force field file were downloaded from the MacKerell lab website 

(http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs). MD trajectories were analyzed for 

various parameters such as Root mean square deviation (RMSD), Root mean square fluctuation 

https://dockthor.lncc.br/v2/
https://cgenff.umaryland.edu/
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
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(RMSF), Solvent accessible surface area (SASA), Radius of gyration (Rg), and intramolecular 

hydrogen bonds in PDZ and intermolecular hydrogen bonds in the complexes. 

ADME analysis 

The SwissADME web server (Daina et al., 2017) available at http://www.swissadme.ch/ was used to 

evaluate the ADME properties of studied four hits along with control (BQA). It is widely used to assess the 

ADME properties like physiochemical, lipophilicity, water solubility, pharmacokinetics, and drug-likeness of 

potential drug candidates. Additionally, we also ran BOILED-Egg model (Daina & Zoete, 2016) to probe the 

passive Human gastrointestinal absorption (HIA), Blood-brain barrier (BBB), and the Permeability-

glycoprotein (P-gp) substrate-non-substrate identification. This model is an extended feature of 

SwissADME. Furthermore, we have included bioavailability radar which explains six parameters such as 

lipophilicity, size, polarity, solubility, flexibility, and saturation to detect the drug-likeness of compounds. 

 

Results and discussion 

Catalytic site of PICK1 PDZ domain 
 
The interactions of the PDZ domain with the C-termini of NMDA (N-methyl-D-aspartate) and with the AMPA 

GluA2 subunit are thought to play central role in synaptic plasticity (Kim et al., 2001). Lin et al. (Lin et al., 

2018) have solved the crystal structure of the PICK1 PDZ domain with its inhibitor (BQA) and they observed 

that inhibitor binds to the AMPA GluA2 subunit binding pocket of the PDZ domain. The protein surface 

analysis in the form of Electrostatic potential (ESP) showed that the binding pocket (x, y, z) = (-15.3 Å, 6.4 

Å, 5.0 Å) is hydrophobic (Fig. 5C-D) in nature where BQA and AMPA GluA2 peptide are bound. BQA has 

three main hydrophobic regions (Fig. 3B), which are designated by R1, R2, and R3. These three sites show 

dominant interactions with the different amino acid residues of the PDZ domain. Fig. 2 illustrates the H-

http://www.swissadme.ch/
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bond and hydrophobic surface representations and 2D interactions of BQA with PDZ domain interacting 

residues. It can be seen from Fig. 2 that BQA interacts with the PDZ domain through multiple hydrogen 

bonds and hydrophobic contacts. Hydrogen bonds are formed by the carboxylic acid and amide groups 

whereas hydrophobic interactions are formed by the remaining sites such as cyclopropyl ring, 

trifluoromethyl group, a bromine atom, and aromatic rings present in the BQA. The binding pocket has 

Asp28, Leu32, Ile33, Gly34, Ile35, Phe53, Thr56, Lys83, and Ala87 residues. R1 (-CF3 group) of BQA is 

surrounded by Asp28, Leu32, and Thr56, R2 (-C6H4Br group) by Lys83 and Ala87, and R3 (cyclopropane 

ring, R-CH-(CH2)2) by Ile33, Gly34, and Ile35 neighboring residues. During pharmacophore construction, 

the R3 hydrophobic pocket was ignored to screen the libraries. 

Structure-based pharmacophore modeling and virtual screening 

To screen the large number of compounds against the PICK1 PDZ domain, pharmacophore was 

constructed by selecting specific ligand features that interact with the specific residues of the PDZ 

domain. The aim was to find the best-fit hits for the PDZ domain and consequently, a maximum 

number of features (seven) were kept activated during the virtual screening. Pharmacophore was 

constructed from the previously reported crystal structure of PICK1 PDZ domain with a small 

organic molecule inhibitor (BQA). BQA has total of 13 features, aromatic-2 (1. phenyl ring [R-

C6H4CF3] and 2. phenyl ring [R–C6H4Br]), hydrogen donor-1 (amide group nitrogen [R-CONH-R]), 

hydrogen acceptor-4 (1. amide group oxygen [R-CONH-R], 2. hydroxyl oxygen in the carboxylic 

acid group [R-C=O(OH)], 3. carbonyl oxygen in the carboxylic acid group [R-C=O(OH)], and 4. 

piperidine nitrogen [R2-C5H8N-R]), hydrophobic-5 (1. phenyl ring [R-C6H4CF3], 2. phenyl ring [R–

C6H4Br], 3. bromine atom [R–C6H4Br], 4. trifluoromethyl group [R-C6H4CF3], and 5. cyclopropyl ring 

