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ABSTRACT: Here, we report the phospha-bora-Wittig reaction for the direct preparation of phosphaalkenes from aldehydes, ke-
tones, esters, or amides. The transient phosphaborene Mes*P=B-NR2 reacts with carbonyl compounds to form 1,2,3-phospha-
boraoxetanes, analogues of oxaphosphetane intermediates in the classical Wittig reaction. 1,2,3-phosphaboraoxetanes undergo ther-
mal or Lewis acid/base-promoted cycloreversion, yielding phosphaalkenes. Experimental and density functional theory studies re-
veal far-reaching similarities between classical and phospha-bora-Wittig reactions. 

Phosphaalkenes are closely related to alkenes.1 The similar 
electronegativity of carbon and phosphorus makes C=P π 
bonds structurally and chemically similar to alkenes, albeit 
with narrower HOMO-LUMO gaps as a result of the weaker 
2p-3p π bond.1 Because the replacement of C=C with C=P 
units alters frontier orbital energies without significantly po-
larizing the π-system, phosphaalkenes are attractive ‘building 
blocks’ for main-group π-conjugated molecules and materials.2 
Their advance from laboratory curiosity to chemical work-
horse has also seen phosphaalkenes used as ligands for transi-
tion-metal catalyzed transformations,3,4 and incorporated into 
inorganic polymers.5,6 

The first preparations of phosphaalkenes exploited 1,3-silyl 
migration7 or elimination chemistry,8–10 necessitating pre-
formed P–C σ bonds.11 Synthetically, it is more convenient to 
install “RP=” functionality in one step at a late stage. The di-
rect synthesis of phosphaalkenes from carbonyl compounds, 
akin to the Wittig reaction, is therefore particularly attractive 
due to the availability and synthetic access to suitable carbonyl 
precursors. The first phospha-Wittig reagent, reported by 
Mathey in 1988,12,13 enables just such a conversion (I, Figure 
1a). 
Several ‘phospha-Wittig’2,14 reagents are now available. These 
compounds can be viewed as phosphinidenes coordinated by a 
Lewis base and/or to a Lewis acid. Organometallic terminal 
phosphinidene complexes (e.g. Cp2Zr=PMes*(PMe3), II) can 
be used to prepare phosphaalkenes from aldehydes or ke-
tones.15,16 Phosphoranylidenephosphines (ArP=PMe3 ↔ ArP--
P+Me3)17,18 (III) perhaps bear the closest resemblance to clas-
sical Wittig reagents (R2C=PPh3 ↔ R2C––P+Ph3), given the 
closely-related resonance forms, and the common phosphine-
oxide by-product. 

Despite the similarities between the Wittig and ‘phospha-Wit-
tig’ reaction, the latter is less well-developed and understood. 
Few mechanistic studies have been made.19,20 Furthermore, the 
reported ‘phospha-Wittig’ reagents can be unstable or chal-
lenging to prepare. Phosphinidene transfer reactions are gener-
ally limited to aldehydes or activated carbonyl compounds. A 
widely-applicable method of preparing phosphaalkenes di-
rectly from a range of carbonyl compounds remains desirable. 

 

Figure 1. a) Selected phospha-Wittig reagents; b) the phospha-
bora-Wittig reaction reported here. 

We have recently demonstrated that transient phosphaborenes 
[Mes*P=BNR2] (Mes* = 2,4,6-tri-tert-butylphenyl; NR2 = 
2,2,6,6-tetramethylpiperidine) can be accessed in solution and 
subsequently trapped by unsaturated compounds including 
phenylacetylene to give the corresponding formal [2+2] cy-
cloaddition product.21 In 1986, Nöth reported that transient 
methyleneboranes [R2C=BNR’2] undergo a Wittig-type reac-
tion with ketones to give the corresponding alkene.22 Consid-
ering the isoelectronic relationship between CR2 and PR, and 
the reported reactivity of phosphinoboranes R2PBR’2 with 
C=O bonds,23–25 we suspected that that phosphaborenes might 
be used to prepare phosphaalkenes. 
Here, we report the development of the ‘phospha-bora-Wittig’ 
reaction (Figure 1b). Using the stabilizing Mes* substituent at 
P, we demonstrate the synthesis of known and novel phos-
phaalkenes directly from a wide range of carbonyl compounds 
including ketones, aldehydes, esters and amides. We show that 
the reaction proceeds by a stepwise cycloaddition/cyclorever-
sion mechanism, analogous to that considered operative in the 
classical Wittig reaction.26 

