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Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on
Kohn-Sham orbitals, or SAPT(KS), can been resurrected for semiquantitative purposes using long-
range corrected (LRC) density functionals whose asymptotic behavior is adjusted separately for each
monomer. As in other contexts, correct asymptotic behavior can be enforced via “optimal tuning”
of LRC functionals, based on the ionization energy theorem, but the tuning procedure is tedious,
expensive for large systems, and comes with a troubling dependence on system size. Here, we show
that essentially identical results are obtained using an automated tuning procedure based on the
size of the exchange hole, making tuned “SAPT(ωKS)” fast and convenient. In conjunction with
SAPT-based methods that sidestep second-order dispersion, this procedure achieves benchmark-
quality interaction energies, along with the usual SAPT energy decomposition, without the hassle
of system-specific tuning.

I. INTRODUCTION

Symmetry-adapted perturbation theory (SAPT) is
the foremost ab initio theory of intermolecular
interactions.1–5 SAPT is a physically-meaningful energy
decomposition analysis (EDA) for intermolecular interac-
tions, yet one that is capable of benchmark-quality inter-
action energies if extended to sufficiently high order. The
lowest-order variant, known as “SAPT0”,2 uses Hartree-
Fock wave functions for the monomers in conjunction
with second-order perturbation theory to describe the
intermolecular interactions. Combined with appropri-
ate basis sets, SAPT0 is a semiquantitative treatment
of intermolecular interactions with O(N5) computational
cost.6 The description of strong hydrogen bonds can
be improved through the use of Kohn-Sham orbitals
from a density functional theory (DFT) calculation, al-
beit at the expense of (further) degrading the descrip-
tion of dispersion,7,8 which is already marginal at sec-
ond order in perturbation theory.6 For this reason, the
“SAPT(KS)” approach, meaning SAPT0 with Kohn-
Sham orbitals, was considered and rejected a long time
ago.9–13 The method can be salvaged, however, through
the use of exchange-correlation functionals with correct
asymptotic behavior.8,14

Perhaps more importantly, benchmark-quality inter-
action energies can be achieved using alternative com-
binations of DFT with SAPT that replace second-order
dispersion with a more accurate formulation. The most
widely used of these alternative formulations is DFT-
SAPT,4,15 also known as SAPT(DFT),3,16 which em-
ploys frequency-dependent density susceptibilities for the
monomers (computed with DFT) to obtain the dispersion
energy. In conjunction with density fitting techniques,
DFT-SAPT is an O(N5) method,15,17 albeit with a much
larger prefactor as compared to SAPT0. Ab initio disper-
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sion potentials18–21 (SAPT + aiD) or the many-body dis-
persion method22,23 (SAPT + MBD) also avoid second-
order dispersion and these methods achieve accuracies of
. 1 kcal/mol for benchmark noncovalent problems,20–22

with O(N3) scaling.21 All of these DFT-based SAPT
methods require the use of density functionals that are
asymptotically correct. What that entails is described
in Section II, and a convenient means to this end is the
topic of the present work.

II. THEORY

The asymptotic behavior of an exact exchange-
correlation (xc) potential ought to be

vxc(r) ∼ vxc(∞)− 1

r
(1)

for large r. The limiting value as r →∞ is

vxc(∞) = IE + εHOMO (2)

where IE = E(N−1)−E(N) is the ionization energy and
εHOMO is the energy level of the highest-occupied molecu-
lar orbital (HOMO).24 In the context of DFT-SAPT, cor-
rect asymptotic behavior has generally been grafted onto
a standard semilocal approximation for vxc,

24–26 whereas
in SAPT(KS) the correct asymptotic behavior has usu-
ally been achieved using long-range corrected (LRC) den-
sity functionals.8 Correct asymptotic shape, i.e., the con-
dition vxc(r) ∼ −1/r, is achieved automatically if the ex-
change functional is 100% Hartree-Fock exchange in the
limit r →∞. We use the term LRC-DFT to indicate the
subset of range-separated hybrid functionals that satisfy
this asymptotic condition.27–32

The correct asymptotic value of the potential is not
guaranteed but can be set by adjusting the range-
separation parameter ω such that IE(ω) = −εHOMO(ω),
according to the ionization energy theorem in DFT.33,34

