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Abstract: Chameleonic properties, i.e., the capacity of a molecule to 
hide polarity in non-polar environments and expose it in water, help 
achieving sufficient permeability and solubility for drug molecules with 
high MW. We present models of experimental measures of polarity for 
a set of 24 FDA approved drugs (MW 405 – 1113) and one PROTAC 
(MW 1034). Conformational ensembles in aqueous and non-polar 
environments were generated using molecular dynamics. A linear 
regression model that predicts chromatographic apparent polarity 
(EPSA) with a mean unsigned error of 10 Å2 was derived based on 
separate terms for donor, acceptor, and total molecular SASA. A good 
correlation (R2 = 0.92) with an experimental measure of hydrogen 
bond donor potential, Dlog Poct–tol, was found for the mean hydrogen 
bond donor SASA of the conformational ensemble scaled with 
Abraham’s A hydrogen bond acidity. Two quantitative measures of 
chameleonic behaviour, the chameleonic efficiency indices, are 
introduced. We envision that the methods presented herein will be 
useful to triage designed molecules and prioritize those with the best 
chance of achieving acceptable permeability and solubility. 

Introduction 

Simultaneously achieving adequate aqueous solubility and 
membrane permeability is a challenge for drugs with high 
molecular weight. Qualitatively, the ability of a molecule to expose 
polar groups in aqueous environment and hiding polarity in the 
cell membrane interior by intramolecular hydrogen bond (IMHB) 
formation can mitigate this issue and help strike an appropriate 
balance. [1] The term “chameleonic behaviour” has been applied 
to characterize such solvent-dependent effects, and there are 
suggestions in the recent literature that molecules above a certain 
size must be chameleonic to allow sufficient solubility and 
permeability to function as oral drugs. [2] Many contemporary 
drug targets and modalities, e.g., viral protease inhibitors, protein-
protein interaction modulators, and PROTACs, appear to require 
ligands with MW > 500. Thus, it is of great interest to develop 
methods that test for and quantify chameleonic behaviour, and 
experimental methods, e.g., EPSA [3, 4] and the difference in log 
P between 1-octanol/water and hydrocarbon/water (Dlog Poct–alk) 
[5, 6, 7] are useful for the study of effective polarity and hydrogen 
bonding. Recently, Lokey et al proposed a lipophilic permeability 
efficiency metric based on the study of a congeneric group of 
cyclic peptides. [8] Although useful to characterize existing 

compounds, these methods do not allow for the prediction of 
chameleonic behaviour to prioritize new molecules for synthesis. 
 
To begin to address this issue we recently reported a molecular 
dynamics (MD) protocol that was used to derive conformational 
ensembles from simulations in explicit water and octane. [9] We 
found that explicit solvent MD qualitatively predicts the increased 
number of IMHB formed in octane compared with water. In the 
present study, a set of 25 molecules was compiled consisting of 
8 FDA approved drug molecules with MW 400-700, 16 FDA 
approved drug molecules with MW > 700, and one PROTAC 
molecule. The molecules cover both synthetic drugs and natural 
products, and several macrocyclic compounds are included. The 
structures of the molecules are shown in Figure 1. Because of the 
recent surge in approvals of HCV NS3/4A and NS5A inhibitors, 
these classes are dominating the set of molecules with MW > 700. 
All compounds except the PROTAC are FDA approved oral drugs 
with systemic action, and they are thus assumed to possess 
sufficient permeability to be absorbed across cell membranes. To 
enable modelling of relevant experimental measures of hydrogen 
bond exposure and polarity, we measured log D in three 
aqueous/organic systems, and we used the EPSA 
chromatographic method to determine the effective polarity of the 
approved drugs in the set of molecules shown in Figure 1. 
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Figure 1. Structures and mechanisms of action of the 24 drug molecules and one preclinical PROTAC studied in this work. 
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Figure 1. continued 

Results and Discussion 

Conformation-dependent hydrogen bonding potential: 
Scaled polar surface area 
 
Permeability through lipid bilayers involves desolvation of the 
diffusing molecule as it enters the membrane interior, and once 
inside the membrane, disengagement from the polar head groups 
of one leaflet followed by diffusion across the lipid interior, and the 
reverse process once the molecule reaches the opposite leaflet. 
[10, 11] Hydrogen bonding is arguably the major contributor to the 
energy barriers of these desolvation and disengagement events, 
and the overall hydrogen bonding potential of the molecule should 
be considered to diagnose passive permeability limitations.  
 