Fig. 2. BQA binding pose inside the PDZ domain and 2D interactions. 
(A) Hydrogen bond surface representation (B) Hydrophobic surface 
representation, and (C) 2D interactions. 
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[R-CH-(CH2)2]), and negative ion-1 (carboxylic acid group [R-COO-]) but, BQA interacts with PDZ 

through nine features (aromatic-1, hydrogen donor-1, hydrogen acceptor-3, hydrophobic-4) 

excluding four features (1. aromatic- phenyl ring [R-C6H4Br], 2. hydrogen acceptor- piperidine 

nitrogen [R2-C5H8N-R], 3. hydrophobic- phenyl ring [R-C6H4CF3], and 4. negative ion- carboxylic 

acid group [R-COO-]). However, in pharmacophore construction, seven out of total nine were 

considered excluding two features (1. hydrophobic- cyclopropyl ring [R-CH-(CH2)2] and 2. hydrogen 

Fig. 3.  Pharmacophore modeling and 2D-3D molecular structures of identified four hits. (A) Crystal structure of PICK1 

PDZ domain with BQA inhibitor (PDB ID: 6AR4). (B) 2D molecular structure of BQA. Ocean blue dashed circles 

indicate the three hydrophobic pockets, R1, R2, and R3 in BQA. (C) 3D molecular structure of pharmacophore 

surrounded with the interacting amino acid residues of PDZ domain. (D) Pharmacophore model constructed at 

Pharmit web server. (E) 3D spatial distribution of the seven pharmacophore features. Distances between features; 

(1) F1-F2: 2.78 Å (2) F1-F3:9.03 Å (3) F1-F4: 7.50 Å (4) F1-F5: 7.20 Å (5) F1-F6: 8.78 Å (6) F1-F7: 11.85 Å (7) F2-

F3: 7.33 Å (8) F2-F4: 6.85 Å (9) F2-F5: 6.48 Å (10) F2-F6: 9.31 Å (11) F2-F7: 12.58 Å (12) F3-F4: 3.70 Å (13) F3-F5: 

4.83 Å (14) F3-F6: 7.57 Å (15) F3-F7: 10.01 Å (16) F4-F5: 2.24 Å (17) F4-F6: 4.00 Å (18) F4-F7: 6.90 Å (19) F5-F6: 

4.55 Å (20) F5-F7: 7.64 Å, and (21) F6-F7: 3.23 Å. (F-I) 3D molecular structures of obtained four hits, Hit_I 

(CHEMBL232154), Hit_II (KWFSWQGHHVLWDM-UHFFFAOYSA-N), Hit_III (MolPort-005-050-255), and Hit_IV 

(PubChem-46907406) respectively. (J-M) 2D molecular structures of obtained four hits, Hit_I (CHEMBL232154), 

Hit_II (KWFSWQGHHVLWDMUHFFFAOYSA-N), Hit_III (MolPort-005-050-255), and Hit_IV (PubChem-46907406) 

respectively. 
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acceptor- carboxylic acid group’s hydroxyl oxygen [R-C=O(OH)]). Fig. 3A-E represents the PDZ 

domain structure with BQA and pharmacophore features.  

There were ten molecular libraries (Table 1) screened against the PICK1 PDZ domain and at the 

end, four hits (CHEMBL25-1, MCULE-ULTIMATE-1, MolPort-1, and PubChem-1) were identified 

(Table 2). These hits along with BQA (control) were further prepared for molecular docking study 

with the PDZ domain. Pharmacophore models and the structures of identified hits are shown in Fig. 

3. 

Molecular docking 

The binding affinity and interactions of four identified hits with the PICK1 PDZ domain were probed 

using the flexible molecular docking DockThor web server. Additionally, the control (BQA) was also 

docked with the PDZ domain. The 2D and 3D molecular structures of the four hits are shown in Fig. 

3F-M. DockThor calculates the total energy, intermolecular interaction energy, van der Waals 

energy, and electrostatic energy along with binding affinity (score). Intermolecular energy is the 

sum of van der Waals and electrostatic energy. Total energy comprises three terms, (1) 

intermolecular energy between the protein and ligand atom pairs, (2) intramolecular energy of 1-4 

non-bonded atom pairs in ligand, and (3) torsional energy of ligand. Total energy indicates the rank 

of different binding poses of the same ligand whereas binding affinity differentiates the ligands 

based on their interaction energy with a specific protein.   

Table 2. Docking results of hits and control (BQA) with the PICK1 PDZ domain calculated at DockThor web server. 