Especially in the context of time-dependent (TD-)DFT,
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this procedure has come to be called “optimal tuning”,32

and is widely used to correct the behavior of TD-DFT for
charge-transfer excitations.32–35 The same tuning proce-
dure has been used for SAPT(KS) calculations,8,14,18–21

and herein we will denote the range-separation parameter
that satisfies the IE criterion as ωIE:

IE(ωIE) = −εHOMO(ωIE) . (3)

Although widely used, this “optimal” or IE-tuning pro-
cedure has two significant problems, one practical and
the other fundamental. Fundamentally, it is problematic
in small-gap systems, as demonstrated by results pre-
sented herein. This is a more serious limitation than
one might at first imagine, because semilocal function-
als tend (anomalously) toward vanishing gaps for large
systems.36–41 More pragmatically, the procedure is time-
consuming and therefore acts as a deterrent for potential
users of SAPT(KS)-based methods.

In the present work, we explore the use of a black-box
alternative to set ω based on the size of the exchange
hole, in what has been called “global density-dependent”
(GDD) tuning.42 Here, the range separation parameter
is set to a value

ωGDD = C〈d2x〉−1/2 (4)

in which d2x is the second moment of the distance to the
center of the exchange hole,43 and 〈d2x〉 is a weighted av-
erage:

〈d2x〉 =

∫
ρ(r)w(r) d2x(r) dr∫
ρ(r)w(r) dr

. (5)

The weighting function,42

w(r) =

{
1, t(r) ≤ µ
0, t(r) > µ

, (6)

is itself defined in terms of the function

t(r) =
τUEG(r)

τ(r)
(7)

where τ(r) is the kinetic energy density and τUEG(r) =

3(6π2)2/3ρ(r)5/3/5 is its value for the uniform electron
gas. The orbital localization function t(r) was originally
introduced by Becke,44,45 who used it to construct both
the electron localization function44 and the “localized
orbital locator”.45 In the present context, t(r) provides
a weighting function such that w(r) ≈ 0 in the region
of localized orbitals, so that ωGDD is set based on the
asymptotics.42 The parameter µ in Eq. (6) is determined
self-consistently such that the denominator in Eq. (5)
equals unity. Finally, C in Eq. (4) is an empirical param-
eter that is fit to reproduce the IE tuning condition in
Eq. (3), for a set of small molecules.21,42,46

Both w(r) and d2x(r) are functionals of ρ(r). As de-
scribed in Ref. 42, the procedure is to first perform a self-
consistent LRC-DFT calculation, e.g., using LRC-ωPBE

with ω = 0.3 bohr−1, which is an empirically-optimized
“best guess” for the range separation parameter.28–30

That self-consistent density is then used to evaluate
ωGDD in Eq. (4), and these results are found to be neg-
ligibly different from a fully self-consistent procedure.42

In the context of SAPT(KS), the GDD-tuning method
obviates the need to perform IE tuning separately for
each monomer. Some isolated comparisons of IE- ver-
sus GDD-tuning for SAPT calculations were reported in
Ref. 21, but here we report systematic comparisons for
standard benchmark data sets of supramolecular com-
plexes.

III. COMPUTATIONAL METHODS

We will use the term SAPT(KS) to refer exclusively to
the second-order method that is generally called SAPT0
when used with Hartree-Fock (HF) monomers.2 For con-
sistency, SAPT0 results are labeled as “SAPT(HF)” in
what follows, and will be compared alongside meth-
ods such as SAPT(B3LYP) and SAPT(LRC-ωPBE)
that use different self-consistent field (SCF) methods
to obtain the orbitals. We will also test “extended”
SAPT (XSAPT) methods,20,21 in which the monomer
wave functions are taken from charge-embedded “XPol”
calculations7,47,48 and the second-order treatment of dis-
persion (E

(2)
disp + E

(2)
exch-disp) is replaced by either atom–

atom dispersion potentials fitted to ab initio dispersion
data (XSAPT + aiD3),20 or else a version of the many-
body dispersion (MBD) model,49,50 XSAPT + MBD.22,23

XSAPT calculations reported here use CM5 embedding
charges.23

For the underlying LRC-DFT functional we mainly
use LRC-ωPBE,29 although some calculations with LRC-
µBOP28,31 are reported in the Supplementary Mate-
rial. The parameter C = 0.885 in Eq. (4) was deter-
mined in previous work,21 following Ref. 42 and using
the same test set of small molecules. The best-fit value
of C varies significantly with the fraction of short-range
Hartree-Fock exchange but is only weakly sensitive to
basis set.46 Values C ≈ 0.9 are appropriate when the
self-consistent LRC-ωPBE calculation is performed us-
ing ω = 0.3 bohr−1,21,42 as is used here. All calculations
were performed using Q-Chem.51 Values of ωIE and ωGDD
for each monomer in each of the systems considered here
can be found in the Supplementary Material.