The polar surface area (PSA) of a molecule is widely applied in 
medicinal chemistry as one of the most important parameters for 

prediction of permeability. It is defined as the van der Waals 
surface area (vdW SA, see Figure 2 for definitions) of the nitrogen 
and oxygen atoms of the molecule, and any hydrogen atoms 
directly bound to nitrogen and oxygen. Thus, PSA can be 
considered an approximate measure of the total hydrogen 
bonding potential of the molecule. Since PSA is calculated from 
the 3D structure of the molecule, a relevant conformation must 
first be generated. For flexible molecules, many conformations 
are possible, and the PSA is therefore not completely 
unambiguous. To avoid having to generate multiple conformers 
and decide on which one(s) to use for the PSA calculation, the 
topological polar surface area (TPSA) parameter is often used as 
an approximation of the actual PSA. [12] TPSA is based on a look-
up table and uses the 2D structure of the molecule. Thus, TPSA 
does not take conformational effects, e.g., IMHB formation, into 
account. This makes TPSA flawed for the analysis of chameleonic 
molecules, where the surface polarity is environment dependent. 
However, even calculating PSA from the 3D structure of a 
representative conformer does not accurately reflect the 
hydrogen bonding potential of the molecule because it ignores the 
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fact that hydrogen bond donor (HBD) and hydrogen bond 
acceptor (HBA) strengths vary widely between different functional 
groups, even though the surface area of the heteroatoms are 
similar. [13] 
 
To improve upon the PSA parameter, Platts proposed that scaling 
the PSA by the hydrogen bonding strengths of the respective 
polar atoms would yield a better descriptor of polarity. [14] Indeed, 
this was shown to drastically improve the prediction of partition 
coefficients in three solvents relative to unscaled PSA. Platts used 
a single conformer of each molecule, and Abraham’s A and B 
scales for hydrogen bond donors and acceptors respectively. [15, 
16] Since the relative contributions of donors and acceptors to log 
P is expected to vary between solvents, donors and acceptors 
were individually summed and the donor and acceptor sums were 
used to build a multiple linear regression (MLR) model of log P.  
 

 

Figure 2. Definition of the molecular surface areas. A hypothetical molecule is 
shown with atomic van der Waals radii as dotted circles. The solid blue envelope 
is the van der Waals surface area (vdW SA), and the orange outline is the 
solvent-accessible surface area (SASA). The SASA is constructed by rolling a 
probe sphere (orange circle, radius = 1.4Å) over the vdW SA and taking the 
centre of the probe at each position. 

As we were interested in computing the conformation-dependent 
hydrogen bonding potential of a given conformer of a chameleonic 
molecule, we set out to implement the Platts scaled PSA method 
with a few modifications: The pKBHX scale [17] for hydrogen bond 
acceptors was used instead of Abraham’s B scale because it 
covers many more functional groups, and the scaling calculation 
was modified as follows. (For a detailed discussion of hydrogen 
bonding acceptor scales the reader is referred to [18]). Platts 
multiplied the vdW SA of each nitrogen and oxygen atom with 
Abraham’s B parameter, and similarly the vdW SA of each 
hydrogen atom bonded to N or O with Abraham’s A parameter. 
However, Abraham’s A and B parameters are derived for the polar 
groups of entire (monofunctional) molecules, thus, multiplying 
them with atomic surface areas does not produce a physically 
relevant number. To capture the partial shielding of polar atoms 
that results from e.g., IMHB formation, we instead multiplied the 
exposed fraction of the surface area of each polar atom with the 
respective hydrogen bonding strength (Abraham’s A or pKBHX). 
Both the vdW SA and the solvent-accessible surface area (SASA, 
see Figure 2 for definitions) were considered. The exposed 
fractions were calculated from the exposed surface area divided 
by values from a look-up tables of the maximum exposed areas 
of each atom type in a representative compound, see the 
Experimental section and Supporting information Tables S1 and 

S2. The scaled hydrogen bond acceptor surface area is given by 
Equation 1 and the scaled donor surface area is given by 
Equation 2. 
 
!!"# = ∑ $%&!"#,%'(.*+,%

,&'(,%-  (1) 

 
!!". = ∑ #),)

,&'(,)/  (2) 

 
where Si and Sj are the surface areas (vdW SA or SASA) of HBA 
atom i and HBD atom j respectively, Smax,i and Smax,j are the 
corresponding maximum possible surface areas for unobstructed 
atoms from the lookup tables (see Supporting Information Tables 
S1 and S2), and pKBHX,i and Aj are acceptor and donor (Abraham’s 
A scale) strengths. Unlike Abraham’s A scale, which can only take 
positive values, very weak acceptors have negative values on the 
pKBHX scale. To shift this scale such that weak acceptors have 
values close to zero, an offset of 0.5 was included. It was selected 
to achieve a high R2 with a minimum of outliers when used to fit 
the data to Equation 3, see below. A sensitivity analysis of the 
impact of changes to this offset on the MLR statistics showed that 
its value was not critical. A logical test was added to replace 
negative values of (pKBHX,i + 0.5) with zero, such that no atomic 
contribution to the scaled hydrogen bond acceptor surface area 
would be negative. 
 