We initially investigated the reaction of diphosphadiboretane 1 
with benzophenone. Heating 1 with two equivalents of benzo-
phenone in C6D6 at 80 °C resulted in consumption of all 



 

starting materials and the emergence of new resonances at d 
15.4 and 38.6 in the 31P and 11B NMR spectra respectively. X-
ray diffraction experiments on crystalline product confirmed 
the identity of the formal [2+2] cycloaddition product as 2a 
(Figure 2). 2a is analogous to the oxazaboretidines obtained 
from the reaction of iminoboranes with ketones and alde-
hydes.27 No evidence of the [4+2] cycloaddition product of 1 
and benzophenone was observed, in contrast to the behavior of 
diazodiboretanes ([RBNR]2).28  

 

Figure 2. a) Preparation of 1,2,3-phosphaboraoxetanes 2a-e and 
their subsequent conversion into phosphaalkenes 3a-e. (Mes* = 
2,4,6-tri-tert-butylphenyl; NR2 = 2,2,6,6-tetramethylpiperidino). 
b) Structure of 2a; thermal ellipsoids at 50% probability and hy-
drogen atoms omitted. 

Diphosphadiboretane 1 also reacts cleanly with acetone, form-
ing the dimethyl 1,2,3-phosphaboraoxetane, 2b. In contrast (to 
P=B), N≡B bonds react with the enol tautomer of acetone by 
1,2 addition.29 9-fluorenone, isobutyraldehyde, or benzalde-
hyde also react with 1, forming 2c-2e. Aldehyde-derived 2d/2e 
have stereogenic P and C centers in their central PBCO ring. 
Only one of the expected two pairs of diastereomers of 2d/2e 
was observed spectroscopically; either 2d and 2e are formed 
stereospecifically, or inversion at phosphorus is facile. 2a-e 
were characterized by NMR spectroscopy and single-crystal 
X-ray diffraction (see SI). 
1,2,3-phosphaboraoxetanes 2a-e are reminiscent of the four-
membered oxetane intermediates in the classical Wittig reac-
tion.26 We thus considered that their conversion into phos-
phaalkenes may be possible. Elimination of the O=BNR2 frag-
ment and its subsequent oligomerization would provide a ther-
modynamic incentive through B–O bond formation. The like-
lihood of such an elimination appears increased upon exami-
nation of the structures of 2a-e. For example, the structure of 
2a (Figure 1b) reveals a planar, strained, central PBCO ring. 
The internal angles at C1 (92.07(8)º) and B1 (94.10(9)º) are 
particularly narrow. The NR2 substituent at B1 is oriented to 
allow B=N π-bonding, leading to the short B1–N1 distance 
(1.410(2) Å). 
We did not observe thermal elimination of phosphaalkenes 
from the 1,2,3-phosphaboraoxetanes 2a-e, even at elevated 

temperatures. However, addition of AlBr3 (1 equivalent) im-
mediately converted 2a-e into their corresponding phosphaal-
kenes 3a-e. The major initial boron-containing by-product res-
onates at δ 20.0 in the 11B NMR spectrum. Subsequent addi-
tion of pyridine (to sequester AlBr3) led to the replacement of 
this signal with one at δ 22.3, which we assign to [R2NBO]3.22 
Al(III) halides promote the intramolecular decomposition of 
Mes*-substituted phosphaalkenes.30 We did not observe such 
reactivity except with super-stoichiometric (to 2a-e) quantities 
of AlBr3. A preference for AlBr3 complexation of [R2NBO]3 
(consistent with the 11B NMR signal at δ 20.0) over coordina-
tion to phosphaalkenes is thus likely. Conversion of 2a-e to 
phosphaalkenes could also be achieved with sub-stoichio-
metric quantities of AlBr3, or N-heterocyclic carbene (see SI). 
Phosphaalkenes 3a-e are conveniently prepared in one pot 
from 1 and the corresponding ketone or aldehyde. After for-
mation of the 1,2,3-phosphaboraoxetanes 2a-e (80 °C, 2 
hours), AlBr3 addition affords known and novel phosphaal-
kenes 3a-e in good purity and yield (Figure 2a, 53-95%). Fluo-
renylidene phosphaalkenes (e.g. 3c) are promising components 
for organic materials based on their optoelectronic and redox 
properties.31–35 

Figure 3. Synthesis of phosphaalkenes 4a-c directly from esters 
and amides. (Mes* = 2,4,6-tri-tert-butylphenyl; NR2 = 2,2,6,6-tet-
ramethylpiperidino). 