IV. RESULTS & DISCUSSION

A. IE tuning for small-gap systems

We first demonstrate a looming problem with the IE-
based tuning procedure for small-gap systems, using a
homologous sequence of linear acenes: benzene, naphtha-
lene, anthracene, tetracene, . . .. As the number of rings
increases, the Kohn-Sham gap for these one-dimensional
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Fig. 1: Tuned values of ω for the linear acenes (benzene,
naphthalene, anthracene, . . .), computed at the LRC-ωPBE/
def2-TZVP level of theory. Results for LRC-µBOP are simi-
lar; see Figure S1.

acene nanoribbons decreases much faster as compared to
that of their saturated (cyclohexane-based) analogues,
the perhydroacenes.52

Figure 1 compares tuned values ωIE and ωGDD ob-
tained for acenes with up to to 40 rings, demonstrat-
ing that both tuning procedures predict an optimal value
of ω that decreases monotonically with system size. In
the context of IE tuning, similar trends with increasing
system size have been noted previously for conjugated
π systems,42,53–55 for linear alkanes,42 for pentacene/C60

clusters,56 and for (H2O)−n clusters.57 In the present data,
we note that the asymptotic value of ωGDD is much larger
than the asymptotic value of ωIE. For the 40-ring acene

we obtain ωIE = 0.046 bohr−1, corresponding to a func-
tional in which full HF exchange is activated on a length
scale of ∼ 1/ωIE = 22 bohr. While this is much shorter
than the length of the 40-acene ribbon, it is much larger
than the length scale of a chemical bond, so from the
standpoint of the dynamical correlation that contributes
to thermochemistry, the resulting LRC functional is op-
erationally semilocal. In contrast, the GDD procedure
converges to ωGDD ≈ 0.20 bohr−1 for the longest acene
nanoribbons, which is within the range of statistically-
optimized values of ω for LRC functionals.28–30

Note also what appears to be a small discontinuity
in the progression of ωIE values between nonacene and
decacene, such that the data for n < 10 rings appear
to extrapolate to a smaller asymptotic value of ωIE as
compared to the data for n ≥ 10. This discontinuity ap-
pears also (at the same system size) when LRC-µBOP
is used instead of LRC-ωPBE; see Fig. S1 in the Sup-
plementary Material. This small jump in ωIE may be
related to the emergence of an open-shell singlet birad-
icaloid ground state of the linear acenes as the number of
rings increases.58,59 In any case, in combination with the
vanishing of the HOMO/LUMO gap for large systems de-
scribed by semilocal functionals,36–41 these data present

compelling evidence of an imminent problem with the IE
tuning procedure as system size increases.

B. Evaluation of SAPT(KS) methods

As a baseline and starting point for further discussion,
Table 1 reports error statistics for the S66 data set of
small dimers,60 obtained using a variety of SAPT(KS)
methods. Results are tabulated both with and without
a “δHF” correction,2,20

δHF = EHF
int −

(
E

(1)
elst +E

(1)
exch +E

(2)
ind,resp +E

(2)
exch-ind,resp

)
.

(8)
This term consists of a counterpoise-corrected dimer
HF calculation, to obtain EHF

int , from which the non-
dispersion parts of the second-order SAPT interaction
energy are subtracted. The result is an approximate
correction for infinite-order induction. Note that the
δHF correction should use HF theory even for SAPT(KS)
methods based on DFT, because only in the HF case can
this correction be strictly classified as induction, whereas
a supramolecular DFT calculation would mix together
different energy components in a manner that would be
difficult to separate. Finally, all of the SAPT(KS) calcu-
lations in Table 1 employ the jun-cc-pVDZ basis set, a
compromise choice that affords reasonable error cancel-
lation in the second-order dispersion term.6