With these modifications, we selected a training set with 
measured log P (cyclohexane/water) consisting of 98 molecules 
from the Platts dataset of 110 molecules [14] with the addition of 
anisole. Phenols are over-represented in the Platts set (26 of the 
110 compounds), and six were removed to reduce bias. Three 
trialkyl phosphates and three charged, polyfunctional drugs were 
also removed to arrive at the set of 98 molecules. As there are no 
monofunctional alkyl aryl ethers in the Platts set, anisole was 
added to represent this important functional group (log Pcyc from 
ref. [19]). MLR models were fitted to this dataset to compare 
results with vdW SA or SASA, both with and without scaling by 
hydrogen bond strength, see Equation 3.  
 
log Pcyc = a + bStot + cSHBA + dSHBD (3) 
 
where Stot is the total molecular surface area (vdW SA or SASA) 
and SHBA and SHBD are defined by Equations 1 and 2 when scaled 
surface areas are used, or as the sums of surface areas of 
acceptor and donor atoms respectively when no scaling is used. 
Only a single conformer of each molecule was considered, 
following the approach by Platts. Since mostly monofunctional 
molecules with few rotatable bonds, or molecules with stable 
IMHBs were included, this is a reasonable approach for this set of 
molecules. Notably, electronic effects resulting from the close 
juxtapositioning of functional groups in multifunctional molecules 
are ignored, although steric shielding effects should be accounted 
for. In the Platts work, special parameters for Abraham’s A and B 
were included to cover cases such as 2-nitrophenol, but we did 
not include such modifications. We implemented our method as a 
Python script (see Supporting Information) for use with the 
Schrödinger Maestro molecular modelling suite. [20] This makes 
it convenient to analyse multiple conformers, e.g., from a 
molecular dynamics trajectory. 
 
 

vdW SA 

SASA 
Probe sphere 
r = 1.4Å 
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Figure 3. Multiple linear regression models of log Pcyc. (a) Model based on 
Equation 3 with scaled donor and acceptor vdW SA, and total vdW SA. (b) 
Model based on 3D PSA and total vdW SA. 

 
To compare the performance of the scaled PSA model to the 
common 3D PSA and variants thereof, MLR models were built for 
four cases, see Table 1: vdW SA of donors and acceptors 
separately (with and without scaling by hydrogen bond strength) 
plus total molecular vdW SA, 3D PSA (i.e., vdW SA of donors plus 
acceptors as one term, and no scaling) and total molecular vdW 
SA, and scaled SASA of donors and acceptors separately plus 
total molecular SASA. Similar to what was reported by Platts, [14] 
our scaled vdW SA model yielded significant improvements 
compared to using 3D PSA and vdW SA as the only parameters 
in the MLR model, see Figure 3. Using the scaled vdW SA gave 
a slightly better model than using the scaled SASA. Plots of the 
other models and of the original Platts model are shown in the 
supporting information Figure S1. 
 

Although Abraham’s A scale and the pKBHX scale cover many 
functional groups, they do not account for all possible donor and 
acceptor sites in all molecules. Fortunately, quantum mechanical 
methods exist for the prediction of Abraham’s A [21] and pKBHX 
[18] so that any donor and acceptor site can be assigned a value. 
These methods are computationally expensive, but the 
implementation of a machine learning model for prediction of 
hydrogen bond energies based on a large QM dataset was 
recently reported. [22] We envision that such ML models for 
hydrogen bonding strengths will make routine assessment of 
donor and acceptor sites very fast. 

Table 1. Correlation coefficients R2, mean unsigned errors (MUE) and root 
mean square errors (RMSE) for linear regression models in this work and the 
published model of log Pcyc. [14] 

Model R2 MUE RMSE Figure 

Platts cyclohexane, ref. 14 0.869 0.466 0.689 S1a 

Total vdW SA, scaled HBA 
vdW SA, scaled HBD vdW SA 

0.855 0.503 0.681 3a 

Total vdW SA, HBA vdW SA, 
HBD vdW SA 

0.606 0.898 1.123 S1b 

Total vdW SA and PSA only 0.549 0.942 1.202 3b 

Total SASA, scaled HBA 
SASA, scaled HBD SASA 

0.765 0.589 0.867 S1c 

 