Name ID Molecular 

Formula 

Molecular 

Weight 

(g/mol) 

Binding 

affinity 

(kcal/mol) 

Total 

energy 

(kcal/mol) 

Intermolecular 

interaction 

energy 

(kcal/mol) 

vdW 

energy 

(kcal/

mol) 

Electrostatic 

energy 

(kcal/mol) 

Hit_I CHEMBL232154 C29H40ClN7O4 586.12 -9.0 13.4 -28.8 -26.1 -2.7 

Hit_II KWFSWQGHHVLWDM

-UHFFFAOYSA-N 

 

C24H30N6O4S 

 

498.60 

 

-8.2 

 

3.5 

 

-35.3 

 

-22.5 

 

-12.9 

Hit_III MolPort-005-050-255 C22H26ClF2N3O2 437.91 -8.9 38.1 -36.6 -21.0 -15.6 

Hit_IV PubChem-46907406 C31H45N5O5 567.72 -9.2 20.6 -30.1 -26.7 -3.4 

Control  BQA C26H29BrF3N2O3 554.419 -8.6 16.9 -49.7 -21.6 -28.1 

Docking score was found approximately in the range of -8.0 to -9.0 kcal/mol (Table 2). From the 

results, it was noticed that three hits have slightly higher docking scores compared to the BQA while 

the remaining has slightly less than the BQA docking score. Among all, Hit_IV has the highest 

docking score (-9.2 kcal/mol) and Hit_II has the lowest (-8.2 kcal/mol). Further, results suggest that 

the intermolecular energy of BQA with PDZ is significantly higher (>15-20 kcal/mol) in comparison 

with four hits, and the main contribution comes from electrostatic energy (-28.1 kcal/mol). Hit_I and 

Hit_IV have the lowest electrostatic energy contribution (approximately -3.0 kcal/mol) while van der 
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Waals energy contributions are roughly in the range of -21.0 to -26.0 kcal/mol for all the hits and 

BQA. The 2D interactions (Fig. 4I-L) and 3D surface representations (Fig. 4A-D: H-bond and Fig. 

4E-H: hydrophobic) of studied hits with the PDZ domain are illustrated in Fig. 4. 

Hit_I (CHEMBL232154) derivatives have been reported as motilin receptor inhibitors (Marsault et 

al., 2007). Docking score of Hit_I with PDZ domain was observed -9.0 kcal/mol. In the Hit_I-PDZ 

complex, Lys83 forms a hydrogen bond with carbonyl oxygen, and Phe53 interacts with the 

aromatic ring through pi-pi stacking. However, mainly hydrophobic interactions (pi-alkyl and alkyl-

alkyl) were observed with the Leu32, Ile37, and Ala87 amino acids (Fig. 4I). Additionally, the 

chlorine atom interacts with the Leu32 and contributes to the total interaction energy. Lys83 and 

Ala87 are the part of α-helix while Ile37 is present at the β-strand region. The second compound 

Hit_II, has the lowest binding affinity (-8.2 kcal/mol) among all the compounds. Through the 

literature review, we found that this compound has never been reported as an inhibitor for any 

target. There were three hydrogen bonds observed between the compound and surrounding 

residues (Ile35, Ile37, and Gln91). Three heterocyclic moieties, pyridazine, piperidine, and pyrazole 

interact with the Val84, Ala87, and Lys88 α-helix amino acids respectively (Fig. 4J). However, the 

remaining dialkyl substituted aromatic ring has hydrophobic interactions with Leu32 and Phe53 

residues which are present at the loop region of the PDZ domain.  

Next, the Hit_III was also observed to have a good binding affinity (-8.9 kcal/mol) towards the PDZ 

domain. From the interactions shown in Fig. 4K, it can be assumed that multiple hydrophobic 

interactions of two halogenated aromatic rings with Lys27, Leu32, Ile33, Ile90, and Phe53 vicinal 

amino acid residues contribute significantly to the total binding energy of the compound with PDZ 

domain.  

In addition to this, it also forms two hydrogen bonds with Ser36 and Ile37 through oxygen atoms of 

ether and amide functional groups respectively. Only a single amino acid (Ile90) is located in α-

helix while remaining residues come from the β-strand and loop regions of the PDZ domain. This 

compound has also not been reported previously in the literature as an antagonist for any protein 

target. Lastly, Hit_IV showed the highest binding (-9.2 kcal/mol) with the PDZ domain. Like other 

hits, this compound also has multiple hydrophobic interactions with the proximal amino acids such 

as Leu32, Ile35, Phe53, Ala87, and Ile90 in the binding pocket (Fig. 4L). The indole aromatic ring 

interacts with Gln91 through the pi-donor hydrogen bond along with other hydrophobic interactions. 