Error statistics in Table 1 are separated into three
subsets of S66: hydrogen-bonded dimers, dispersion-
dominated dimers, and dimers where the interactions
are mixed. This classification is based upon benchmark
values of the electrostatic energy (Eelst) and the dis-
persion energy (Edisp).60,61 The hydrogen-bonded sub-
set consists of dimers for which |Eelst| ≥ 2|Edisp|, which
includes dimers composed of water, methanol, methy-
lamine, and acetic acid. The dispersion-dominated com-
plexes are characterized by |Edisp| ≥ 2|Eelst|, which in-
cludes dimers drawn from benzene, pyridine, ethene,
ethyne, and some larger hydrocarbons. Other dimers
(e.g., benzene–ethyne, ethyne–water, and benzene–acetic
acid) are classified as “mixed”, meaning that they do not
satisfy either of the aforementioned criteria. There are 23
dimers categorized as hydrogen-bonded, 23 as dispersion-
dominated, and 20 classified as mixed.60

The SAPT(HF) and SAPT(HF) + δHF results in Ta-
ble 1 establish a baseline for what can be accomplished
at low cost with traditional SAPT. We also consider
SAPT(B3LYP), which was the lone representative of
SAPT in a side-by-side comparison of different EDAs.62

Although SAPT(B3LYP) does offer a modest reduction
in errors for hydrogen-bonded complexes, as compared
to SAPT(HF), those gains are wiped out once the δHF
correction is added to both methods. Furthermore, in-
correct asymptotic behavior of B3LYP increases the er-
rors for the dispersion-bound complexes, relative to the
traditional SAPT(HF) approach. Overall, the B3LYP-
based approach is outperformed by SAPT(HF) + δHF.
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Table 1: Error statistics (in kcal/mol) for SAPT(KS) methods applied to the S66

database60 and three subsets thereof.

Methoda H-Bonded Disp.-Bound Mixed All S66
MAEb Maxc MAEb Maxc MAEb Maxc MAEb Maxc

SAPT(HF) 2.20 6.14 0.95 1.93 0.78 1.77 1.33 6.14
SAPT(HF) + δHF 0.35 0.85 0.64 1.54 0.40 1.41 0.48 1.54

SAPT(B3LYP) 1.49 4.24 1.49 3.93 0.66 1.36 1.24 4.24
SAPT(B3LYP) + δHF 0.64 2.14 1.74 4.51 0.78 1.73 1.07 4.51

SAPT(LRC-ωPBE)d 2.87 7.69 0.91 2.04 0.71 3.60 1.53 7.69
SAPT(LRC-ωPBE)d + δHF 0.97 2.27 0.95 2.04 0.50 2.66 0.82 2.66

XSAPTd + aiD3 2.01 5.76 0.15 0.54 0.25 0.64 0.83 5.76
XSAPTd + aiD3 + δHF 0.19 0.42 0.42 1.05 0.50 1.04 0.36 1.05

XSAPTd + MBD 2.00 5.76 0.15 0.54 0.25 0.64 0.83 5.76
XSAPTd + MBD + δHF 0.18 0.75 0.46 1.11 0.53 1.07 0.39 1.11

aBasis set is jun-cc-pVDZ for SAPT(KS) and def2-TZVPPD for XSAPT.
bMean absolute error, with respect to complete-basis CCSD(T) benchmarks.60
cMaximum deviation with respect to the benchmarks.
dUses LRC-ωPBE with ωGDD tuning.

Whereas the authors of Ref. 62 conclude that the “best”
EDAs are those based on supramolecular DFT, this as-
sessment was based on a skewed evaluation of SAPT
methods that failed to consider SAPT(HF) + δHF, let
alone any SAPT(KS) approach with proper asymptotic
behavior. While “best” is highly subjective, the separa-
tion of energy components is better defined in SAPT(KS)
as compared to supramolecular DFT.63–65

Larger errors for dispersion-dominated dimers
that are observed with the asymptotically-incorrect
SAPT(B3LYP) approach are mostly mitigated by using
tuned SAPT(LRC-ωPBE), bringing them more in
line with dispersion errors incurred by the traditional
SAPT(HF) approach. As such, it is the second-order
treatment of dispersion, rather than anything related
to the density functional, that represents the primary
source of error at the SAPT(LRC-ωPBE) + δHF level.
This confirms earlier results suggesting that ω-tuning
can put SAPT(KS) on par with SAPT(HF),8 so that
the former is not nearly as problematic as early reports
suggested,9–13 though neither does SAPT(KS) offer
a significant advantage over the traditional HF-based
approach.8 Both SAPT(KS) and SAPT(HF) require the
δHF correction in order to achieve ∼ 1 kcal/mol accuracy
for hydrogen bonds. Given that confusion persists over
the proper functionals to use in SAPT(KS),62 we suggest
that “SAPT(ωKS)” should be used to describe those
methods that use monomer-specific ω-tuning to enforce
proper asymptotic behavior of vxc.