 
Molecular dynamics simulations in explicit solvents 
 
Having established the scaled PSA model detailed above, we set 
out to predict the conformational ensembles, surface polarities, 
and hydrogen bonding potentials in different environments for the 
set of medicinally relevant molecules of medium to high MW 
shown in Figure 1. The compounds were subjected to molecular 
dynamics (MD) simulations in explicit solvent (water and octane) 
using our previously reported method. [9] Briefly, five independent 
runs of 50 ns were performed for each molecule and solvent, and 
2500 equally spaced frames were extracted from the five 
concatenated trajectories. Solvent molecules were removed, and 
the resulting ensemble of 2500 conformations was analysed 
using a Python script (see Supporting information) to calculate 
surface areas (total, polar unscaled and polar scaled) and the 
number of IMHBs. 
 
The main advantage of using MD instead of other methods for 
conformer generation is that the conformational ensemble is 
sampled in an explicit solvent, and thus hydrogen bonding 
between solute and solvent is treated in a physically correct 
manner. This is important for the generation of relevant 
conformations of flexible molecules with multiple hydrogen 
bonding interactions. Assuming that the conformational space of 
the molecule is thoroughly sampled, the resulting conformational 
ensemble is statistically correct, and no Boltzmann weighing of 
individual conformers is necessary. Thorough sampling is 
unfortunately not always possible to obtain with plain MD, but for 
flexible molecules with freely rotating single bonds, linear or 
macrocyclic, approximately correct sampling can be expected. 
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For a detailed discussion of the limitations of MD and alternative 
methods, see below. 
 
 
Solvent effect on molecular surface area 
 
Chameleonic molecules are thought to hide polarity in non-polar 
environments by IMHB formation. Thus, in the membrane interior, 
their hydrogen bonding potential is lower than in the aqueous 
environment, where hydrogen bonds with water contribute to the 
solubility of the molecule. The formation of IMHBs may be 
expected to favour more compact conformations in non-polar 
environments than in water. On the other hand, the higher free 
energy cost of forming a cavity in water compared with most other 
solvents would also tend to favour compact conformations of 
solutes that minimize their surface-to-volume ratio. This is 
commonly referred to as hydrophobic collapse. Thus, compact 
conformations of large, flexible molecules that can form IMHBs 
should be expected both in non-polar and aqueous environments. 
Kihlberg et al have made important contributions to the knowledge 
of environment-dependent conformations using NMR in water, 
DMSO/water 10:1 and CDCl3. [23, 24] They found that for a set of 
macrocycles as well as for a prototypical PROTAC molecule, 
conformations in water and DMSO/water 10:1 were more 
extended than in CDCl3. To investigate this effect, we analysed 
the molecular surface area of each conformer in the 
conformational ensembles derived from MD simulations. We 
considered both the vdW SA and the SASA calculated using a 
1.4Å probe representing the water molecules surrounding the 
molecule under study, see Figure 2 for definitions. The results are 

shown as violin plots in Figure 4. There is very little difference 
between the vdW SA in the two solvents, and the spread in vdW 
SA over the conformational ensemble is very small (Figure 4a). 
Thus, the vdW SA is almost independent on the conformation of 
the molecule. In contrast, the SASA shows a significant spread 
over the conformational ensembles, and differences between 
solvents are also observed for some molecules (Figure 4b). The 
differences between solvents are fairly small, and no clear trend 
for larger SASA in one solvent over the other is observed. This 
result is consistent with the tendency towards compact 
conformations in both solvents discussed above, i.e., hydrophobic 
collapse in water and IMHB formation to favour compact 
conformations in octane. Because the SASA, unlike the vdW SA, 
is sensitive to conformational change and represents the 
accessible surface in water for each conformation, we may expect 
SASA to yield better models for solvation-related properties than 
the vdW SA. In the following sections, models using SASA and 
vdW SA are constructed and compared. 
 
The radius of gyration along the axis of the largest principal 
moment of inertia of a molecule is a common measure of 
“extendedness”. For most of the molecules studied here, no major 
differences between the two solvents were observed, see Figure 
4c. This result is very similar to that obtained from the SASA 
discussed above, and for those molecules where differences are 
found between solvents, the difference in radius of gyration 
matches the difference in SASA. Thus, SASA and radius of 
gyration are equivalent descriptors of the volumetric size of the 
molecule for a given conformer.
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Figure 4. Molecular surface areas and radii of gyration of the conformational ensembles of the MD simulations in octane (orange) and water (blue). (a) vdW SA, (b) 
SASA, (c) radius of gyration around the axis of the numerically largest principal moment of inertia. Horizontal bars indicate the mean of the distributions. 