Furthermore, Ile35 and Ser36 residues of β-strand form slightly polar carbon-hydrogen bonds with 

the amide group hydrogen and Lys83 from the α-helix interacts through its terminal –CH2- hydrogen 

with the ketonic oxygen atom of hydrophobic alkane chain in the compound.   
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Fig. 4. 2D and 3D Interactions between the hits and PDZ domain. (A-D) Hydrogen bond surface representations of Hit_I to 
Hit_IV respectively. (E-H) Hydrophobic surface representations of Hit_I to Hit_IV respectively, and (I-L) 2D interactions of 
Hit_I to Hit_IV respectively. 
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Lifeng Pan and his team (Pan et al., 2007) have solved the crystal structure of the PICK1 PDZ 

domain with GluA1 tail peptide and indicated which residues of the PDZ domain are responsible for 

PZD-GluA2 interaction for the internalization of AMPA receptor. Their interactions analysis 

suggests that Lys27, Ile33, Gly34, Ile35, Ser36, Ile37, Lys83, Ala87, and Ile90 amino acids 

significantly interact with the GluA2 peptide tail and are responsible for facilitating the AMPA 

internalization. Isoleucine plays the dominant role to bind GluA2 peptide. Interestingly, the tested 

four hits in this study selectively bind with these residues and consequently, it is predicted that these 

hits will prevent the binding of the GluA2 subunit at the binding pocket of the PDZ domain.   

Fig. 5. Protein sequence and structure alignment, Electrostatic potential (ESP) surface structure, and molecular docking results of 

GluA2 peptide against PICK1 PDZ domain. (A) Protein sequence alignment of PICK1 PDZ domain of H.Sapiens (PDB ID: 6AR4) and 

R. norvegicus (PDB ID: 2PKU) (B) Protein structure alignment of PICK1 PDZ domain of H.Sapiens and R. norvegicus (C-D) 

Electrostatic potential (ESP) surface representations of the human PICK1 PDZ domain. Black dashed circles indicate the ligand-

binding pocket on the PDZ domain which is hydrophobic in nature. (E) Structure of the GluA2 peptide binding on the PDZ domain. (F-

J) Docked structures of the GluA2 peptide in the presence and absence of the Hit_I, Hit_II, Hit_III, Hit_IV, and control (BQA) 

respectively.



14 | P a g e  
 

Table 3. Docking results of the GluA2 peptide with the PDZ domain in the presence and absence of four hits and BQA. 

Presence/ 

Absence of 

compounds 

Binding pocket          

(x, y, z) 

Approximate 

deviation (A) 

Binding affinity 

(kcal/mol) 

Total energy 

(kcal/mol) 

Intermolecular 

interaction energy 

(kcal/mol) 

vdW energy 

(kcal/mol) 

Electrostatic energy 

(kcal/mol) 

Absence (-15.3 Å,6.4 Å, 5.0 Å) 00 -7.6 -7.4 -54.2 -4.8 -49.4 

Presence 
(Hit_I) 

(-32.5 Å, 2.4 Å, 7.7 Å) 20 -6.6 -9.0 -54.6 3.4 -58.0 

Presence 
(Hit_II) 

(-39.6 Å, 3.6 Å, 4.7 Å) 27 -7.1 -12.8 -65.5 1.0 -66.4 

Presence 
(Hit_III) 

(-33.8 Å, 3.0 Å, 7.9 Å) 18 -6.7 -7.7 -53.5 3.2 -56.7 

Presence 
(Hit_IV) 

(-39.1 Å, 2.1 Å, 4.3 Å) 25 -7.1 -11.8 -60.9 -0.7 -60.2 

Presence 
(BQA) 

(-33.6 Å, 2.1 Å, 8.2 Å) 19 -6.5 -5.0 -51.1 0.2 -51.3 

 

Further, to probe the effects of hits and control (BQA) binding to the PICK1 PDZ domain on the AMPA 

GluA2 C-terminal tail, molecular docking of this C-terminal tail was performed with PDZ domain at the 

DockThor web server in the presence and absence of hits and control. Interestingly, it was observed that 

C-terminal tail gets deviated significantly from its actual binding position in the presence of all the hits at the 

binding pocket of the PDZ domain (Fig. 5E-J and Table 3). Hit_II and Hit_IV strongly deviate the binding 

position of the C-terminal tail, approximately 27 Å and 25 Å respectively. In the case of Hit_I, Hit_III, and 

BQA, the deviation was observed about 20 Å. Thus, results firmly suggest that the tested hits have greater 

impact on the AMPA GluA2 binding to the PDZ domain. Fig. 5A illustrates the sequence alignment while 

Fig. 5B shows the structure alignment of PDZ domains of H. sapiens (PDB ID: 6AR4) and R. norvegicus 

(PDB ID: 2PKU).    

Molecular dynamic simulation 

Root mean square deviation (RMSD) 

To get insight into the dynamicity of protein-ligand complexes, 50 ns all-atom molecular dynamic 

simulation was performed using the GROMACS tool. The protein conformational changes and 

secondary structure stability upon ligand binding were investigated by analyzing 50 ns MD 

trajectories for Root mean square deviation (RMSD) of the protein backbone and Root mean square 

fluctuation (RMSF) of alpha-carbon atoms of the protein. Fig. 6A and Fig. 6E represent the RMSD 

and RMSF plots respectively. Among all the complexes, the mean RMSD of PDZ-BQA was 

observed highest (1.0 nm). PDZ-Hit_III also showed significant RMSD (0.94 nm) while the 

remaining had an average 0.75 nm RMSD. RMSD of ligand unbound PDZ was noticed 0.67 nm 

which indicates that upon ligand binding, protein dynamicity increases significantly. Additionally, it 

was observed that for the initial 20 ns of simulation, the RMSD of all the complexes except PDZ-

BQA were increased and then remained constant between 0.5 nm- 1.2 nm. Hence, ligand binding 
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PDZ gains stability for the remaining simulation time. Also, tested hits give more stability to the PDZ 

domain in comparison with control BQA.  