When diphosphadiboretane 1 was reacted with esters in place 
of ketones/aldehydes, direct conversion to the 2-alkoxy-phos-
phaalkene products occurred (Figure 3). For example, the re-
action of 1 and ethyl acetate led to the new phosphaalkene 4a 
as a mixture (22:78) of E and Z isomers, identified by signals 
in the 31P{1H} NMR spectrum at δ 120.1 and 104.4. 11B NMR 
spectroscopy revealed the formation of [R2NBO]2,36 indicated 
by a resonance at δ 28.1, which we confirmed crystallograph-
ically. Monitoring the reaction of 1 and ethyl acetate by NMR 
spectroscopy revealed that it proceeds through a transient 
1,2,3- phosphaboraoxetane intermediate: signals at δ –115.7 
(31P{1H}) and δ 39.0 (11B) are consistent with those for 2a-e 
(Figure S1). We extended the reaction of esters with 1 to α-py-
rone to afford the exocyclic phosphaalkene 4b as a mixture 
(58:42) of E and Z isomers. We also prepared the known 2-
aminophosphalkene 4c37 from 1 and N,N-dimethylacetamide. 
Phosphaalkenes 4a-c were easily isolated in high purity and 
yield (70-91%). 
 



 

Figure 4. Computed reaction profiles for the reactions of 1 with acetone and acetamide (M06-2X/def2svp), ΔG298 (ΔH) in kcal mol−1
. 

We used density functional theory calculations (M06-
2X/def2svp)38 to probe the mechanism of the reaction of 1 
with carbonyl compounds. The first step in the reaction path-
way (Figure 4) is the dissociation of 1 into the monomeric 
phosphaborene INT-1.21 Phosphaborenes have orthogonal 
P=B and B=N π systems and can exhibit both nucleophilic (at 
P) and electrophilic (at B) reactivity.21 For the initial interac-
tion with acetone, we thus considered i) formation of a beta-
ine-like intermediate26 by attack of P at the carbonyl carbon, 
and ii) interaction of the carbonyl oxygen atom with boron. 
We could not locate a betaine-type structures as minima. In-
stead, phosphaborene INT-1 and acetone react via TS1acetone 
(+20.07 kcal mol-1) to form acetone adduct INT-2acetone, 
(+20.10 kcal mol-1).  
Coordination of acetone to boron in INT-2acetone increases 
electrophilicity at the carbonyl carbon (C–O distance: 1.24 Å 
vs acetone, 1.20 Å). As a result, intramolecular attack of the 
phosphorus center at the carbonyl carbon occurs via the very 
early transition state TS-2acetone (+22.32 kcal mol-1), closing 
the 4-membered ring. The resulting isolable phosphaoxabo-
retane 2b is substantially stable relative to its precursors (–
22.42 kcal mol-1). 
Phosphaborene INT-1 and acetamide follow an alternative 
pathway. Attempts to optimize acetamide counterparts of ad-
duct INT-2acetone minimized only to INT-1 and acetamide. 
INT-1 and acetamide instead react by cycloaddition through 
TS-2acetamide (+12.08 kcal mol-1) to form the phosphaoxabo-
retane P(R)-C(S)-5c (–7.36 kcal mol-1). The amino-phospha-
boraoxetane 5c can exist as two pairs of diastereomers due to 
stereogenic P and C centers in the 4-membered ring. P(R)-
C(S)-5c is less stable than its diastereomer P(S)-C(S)-5c rela-
tive to 0.5 1 + acetamide (+0.99 vs –7.36 vs kcal mol-1. We 
could not locate transition states leading to P(S)-C(S)-5c from 