Solvent effect on exposed polar surface area 
 
As discussed above, the PSA is usually calculated as the vdW SA 
of nitrogen and oxygen atoms, and of hydrogen atoms directly 
bonded to nitrogen and oxygen. Although as discussed above the 
SASA may be a better descriptor because it is much more 
sensitive to conformational effects, e.g., shielding of polarity, we 
initially used the vdW SA for consistency with the existing 
literature. The polar vdW SA distributions of the conformational 
ensembles from the MD simulations are shown as violin plots in 

Figure 5. For comparison, the TPSA of each molecule is indicated 
as a grey bar. Even when using the vdW PSA, most of the 
molecules show evidence of chameleonic behaviour: the PSA 
distributions are shifted to higher values in water than in octane, 
and the mean values for the distributions are also higher in water 
than in octane. Even in water, most of the molecules show mean 
PSA values lower than the TPSA. This is somewhat surprising 
given that TPSA was derived from 3D conformers of 34,810 small 
molecules with excellent correlation between 3D PSA and TPSA 
(R2 = 0.982, MUE = 5.62 Å2). [12] However, the range of molecular 
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weights of the set was 100-800, and the set was based on the 
World Drug Index database WDI97 that covered drugs up to ca. 
1997. Moreover, only one conformation generated by CORINA 
was considered for each molecule. Thus, the molecules in our 

work are probably not well represented in the TPSA training set, 
and the omission of conformational sampling in the TPSA training 
set may have skewed the results for large, flexible molecules. 

 

 

Figure 5. Polar surface areas of the conformational ensembles of the MD simulations in octane (orange) and water (blue). Orange and blue horizontal bars indicate 

the mean of the distributions. Experimental EPSA values and calculated TPSA values are shown as green and grey horizontal bars. 

To correlate calculated PSA with experimental results, the 
chromatographic EPSA method was applied, [3, 4] see Table 2 
for structural and experimental properties. This method was 
developed specifically to obtain a measure of surface polarity that 
could be used to predict permeability for e.g., cyclic peptides. For 
small, non-chameleonic molecules, the chromatographic 
retention time was linearly correlated with the calculated TPSA 
values for a set of 118 compounds with TPSA in the range of 40-
130, and a very good correlation (R2 = 0.94) was found. [3] In 
figure 5, the chromatographically derived EPSA values are 
indicated as green bars. The PROTAC molecule was not included 
in the EPSA determination. The typical small molecule eliglustat 
(7) and the PPI inhibitor venetoclax (11) are the only molecules in 
the set for which the EPSA value is close to the TPSA and to the 
MD-derived mean PSA values. It is worth noting that venetoclax 
(11) is likely zwitterionic under the conditions of the EPSA 
determination, and this may be expected to lead to a much higher 
apparent polarity than would be expected from the PSA of the 
neutral, uncharged form. The molecular dynamics were carried 
out on the uncharged, neutral form rather than the zwitterionic 
form of 11. For all other molecules, the EPSA is lower than the 
PSA. There is essentially no correlation between EPSA and PSA 
or TPSA, see Figure 6a-b and Table 3. In light of the discussion 
above of the limitations of PSA as a measure of polarity, this is 

not surprising: PSA (or TPSA) is not a good descriptor of surface 
polarity because it lumps together donor and acceptor areas and 
ignores the differences in hydrogen bonding strengths between 
different functional groups. It is also much less sensitive than 
SASA to conformational effects that shield polarity. 
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Table 2. Structural and experimental properties of the 24 drug molecules and one preclinical PROTAC studied in this work.[a] 

Cpd Compound name MW TPSA HBA HBD Class log Doct log Dcyc log Dtol Dlog Doct-tol EPSA 