Furthermore, the RMSD of each ligand was also computed from the 50 ns trajectory of each 

complex. Fig. 6B illustrates the RMSD of four hits along with BQA. It can be seen from Fig. 6B that 

Hit_III showed the highest mean RMSD (2.2 nm) which indicates its higher dynamicity inside the 

protein. Hit_III fluctuates considerably for the first 7-8 ns and then it remains stable during the last 

42 ns.   Hit_IV also changes its conformations significantly (mean RMSD: 0.93 nm) upon protein 

binding during the simulation compared to the remaining ones (mean RMSD: 0.55 nm). 

Root mean square fluctuation (RMSF) 

RMSF analysis indicates how protein residues fluctuate with the ligand binding. Leaving C- and N-terminal 

regions (C-terminal: 101-109, N-terminal: 1-20), average RMSF values of PDZ alone and ligand-bound 

complexes were computed. RMSF values indicate that the PDZ unbound state has the lowest RMSF (0.15 

nm) whereas PZD-Hit_III has the highest fluctuations (RMSF: 0.38 nm). In the other complexes, mean 

RMSF was observed 0.28 nm. Furthermore, interestingly it was observed that ligand binding residues 

Fig. 6. MD simulations analysis of hits and control (BQA) with the PDZ domain and their docked poses at the 

PDZ binding pocket. (A) RMSD (nm) plots of the PDZ backbone with the ligand bound and unbound states. (B) 

RMSD (nm) plots of the ligands. (C) SASA (nm2) plots of PDZ with ligand bound and unbound states. (D) Rg 

(nm) plots of PDZ with ligand bound and unbound states. (E) RMSF (nm) plots of C-alpha atoms in PDZ with 

ligand bound and unbound states, and (F) Docked poses of four hits and control (BQA) inside the PDZ catalytic 

pocket
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(Lys27, Leu32, Ile33, Ile35, Ser36, Ile37, Phe53, Lys83, Val84, Ala87, Lys88, Ile90, and Gln91) do not 

fluctuate significantly. However, the residues, Gly40, Ala41, Gln42, Tyr43, Cys44, Pro45, and Cys46 in the 

loop region connecting two beta-strands and residues, Lys79, Gly80, and Thr81 in another loop connecting 

helix and beta-strand showed higher fluctuations.  

Solvent accessible surface area (SASA) 

To further understand the PDZ domain stability and conformational changes upon ligand binding, 

Solvent accessible surface area (SASA) was determined from the 50 ns trajectory for all the 

complexes along with PDZ alone. The mean values were observed 79.9 nm2, 84.7 nm2, 81.7 nm2, 

83.8 nm2, 82.2 nm2, and 84.5 nm2 for PDZ, PDZ-BQA (control), PDZ-Hit_I, PDZ-Hit_II, PDZ-Hit_III, 

and PDZ-Hit_IV respectively. The high SASA value indicates the structure expansion which leads 

to increased solvent access of the surface area of protein. The mean SASA value does not give a 

clear indication of the influence of ligand binding on protein stability. Hence, trajectory with respect 

to simulation time was interpreted. From the trajectory analysis, it was observed that the SASA for 

Fig. 7. MD simulation analysis of Intramolecular and intermolecular hydrogen bonds in PDZ and its complexes. (A) Intramolecular 

hydrogen bonds in PDZ with ligand bound and unbound states and, (B-F) Intermolecular hydrogen bonds in the complexes of PDZ 

with the Hit_I to Hit_IV respectively
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the PDZ-Hit_III was reduced significantly compared to other complexes including control. 

Additionally, the SASA for the PDZ domain alone was also reduced at the end of the simulation. 

For the remaining ones, SASA was not significantly increased or decreased but fluctuated between 

time steps which indicates the slightly opening and closing of the PDZ domain upon ligand binding. 

Thus, the SASA value suggests that Hit_III efficiently stabilizes the PDZ domain upon its binding. 

Fig. 6C represents the SASA plots.    