To move beyond second-order dispersion within proper
SAPT requires methods with triple excitations and
O(N7) scaling.2,6 Alternatively, the perturbative treat-
ment of dispersion can be replaced altogether, which
is the unifying concept that underlies both DFT-
SAPT3,4 and XSAPT.20–22 Whereas DFT-SAPT is an
O(N5) method,15,17 XSAPT exhibits O(N3) scaling.18,21

The performance of two variants, XSAPT + aiD3 and
XSAPT + MBD, is characterized for the S66 data set in
Table 1. Without the δHF correct these methods exhibit
∼ 1 kcal/mol accuracy overall but the performance for
the hydrogen-bonded subset is worse than that, with out-
liers approaching 6 kcal/mol. With the δHF correction,
the maximum error for the hydrogen-bonded complexes
is reduced below 1 kcal/mol. Both of these variants
clearly outperform the other low-cost SAPT methods in
Table 1, although SAPT(KS) + δHF, with the compro-
mise jun-cc-pVDZ basis set, is surprisingly competitive.
As will be seen below, that behavior is an artifact of the
small size of the S66 dimers, which suppresses the dis-
persion term.21

C. IE versus GDD tuning

The main purpose of this work is to provide a side-by-
side comparison of the IE-based and GDD tuning pro-
cedures within the context of SAPT(ωKS)-type meth-
ods. For S66, we select XSAPT + MBD + δHF for this
comparison because it affords the highest overall accu-
racy amongst the variants considered above, despite its
reduced computational scaling. Table 2 compares error
statistics for S66 using either IE or GDD tuning in sev-
eral different basis sets. Previous work has demonstrated
that triple-ζ basis sets are required to converge the elec-
trostatic interactions,20 so it is not surprising to observe
that the errors for hydrogen-bonded complexes decrease
when double-ζ basis are replaced by triple-ζ ones, but it
is pleasing to see that this also decreases both mean and
maximum errors for the dispersion-dominated dimers.
This situation should be contrasted with the use of jun-
cc-pVDZ for SAPT0 calculations, for which electrostatic
interactions are not fully converged. The choice of jun-cc-
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Table 2: Error statistics for S66,60 computed at the XSAPT + MBD + δHF level using
the tuned LRC-ωPBE functional.

Tuning Basis Set
Error (kcal/mol)

H-Bonded Disp.-Bound Mixed All S66
MAEa Maxb MAEa Maxb MAEa Maxb MAEa Maxb

ωIE def2-SVPD 1.13 3.21 1.62 2.98 1.33 2.36 1.37 3.21
ωGDD def2-SVPD 1.07 3.35 1.67 3.16 1.37 2.48 1.37 3.35

ωIE def2-TZVP 0.71 2.13 0.55 1.43 0.80 1.31 0.68 2.13
ωGDD def2-TZVP 0.65 1.20 0.55 1.60 0.85 1.41 0.68 1.60

ωIE def2-TZVPP 0.94 2.78 0.43 1.31 0.67 1.22 0.69 2.78
ωGDD def2-TZVPP 0.89 2.43 0.47 1.48 0.75 1.32 0.70 2.43

ωIE def2-TZVPD 0.25 0.81 0.40 0.94 0.50 0.91 0.38 0.94
ωGDD def2-TZVPD 0.21 0.57 0.45 1.18 0.57 1.06 0.40 1.18

ωIE def2-TZVPPD 0.24 1.36 0.42 0.97 0.47 0.93 0.37 1.36
ωGDD def2-TZVPPD 0.18 0.75 0.46 1.11 0.53 1.07 0.39 1.11

aMean absolute error, with respect to complete-basis CCSD(T) benchmarks.60
bMaximum absolute deviation.

pVDZ in that case is a compromise in order to avoid large
errors in second-order dispersion as the basis-set limit is
approached, but such compromises are not required with
XSAPT-based methods that avoid second-order disper-
sion. The data in Table 2 also highlight the benefit of
diffuse functions. In our experience, users frequently de-
cline to employ diffuse functions (presumably for reasons
of cost), but the concomitant sacrifice in accuracy is un-
deniable.