1 Aliskiren 551.76 146.13 9 6 Base 1.1 -0.5 -0.4 1.5 88.7 

2 Avanafil  483.95 125.39 10 3 Neutral 3.4 0.5 2.9 0.5 87.6 

3 Dabigatran etexilate 627.73 151.53 12 3 Neutral 3.3 -0.6 3.5 -0.2 99.6 

4 Atazanavir 704.85 171.22 13 5 Neutral 4.2 0.6 2.7 1.5 73.0 

5 Cobicistat 776.03 138.02 12 3 Weak base 4.0 1.8 3.1 0.9 82.1 

6 Edoxaban 548.06 136.63 11 3 Neutral 1.8 -2.2 0.7 1.1 79.1 

7 Eliglustat 404.54 71.03 6 2 Base 2.2 0.4 1.7 0.5 76.5 

8 Sofosbuvir 529.45 158.18 12 3 Neutral 1.6 <0 -0.6 2.2 79.1 

9 Erythromycin 733.93 193.91 14 5 Base 1.4 -1.6 0.2 1.1 80.0 

10 Tacrolimus 804.02 178.36 13 3 Neutral >4 1.6 [b]  77.3 

11 Venetoclax 868.44 177.69 14 3 Zwitterion >4 [c] >3  162.2 

12 Asunaprevir 748.29 182.33 14 3 Acid >3 1.0 3.4  94.7 

13 Boceprevir 519.68 150.70 10 5 Neutral 3.8 -1.9 0.5 3.3 71.0 

14 Telaprevir 679.85 179.56 13 4 Neutral 4.6 0.3 [c]  72.5 

15 Glecaprevir 838.87 195.22 15 3 Acid 2.7 -0.5 2.4 0.3 112.3 

16 Grazoprevir 766.91 195.22 15 3 Acid 2.7 0.2 2.9 -0.2 96.2 

17 Paritaprevir 765.88 189.65 14 3 Acid 3.1 -0.5 3.0 0.1 135.5 

18 Simeprevir 749.94 156.89 12 2 Acid >4 -0.5 >3  124.0 

19 Daclatasvir 738.87 174.64 14 4 Neutral 4.0 -0.8 2.4 1.6 106.0 

20 Ombitasvir 894.11 178.72 15 4 Neutral 4.3 1.6 >3  103.5 

21 Pibrentasvir 1113.18 199.58 18 4 Neutral >4 -0.3 >3  99.3 

22 Elbasvir 882.02 188.80 16 4 Neutral 4.4 2.2 [b]  122.8 

23 Ledipasvir 889.00 174.64 14 4 Neutral >4 -0.5 [b]  111.5 

24 Velpatasvir 883.00 193.10 16 4 Neutral 4.5 0.8 >3  116.1 

25 PROTAC 1034.11 236.63 19 4 Neutral [b] [b] [b]  [b] 

[a] HBA and HBD, number of hydrogen bond acceptors and donors respectively according to Lipinski’s definition; [25] log Doct, log Dcyc and log Dtol, experimentally 
determined log D at pH 7.4 in water/1-octanol, water/cyclohexane and water/toluene respectively, see Experimental section for details. [b] Compound not available. 
[c] Not detectable. 

 
 
To investigate if the scaled PSA concept would give a better 
model for polarity as measured using EPSA, MLR models were 
fitted to Equation 4. This is similar to Equation 3 above, but 
because a conformational ensemble rather than a single 
conformation must now be considered, the arithmetic mean 
values over the conformational ensembles were used for Stot, SHBA 
and SHBD.  
 
EPSA = ( + *!010+++++ + ,!!"#++++++ + -!!".++++++  (4) 

 
To avoid complications due to charged species, only the neutral 
molecules were used (n = 14). The results are summarized in 
Table 3 and correlations are visualized in Figure 6, panels c and 
d. The best fits were obtained when using SASA and considering 
donors and acceptors separately, and very small differences 
between the solvents were observed. Interestingly, scaling the 
surface areas did not result in an improvement, unlike the results 
obtained for the Platts dataset discussed above. The mean 
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unsigned error for prediction of the EPSA using the SASA MLR 
model in octane was 9.9 Å2, and the maximum unsigned error was 
<20 Å2 for all 14 compounds. This model is shown in Equation 5. 
 
EPSA = 27.93 + 0.04837SASAtotal + 0.05089 SSASAHBA  
+ 0.1812 SSASAHBD  (5) 
 
where SASAtotal is the conformational ensemble mean SASA of 
the entire molecule, and SSASAHBA and SSASAHBD are the 
conformational ensemble means of the sums of atomic SASAs of 
the hydrogen bond acceptor and donor atoms respectively. By 
comparison, the mean unsigned errors from a linear regression 
model of mean PSA from the MD simulations were 59.6 Å2 in 
octane and 65.4 Å2 in water, and 76.1 Å2 using TPSA. Clearly, 
using donor and acceptor SASA separately yields a dramatically 
improved model compared to using 3D PSA or TPSA alone. Using 
the donor and acceptor vdW SA separately gave much lower R2 
and higher MUE than using the SASA, see Table 3 and 
Supporting Information Figure S2. A methodology related to ours 
was recently reported by Goetz et al. [26] Their method used a 
descriptor, WASA_P, similar to the conformational ensemble 
mean summed SASA over all donors and acceptors, and they 
found that this was not well correlated with EPSA (R2 < 0.35). 
Thus, their results reinforce the importance of considering donors 
and acceptors as separate terms when modelling polarity. 