Radius of gyration (Rg) 

Protein compactness variation during the simulation can be measured by calculating the Radius of 

gyration (Rg) of protein. The mean values of Rg of PDZ, PDZ-BQA, PDZ-Hit_I, PDZ-Hit_II, PDZ-

Hit_III, and PDZ-Hit_IV were observed at 1.5 nm, 1.9 nm, 1.5 nm, 1.6 nm, 1.7 nm, and 1.8 nm 

respectively. There was a significant deviation in compactness observed for all the complexes 

except PDZ and PDZ-Hit_I (Fig. 6D). Rg values of PDZ and PDZ-Hit_I complex were increased 

during the first 2 ns simulation. Then, they remained constant between 1.4-1.5 nm. However, in the 

case of PDZ-Hit_III, Rg was observed between 1.5-2.2 nm in the initial 20 ns, and then, it was quite 

stable (1.4-1.5 nm) during the remaining simulation. For PDZ-Hit_II, Rg was observed considerably 

less (1.4-1.9 nm) than the Rg values (1.5-2.3 nm) of PDZ-Hit_IV and PDZ-BQA. Thus, PDZ-Hit_I, 

PDZ-Hit_II, and PDZ-Hit_III complexes become compact at the end of the simulation which 

indicates the stabilization of PDZ through ligand binding. Fig.6F shows the docked poses of hits 

and BQA with PDZ domain.     

Hydrogen bonding 

Polar interactions between the protein and ligand contribute significantly to the binding affinity 

between them. Conventional hydrogen bond formation between the protein and ligand stabilizes 

the complex. Apart from RMSD, RMSF, SASA, and Rg, intramolecular hydrogen bond formation in 

PDZ domain and intermolecular hydrogen bond formation between the ligand and protein were 

calculated from the 50 ns trajectory. Intramolecular hydrogen bonds in PDZ and intermolecular 

hydrogen bonds in complexes are depicted in Fig. 7A and Fig. 7B-F respectively. The average 

number of intramolecular hydrogen bonds in PDZ, PDZ-BQA, PDZ-Hit_I, PDZ-Hit_II, PDZ-Hit_III, 

and PDZ-Hit_IV were identified 55, 52, 54, 52, 54, and 50 respectively. Thus, Hit_IV disrupts the 

intramolecular hydrogen bond network in PDZ to a greater extent compared to other hits and control 

BQA. Hit_II, Hit_IV, and BQA form a maximum of five intermolecular hydrogen bonds with the 

protein compared to Hit_I and Hit_III which form three and two respectively. During the 50 ns 

simulation, hydrogen bonds between the protein and ligand were persistent in all the complexes 

except PDZ-Hit_III. Hence, hydrogen bonding contributes significantly to the binding energy of all 

complexes except PDZ-Hit_III.    
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ADME analysis 

To investigate the ADME properties of four hits and control, physiochemical parameters, lipophilicity, water 

solubility, pharmacokinetics, and drug-likeness characteristics were analyzed using the widely used 

SwissADME web server.   

Lipinski's rule of five (RO5) and bioavailability scores 

For the drug-likeness, all the hits were passed through Lipinski's rule of five (RO5). Small organic molecules 

are classified using these rules based on their physicochemical properties, which includes molecular weight 

(MW) < 500 g/mol, MLOGP ≤ 4.15, hydrogen bond acceptors (N or O) ≤ 10, hydrogen bond donors (NH or 

OH)≤ 5, and molar refractivity between the 40 and 130 (Lipinski et al., 2001). For drug-likeness prediction, 

Hit_II and Hit_III obey Lipinski’s rule of five with zero violation. Hit_IV and control (BQA) violate a single rule 

while Hit_I violates three rules (Table 4). In addition to this, bioavailability scores of hits and control were 

calculated using Abbot bioavailability score (ABS) method (Martin, 2005). According to this method, 

candidates must have at least 0.10 oral bioavailability in rat to show drug-likeness. For the Hit_I, score was 

predicted less (0.17) while, for the remaining hits and control (BQA) score was observed high (0.55).  

Lipophilicity 

Lipophilicity indicates the solubility of compounds in oil or any nonpolar solvent (Johnson, 1998). To 

measure the lipophilicity, the partition coefficient between water and n-octanol is measured (Constantinescu 

et al., 2019). To compute such values, numerous ADME (Absorption, distribution, metabolism, and 

excretion) computational tools have been developed (Pires et al., 2015; Schyman et al., 2017; Yang et al., 

2018) like SwissADME. SwissADME has five different lipophilicity (Log Po/w) prediction models such as 

XLOGP3 (Cheng et al., 2007), WLOGP (Wildman & Crippen, 1999), MLOGP (Moriguchi et al.,1992), 

SILICOS-IT (http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html, 

2016) , and iLOGP (Daina et al., 2014). Tested hits along with control (BQA) have the consensus lipophilicity 

values from 0.62 to 3.6 and which means these compounds follow the Lipinski rule of five (Log P < 5). 

Hence, these hits can be further validated for clinical trials (Arnott & Planey, 2012). Hit_I has the lowest 

lipophilicity (+0.62) whereas Hit_II and control have the higher values of lipophilicity, 2.6 and 3.6 

respectively.  