INT-1 + acetamide; inspection of TS-2acetamide reveals that in-
version of either P or C centers would generate an unfavorable 
1,2 steric interaction between Mes* and NMe2 groups. Experi-
mental insight into the stereochemistry of the intermediates 5c 
is limited by the ready interconversion of E and Z-phosphaal-
kenes.39,40 
Close inspection of the geometry of TS-2acetone and TS-
2acetamide reveals that they adopt markedly different structures 
(Table S8). TS-2acetone is highly puckered (P–B–O–C torsion = 
48.8º) with a much more fully formed B–O than P–C bond 
(B–O distance 1.561 vs 2a 1.386 Å [–13%]; P–C 3.015 vs 
1.921 Å [–57%]). In contrast, in TS-2acetamide the developing 
P–C and B–O bonds form synchronously (B–O: 2.055 vs 
1.393 Å [–48 %]; P–C: 2.947 vs 1.974 Å [–49%]). The devel-
oping PBCO ring is much flatter (P–B–O–C torsion = –24.2º). 
Why is TS-2acetamide substantially lower in energy than TS-
2acetone? We ascribe this to two factors: i) the synchronous for-
mation of P–C and B–O bonds in TS-2acetamide proceeds with a 
lesser decrease in B-N π-bonding as the P=B=N angle is dis-
torted from away from linear in TS-2 (160º vs 129º); ii) The 
more planar P–B–C–O ring in TS-2acetamide enables the for-
mation of C–H⋯O hydrogen bonds between the amide oxygen 
and the methyl groups of the tetramethylpiperidine substituent 
at boron. The C–H⋯O distances, angles, and C=O⋯H angles 
in TS-2acetamide (2.2–2.3 Å, 125-130º, and 135–145º, Table 
S10) are ideal for interactions of this kind, whereas those in 
the puckered TS-2acetone are not (Table S9).41 Such interactions 
can amount to as much as 4 kcal mol-1 with optimum geome-
try.42 
The second barrier, for the cycloreversion of phosphaboraoxe-
tanes 2b/5c to phosphaalkenes and transient [R2NBO] is much 
higher for 2b than it is for 5c (+38.77 vs +13.02 kcal mol-1). 
The high energy of TS-3acetone (+16.35 kcal mol-1) is consistent 



 

with the observed thermal stability of 2b, which requires the 
addition of AlBr3 to promote cycloreversion. 
Examination of the structures of TS-3 reveal their asynchro-
nous character: in both cases, compared to precursors 2a/5c, 
substantial C–O bond elongation (+51%, +55%) is observed 
with only minimal P–B elongation (+14, +4 %, Table S11). 
This behavior strongly suggests that the lower energy of TS-
3acetamide vs TS-3acetone can be attributed in part to stabilization 
of the developing positive charge at the carbon center by its 
NMe2 substituent. Alkoxy substituents can be expected to ful-
fil the same π-donor role, which explains the differing fates in 
reactions of 1 with amides/esters and ketones/aldehydes. Simi-
larly, we propose that AlBr3 coordination to 2a-e lowers the 
energy of TS-3acetone by polarizing the C–O (and thus the 
forming C–P) bonds. 
Our studies reveal deep and far-reaching mechanistic similari-
ties between the reactions of 1 and carbonyl compounds and 
the Wittig reaction. We thus propose the term ‘phospha-bora-
Wittig’ to describe phosphaalkene-forming reactions of phos-
phaborenes with carbonyl compounds. In the Wittig reaction, 
the nature of transition states for cycloaddition between ylide 
(Ph3P=CHR) and carbonyl compound are subtly influenced by 
factors including 1,2 and 1,3 steric interactions, dipole/dipole 
interactions, and C=O⋯H hydrogen bonds.26,43 1,2 interactions 
play a role in the formation of 5c, though the importance of 
1,3 interactions is negated by the two-coordinate nature of the 
P/B centers. CH hydrogen bonding in TS-3 is also observed. 
We also note the similarity to borata-Wittig reactions of 
borata-alkenes, [R2C=BR2]–, with carbonyl compounds.22,44–48 
The classical Wittig reaction is limited in scope for esters/am-
ides, generally requiring careful substrate modification to 
counteract the effect of the OR and NR2 substituents.49 This 
limitation is absent in the reactions of 1 with esters or amides. 
We ascribe this to the greater electrophilicity of the boron in 
RP=B=NR2 compared to the phosphorus center in phosphorus 
ylides, R3P=CR2. On this basis, and considering the close rela-
tionship between CR2 and :PR, we wish to propose here that 
reagents of the type R2C=BNR2

22 may prove practical and gen-
eral bora-Wittig reagents for the formation of alkenes from 
simple amides and esters. 
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