 

Table 3. Correlation coefficients R2 and mean unsigned errors (MUE) for linear 
regression models of EPSA. 

Model Solvent R2 MUE Figure 

TPSA NA 0.2296 76.1 6a 

3D PSA 
Octane 0.1764 59.6 

6b 
Water 0.1872 65.4 

Total SASA, HBA SASA, HBD 
SASA 

Octane 0.5648 9.9 
6c 

Water 0.5480 10.1 

Total vdW SA, HBA vdW SA, 
HBD vdW SA 

Octane 0.3219 12.4 
S2a 

Water 0.3166 12.4 

Total SASA, scaled HBA 
SASA, scaled HBD SASA 

Octane 0.5475 10.4 
6d 

Water 0.5240 10.6 

Total vdW SA, scaled HBA 
vdW SA, scaled HBD vdW SA 

Octane 0.3337 11.9 
S2b 

Water 0.3242 11.9 
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Figure 6. Plots of (a) TPSA and (b) mean 3D PSA of the conformational ensembles from the MD simulations in octane (orange squares) and water (blue circles) 
vs. experimentally determined EPSA. Correlations between the MLR models discussed in the text (c)-(d). 
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To illustrate the differences in atomic contributions to the vdW SA 
and the SASA we calculated these values for a compact 
conformer selected from the conformational ensemble of 
cobicistat (5) generated in octane, see Figure 7. Because the 
molecule folds on itself and forms IMHBs, the SASA of the polar 
atoms N and H implicated in these IMHBs fall to zero. In contrast, 
the vdW SAs of these atoms remain above half of their maximum 
values from the look-up table (3.9 vs. 5.5 Å2 for tertiary amine N 
and 3.7 and 3.8 vs. 6.9 Å2 for alkyl amide NH). 

 

 

Figure 7. Comparison of atomic contributions to vdW SA (top) and SASA 
(bottom). Hydrogen bonds are shown as yellow dashed lines with lengths shown 
as red numbers. Pictures and calculations made using Pymol [27] 

Solvent effect on hydrogen bond donor exposure 
 
In addition to understanding the total polarity of the molecule 
under study, it is of interest to consider the hydrogen bond donors 
separately. As they are by definition hydrogen atoms, their 
surface areas are much smaller than those of acceptor atoms 
(nitrogen and oxygen). Thus, in any given molecule, the 
cumulative surface area of the hydrogen bond donors is much 
smaller than the cumulative surface area of the acceptors. 

Because of this, the contribution of hydrogen bond donors to 
hydrogen bonding is grossly underestimated by surface 
measures like TPSA and 3D PSA. This is likely the reason for the 
dramatic improvement in the models for log P and EPSA 
discussed above when donor and acceptor areas are modelled 
as separate terms. 
 
It has been shown that the difference in experimental log P 
between water/1-octanol and water/alkanes, Dlog Poct–alk, is a 
descriptor of hydrogen bond donor capacity, [28, 5] but it is 
unfortunately difficult to determine log P using shake-flask 
methods in water-alkane systems because of the very low 
solubility of many compounds in alkanes. However, toluene may 
be used instead of alkanes to enable determinations of log P in 
an organic phase of low polarity and negligible hydrogen bond 
donor capacity, and Dlog Poct–tol is equivalent to Dlog Poct–alk as a 
descriptor of hydrogen bond donor exposure. [29] 
 
Using shake-flask methods with molecules that have a population 
of charged species at the pH of the aqueous phase yields the 
distribution coefficient, generally reported as log D, and it is often 
assumed that only the neutral fraction of the population distributes 
into the organic phase. With this assumption, the difference in log 
D between different biphasic aqueous-organic systems is 
independent of the extent of ionization in the aqueous phase as 
long as the pH is the same in all systems. However, this 
assumption cannot be expected to hold perfectly for the water/1-
octanol system because the polarity and water content of the 
octanol phase may allow a small amount of ionized form in the 
octanol layer. Thus, Dlog Poct–tol ≈ log Doct – log Dtol, and in the 
following, we compared models for only neutral molecules (n = 7) 
with those for all molecules with experimental data (acids, n = 3; 
bases, n = 4). 
 
Hydrogen bond donor exposure is relevant to the permeability of 
the compound or compound series of interest. Lokey recently 
introduced the lipophilic permeability efficiency (LPE) metric 
based on a study of congeneric series of cyclic peptides. [8] It is 
defined by Equation 6. 
 