The key observation in the present work is the fact
that errors incurred by GDD tuning are nearly identical
to the IE-tuned results. On the basis of the S66 data,
there would seem to be no reason to perform the more
tedious IE tuning procedure, which is also rather expen-
sive for the larger systems that are considered below. As
a counterpoint, the ansatz for ωGDD in Eq. (4) was fitted
to reproduce ωIE for small molecules, and the monomers
that comprise the S66 dimers are quite small, with the
largest being pyridine (C5H5N), uracil (C4H4N2O2), and
pentane (C5H12). We next consider some larger systems.

The L7 data set66 consists of dispersion-bound com-
plexes ranging in size from (guanine)3 up to coronene
dimer, (C24H12)2, and also circumcoronene (C54H18)
partnered with either adenine or else a guanine–cytosine
base pair. Because the induction energies are small for
these systems, the δHF correction makes little differ-
ence (. 0.5 kcal/mol), and in the absence of this cor-
rection, no supramolecular calculations are required us-
ing XSAPT. Interaction energies at the XSAPT + MBD/
def2-TZVPPD level are reported in Table 3, where
they are compared to the newest set of complete-basis
CCSD(T) benchmarks for L7.67

The maximum discrepancy between the ωIE- and
ωGDD-based XSAPT + MBD results is 0.6 kcal/mol,
for the complex between circumcoronene and guanine–
cytosine, although the difference between the two
XSAPT calculations amounts to a mere 2% of the bench-
mark interaction energy (Eint = −28.63 kcal/mol). The

Table 3: XSAPT + MBD/def2-TZVPPD interaction energies
for the L7 data set66 of large dispersion-bound dimers.

Systema Tuning
Eint (kcal/mol) ∆Eint(ω)c

XSAPT errorb (%)

(cor)2
ωIE −20.11 0.82

2.3
ωGDD −20.59 0.34

(circor)· · · (Ade)
ωIE −16.01 0.90

2.4
ωGDD −16.41 0.50

(circor)· · ·GC
ωIE −26.43 2.20

2.2
ωGDD −27.07 1.56

(octadecane)2
ωIE −12.31 1.31

0.3
ωGDD −12.35 1.35

(GC)2
ωIE −13.61 0.07

2.5
ωGDD −13.95 0.41

(Gua)3
ωIE −2.08 0.00

4.1
ωGDD −2.17 0.09

(Phe)3
ωIE −21.84 3.62

1.4
ωGDD −22.19 3.27

MAEd ωIE 1.28
2.2

ωGDD 1.07

acor = coronene, circum = circumcoronene, Ade = ade-
nine, GC = guanine:cytosine base pair, Gua = guanine,
Phe = phenylalanine.
bE

CCSD(T)
int − EXSAPT

int , using benchmarks from Ref. 67.
cDifference between ωIE and ωGDD versions of EXSAPT

int ,

expressed as a percentage of E
CCSD(T)
int .

dMean absolute error.

final column of Table 3 lists the difference between ωIE-
and ωGDD-based interaction energies as a percentage of
the benchmark value, and these differences are each . 2%
except for the most weakly-bound complex, (guanine)3,
for which the difference is 4% of the benchmark.

In terms of absolute accuracy, the maximum
XSAPT + MBD errors are 3.6 kcal/mol (ωIE) and
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Table 4: Interaction energies for ellipticine bound to double-
stranded DNA, computed using XSAPT + MBD.

Tuning Basis
Eint (kcal/mol)
XSAPT errora

ωIE def2-SVPD −54.22 15.62
ωGDD def2-SVPD −54.07 15.47

ωIE def2-TZVP −43.14 4.54
ωGDD def2-TZVP −42.89 4.29

ωIE def2-TZVPP −42.91 4.31
ωGDD def2-TZVPP −42.62 4.02

ωIE def2-TZVPD −40.64 2.04
ωGDD def2-TZVPD −40.44 1.84

aWith respect to a complete-basis CCSD(T)
benchmark, Eint = −38.6 ± 2.2 kcal/mol.67