Water solubility 

Water solubility of drugs is an important factor in drug design and development. It is used to measure drug 

concentration with an expected pharmacological response (Savjani et al., 2012). Poor solubility of 

compounds leads to less effective results and it is a great challenge in drug discovery. Solubility increases 

the drug concentration in the blood which is useful for its therapeutic effectiveness (Bergström & Larsson, 

2018). To determine the water solubility of hits, we used ESOL (Estimated solubility) model from the 

SwissADME (Delaney, 2004). Results show that Hit_II has the highest solubility (-3.47) while remaining hits 

and control (BQA) are predicted to be moderately soluble. The magnitude of Log S was found in the range 

of -3.47 to -5.02. 

http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
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Table 4. SwissADME predicted physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug-likeness of 
four hits and control (BQA). 

 Parameters Molecule Hit_I Hit_II Hit_III Hit_IV Control (BQA) 

Physicochemical 
Properties 

Formula C29H41ClN7O4 C24H30N6O4S C22H28ClF2N3O2 C31H45N5O5 C26H29BrF3N2O3 

Molecular Weight (g/mol) 587.13 498.6 439.93 567.72 554.42 

Fraction Csp3 0.45 0.42 0.41 0.58 0.46 

No. of Rotatable bonds 5 9 10 11 10 

No. of H-bond acceptors 5 7 4 5 6 

No. of H-bond donors 6 1 3 4 3 

Molar Refractivity 174.92 142.85 117.89 174.87 134.48 

TPSA (Å²) 177.54 125.35 59.38 140.47 70.84 

Lipophilicity 

Log Po/w (iLOGP) 2.87 3.58 3.56 2.89 3.61 

Log Po/w(XLOGP3) 2.36 1.43 3.08 3.15 3.41 

Log Po/w(WLOGP) -1.67 1.44 0.83 1.48 4.51 

Log Po/w(MLOGP) -2.76 1.74 -4.46 0.8 0.69 

Log Po/w (Silicos-IT Log P) 2.26 1.25 4.42 4.66 5.79 

Consensus Log Po/w 0.62 1.89 1.48 2.6 3.6 

Water Solubility 

ESOL Log S -4.85 -3.47 -4.14 -4.78 -5.02 

ESOL Solubility (mg/ml) 8.22 x 10-03 1.69 x 10-01 3.16 x 10-02 9.40 x 10-03 5.30 x 10-03 

ESOL Solubility (mol/l) 1.40 x 10-05 3.38 x 10-04 7.18 x 10-05 1.66 x 10-05 9.56 x 10-06 

ESOL Class 
Moderately 

soluble 
Soluble 

Moderately 
soluble 

Moderately 
soluble 

Moderately 
soluble 

Pharmacokinetics 

GI absorption Low High High High High 

BBB permeant No No Yes No Yes 

P-gp substrate Yes Yes Yes Yes Yes 

CYP1A2 inhibitor No No No No No 

CYP2C19 inhibitor No No No No No 

CYP2C9 inhibitor No Yes No No No 

CYP2D6 inhibitor No No No No No 

CYP3A4 inhibitor Yes Yes No Yes Yes 

log Kp (skin permeation) 
(cm/s) 

-8.21 -8.33 -6.8 -7.53 -7.26 

Drug-likeness 

Lipinski rule 
(No. of violations) 

No; 3 violations: 
MW>500, N or 
O>10, NH or 

OH>5 

Yes; 0 
violation 

Yes; 0 violation 
Yes; 1 

violation: 
MW>500 

Yes; 1 violation: 
MW>500 

Bioavailability Score 0.17 0.55 0.55 0.55 0.55 

 

Pharmacokinetics 

The pharmacokinetic properties of drugs involve drug Absorption, distribution, metabolism, and excretion 

(ADME). Pharmacokinetic characteristics are a significant factor for the drug selection against the particular 

therapeutic target (Jang et al., 2001). The high value of Gastrointestinal (GI) absorption (Daina & Zoete, 

2016) indicates the oral use of drugs. Table 4 represents the ADME properties predicted using SwissADME. 

Except for Hit_I, all the hits along with BQA show high GI absorption. Like GI absorption, Blood brain barrier 
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(BBB) is also considered an important factor for the distribution of drugs. Results show that only Hit_III and 

control are the BBB permeant among all hits. Thus, Hit_III can pass the BBB barrier and easily reach the 

neuron to target the PDZ domain of PICK1. Skin permeability of drugs is depicted by Log Kp. For the tested 

hits and control, Log Kp was observed as highly negative in the range of approximately -6.5 cm/s to 8.3 

cm/s. The higher the negative value of Log Kp, the lesser the skin permeability, and this is used in 

Transdermal drug delivery (TDD) (Potts & Guy, 1992). Furthermore, interactions of drugs with Cytochrome 

P450 (CYP) determines the drug elimination property through the metabolism of the drug (Testa & Krämer, 

2007). Our analysis suggests that all the hits and BQA showed inhibitory effects for the CYP3A4 isoform 

except Hit_III, whereas only Hit_II showed inhibition of CYP2C9 isoform. Permeability-glycoprotein ((P-gp) 

is an important member of the ATP-dependent membrane transporter also known as ABC (ATP-binding 

cassette)-transporter which maintains the membrane transport effectively and protects CNS (Central 

nervous system) from the toxic components (Szakács et al., 2008). All the hits and control are predicted P-

gp substrate.  

Bioavailability radar and BOILED-Egg model 

The bioavailability radar allows for a quick assessment of the compounds’ drug-likeness. The pink area 

represents the optimal physicochemical region for each property that is expected to be orally bioavailable. 

LIPO (lipophilicity), SIZE (molecular weight), POLAR (polarity), INSOLU (insolubility), INSATU 

(insaturation), and FLEX (flexibility) are the six physicochemical parameters represented in the 

bioavailability radar plot, lipophilicity: XLOGP3 between -0.7 and +5.0, size: molecular weight between the 

150 g/mol and 500 g/mol, polarity: TPSA (Topological polar surface area) between the 20 Å² and 130 Å², 

solubility: Log S not higher than 6, saturation: fraction of carbons in the sp3 hybridization not less than 0.25, 

and flexibility: no more than 9 rotatable bonds (Daina et al., 2017). From the bioavailability radar, it was 

observed that the Hit_II obeys all the six rules. Additionally, Hit_III also showed better agreement with the 

suggested rules except for FLEX while remaining violate the two to three rules. Furthermore, we included 

the BOILED-Egg model (Daina & Zoete, 2016) to present a clear view of the drug-likeness of hits. Fig. 8A-

E and Fig. 8F illustrate the bioavailability radar and the BOILED-EGG model schematic diagram 

respectively for the studied compounds along with control.  
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Conclusion 

To identify the potential hits for the PICK1 PDZ domain, pharmacophore-based virtual screening 

was performed using ten libraries containing 340,731,400 molecules and 1,603,779,177 

conformers. Pharmacophore was constructed using a total of seven features. There were four 

potent hits identified from the different libraries. These hits were further subjected to molecular 

docking along with control inhibitor BQA. Docking results revealed that three hits, Hit_I (-9.0 

kcal/mol), Hit_III (-8.9 kcal/mol), and Hit_IV(-9.2 kcal/mol) showed a slightly higher binding affinity 

with the PDZ domain in comparison with control (8.6 kcal/mol) and Hit_IV was found to have the 

Fig. 8. (A-E) The bioavailability radar charts of the Hit_I, Hit_II, Hit_III, Hit_IV, and control (BQA) respectively. (F) BOILED-EGG model 

for the four hits and BQA. Schematic representation of perceptive evaluation of passive Human intestinal absorption (HIA) and Blood 

brain barrier (BBB) with molecules in the WLOGP-versus-TPSA using BOILED-Egg model. The white part of the BOILED-Egg model 

indicates the high probability of HIA or GI tract passive absorption, whereas the yellow portion (yolk) indicates the high probability of 

BBB penetration. Furthermore, the dark blue circles are depicted for the substrate of P-glycoprotein (PGP+). Hit_I is not involved in 

the white or yellow regions which indicates the low GI absorption and BBB non-permeant whereas Hit_II and Hit_IV are observed to 

have high GI absorptions and BBB non-permeant. However, Hit_III and BQA (control) showed high GI absorption and BBB 

permeability.  
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highest binding tendency (-9.2 kcal/mol) towards the PDZ domain. Also, GluA2 subunit tail was 

docked with the PDZ alone and in the presence of hits and BQA. It was found that this subunit has 

slightly less binding affinity compared to hits and BQA. Hits and BQA also deflect it from its actual 

binding position significantly. Consequently, hits binding with PDZ will efficiently disrupt the AMPA 

GluA2 and PDZ interactions. To probe the ligand binding and dynamic behaviour of the protein-

ligand complexes, molecular dynamic simulation was performed. From the RMSD, RMSF, SASA, 

Rg, and hydrogen bond analyses, it was found that Hit_III stabilizes the PDZ domain radically 

throughout the simulation compared to other hits. Additionally, simulation results also suggest that 

Hit_III (MolPort-005-050-255) can be considered a good hit because it also stabilizes PDZ for the 

last 25 ns simulation even though it forms a fewer number of hydrogen bonds with the PDZ. Our 

results are a primary indication that these hits efficiently bind with the PICK1 PDZ domain and 

compete with the GluA2 subunit of AMPA receptor binding at the catalytic pocket. Thus, these hits 

might inhibit and show potency against the PDZ domain but further experimental pieces of evidence 

are needed to verify this finding.       
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