3.3 kcal/mol (ωGDD), both for the phenylalanine trimer,
while the mean absolute errors (MAEs) are 1.3 kcal/mol
(ωIE) and 1.1 kcal/mol (ωGDD). To put these numbers
in perspective, the MAE for SAPT0/jun-cc-pVDZ as ap-
plied to the L7 data set is 4.8 kcal/mol and the maximum
error is 10.3 kcal/mol.21 As compared to the S66 results,
this represents a stark divergence in the performance of
SAPT0 relative to XSAPT, and it occurs due to the much
larger dispersion energies for the L7 complexes, which re-
veal the failure of second-order dispersion, especially for
π–π interactions.20,21

As a final example, we consider a DNA intercalation
complex with the anti-cancer drug ellipticine, which has
become a standard benchmark problem for non-covalent
interactions.21–23,67,68 Interaction energies computed at
the XSAPT + MBD level are presented in Table 4, using
several different basis sets and comparing ωIE and ωGDD
versions in each case. The two tuning schemes never de-
viate from one another by more than 0.3 kcal/mol. In
terms of accuracy, the errors are reduced as the quality
of the basis set is improved, and these calculations once
again highlight the important role of diffuse functions:
the XSAPT + MBD/def2-TZVPD interaction energies
lie within the estimated uncertainties in the complete-
basis CCSD(T) benchmark, ±2.2 kcal/mol.67 For com-
parison, the best-available supramolecular DFT results
for this system are Eint = −41.3 kcal/mol (B97M-V/
def2-TZVPPD) and Eint = −43.7 kcal/mol (ωB97M-V/
def2-TZVPPD),23 corresponding to errors of 2.7 and
5.1 kcal/mol, respectively. XSAPT + MBD is therefore
more accurate but also cheaper,22 as it does not require
a supersystem calculation.

V. CONCLUSIONS

In the context of SAPT(KS) and related XSAPT meth-
ods, we find that the GDD tuning scheme works equally

well as compared to “optimal” IE-based tuning, but
sidesteps the series of monomer calculations that are re-
quired for IE tuning. The GDD approach also avoids the
size-dependent tuning catastrophe that afflicts IE tuning
for small-gap systems, making it more robust in addi-
tion to being more convenient. Differences in interac-
tion energies, when using one tuning scheme versus the
other, are small in comparison to the absolute errors in
interaction energies. Given its ease of use, GDD tuning
should replace IE tuning for (X)SAPT calculations based
on Kohn-Sham DFT, and indeed our group has mostly
relied on the GDD scheme in recent work.21–23,69

This work also highlights (and reiterates8) the fact that
SAPT(KS) methods should be based on asymptotically-
correct functionals for best results. Methods such as
SAPT(B3LYP), held up as an exemplar of a SAPT-based
EDA,62 in fact misrepresent the accuracy of low-cost
SAPT approaches. Correct asymptotic behavior is eas-
ily (and automatically) enforced using LRC functionals
in conjunction with the tuning schemes examined herein.
We suggest the name “SAPT(ωKS)” to refer to the sub-
set of SAPT(KS) methods in which tuned LRC function-
als are used to achieve proper behavior of vxc for each
monomer. In conjunction with alternatives to second-
order dispersion such as XSAPT + MBD,22,23 this affords
a cubic-scaling method with ∼ 1 kcal/mol accuracy for
non-covalent interaction energies, in systems large and
small.
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dau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard,
M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L.
Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht,
E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard,
E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown,
D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D.
Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiS-
tasio Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi,
L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya,
J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach,
A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C.
Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim,
R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk,
C. M. Krauter, K. U. Lao, A. Laurent, K. V. Lawler,
S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C.
Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao,
N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J.
Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill,
J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek,
A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, N. Sergueev,
S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein,
D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi,
L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel,
A. White, C. F. Williams, V. Vanovschi, S. Yeganeh, S. R.
Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R.
Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer,
W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt,
H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G.
Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer,
A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Duni-
etz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung,
J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A.
Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis,
J. M. Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-
Gordon, “Advances in molecular quantum chemistry con-
tained in the Q-Chem 4 program package”, Mol. Phys.
113, 184–215 (2015).

52 K. Carter-Fenk and J. M. Herbert, “Reinterpreting π-
stacking”, Phys. Chem. Chem. Phys. 22, 24870–24886
(2020).

53 T. Körzdörfer, J. S. Sears, C. Sutton, and J.-L. Brédas,
“Long-range corrected hybrid functionals for π-conjugated
systems: Dependence of the range-separation parame-
ter on conjugation length”, J. Chem. Phys. 135, 204107
(2011).

54 T. B. de Queiroz and S. Kümmel, “Charge-transfer exci-
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