LPE = log Dalk – 1.06AlogP + 5.47 (6) 
 
where log Dalk is the base 10 logarithm of the distribution 
coefficient in water/1,9-decadiene. The choice of decadiene was 
based on a comparison of the correlation of permeability with the 
log D of 1,9-decadiene, cyclohexane, toluene and 1-octanol, 
where decadiene gave the best correlation. It should be noted that 
the log D in the three hydrocarbon solvents were highly correlated, 
but the log D in toluene was shifted about two log units from the 
log D in cyclohexane and decadiene. 
 
The LPE quantifies the balance between lipophilicity, which is 
detrimental to solubility, and permeability through lipid bilayers. 
Higher LPE numbers are interpreted to mean that the compound, 
scaffold or series can tolerate more polarity while still maintaining 
acceptable permeability. Assuming that we can approximate the 
term 1.06AlogP by experimentally determined log Poct we obtain 
Equation 7: 
 
LPE ≈ 5.47 – (log Poct – log Palk) = 5.47 – Dlog Poct–alk (7) 
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Thus, minimizing Dlog Poct–alk (or equivalently Dlog Poct–tol) will 
maximize lipophilic permeability efficiency. Methods that would 
allow the prediction of Dlog Poct–tol ahead of synthesis would be 
valuable to chemists faced with the design of large molecules with 
acceptable permeability and solubility. To determine if the MD 
protocol and scaled surface area concepts introduced here would 
yield such a predictive model, we investigated the correlations 
between Dlog Poct–tol and various representations of exposed 
hydrogen bond donor potential. In the present study, we 
attempted to determine log D in water/toluene and 
water/cyclohexane systems using shake-flask methods. 
Determinations were in many cases difficult due to low or no 
observed signals in the MS detection of analytes. This is likely due 
to poor solubility for several compounds. Because the 
water/toluene system yielded higher quality data than the 
water/cyclohexane system, we based our modelling on the former. 
 
To investigate the extent of intramolecular hydrogen bonding in 
the conformational ensembles generated by our MD protocol, 
each conformer was analysed using the Schrödinger Maestro [20] 
default settings for hydrogen bond detection and the number of 
IMHBs was recorded. The distributions of IMHB counts in water 
and octane are shown in Figure 8a. Most of the molecules studied 
show no or one single IMHB in water, and more IMHBs in octane. 
The exposed hydrogen bond donor count of each conformer was 
then calculated as the number of donors not involved in IMHB 
formation by subtracting the number of IMHBs from the total 
number of donors. The distributions of exposed hydrogen bond 
donor counts are shown in Figure 8b. 
 
To investigate if Dlog Poct–tol is correlated with various hydrogen 
bond donor surface representations, or with counts of solvent-
exposed donors or total Lipinski donor counts, correlation 
coefficients for linear regression models were calculated, see 
Table 4. By far the best correlation with experimental Dlog Poct–tol 
was found for the mean scaled hydrogen bond donor SASA from 
the octane MD simulations, see Figure 9. Importantly, both neutral, 
acidic and basic molecules were included, and only a slight 
improvement in the correlation was observed when only neutral 
molecules were considered. Thus, the mean scaled SASA 
derived from MD simulations in octane is an excellent predictor of 
Dlog Poct–tol, and it can be applied to both neutral and charged 
molecules. Plots of Dlog Poct–tol vs. the other hydrogen bond donor 
representations in Table 4 are shown in the Supporting 
Information Figures S3 (octane simulations) and S4 (water 
simulations).

 

Table 4. Correlation coefficients R2 for linear regression models of Dlog Poct–tol. 

HBD representation All compounds Neutral compounds 

Octane Water Octane Water 

Mean HBD vdW SA 0.4344 0.3980 0.4600 0.4469 

Mean HBD SASA 0.4529 0.4762 0.2570 0.3789 

Mean scaled HBD vdW SA 0.4428 0.4222 0.4824 0.4842 

Mean scaled HBD SASA 0.8277 0.7474 0.9166 0.8548 

Mean solvent-exposed 
HBD count 

0.4063 0.4174 0.6597 0.5003 

Lipinski HBD count 0.3369 0.3878 

 

 
The distributions of scaled hydrogen bond donor SASA for each 
of the molecules in the two solvents are shown as split violin plots 
in Figure 8c. Many of the molecules show differences in hydrogen 
bond donor exposure, and the magnitude of the differences can 
be considered a quantitative measure of chameleonicity. 
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Figure 8. Distributions of (a) counts of IMHBs, (b) exposed hydrogen bonds, and (c) scaled HBD SASA for the conformational ensembles in octane (orange) and 
water (blue). Histogram representations are shown in panels (a) and (b), and violin plot representations in panel (c). Horizontal bars in panel (c) indicate the mean 
of the distributions. The chameleonic efficiency indices are given as labels on beige background. The CHE index is shown in panels (a) and (b), and the CDE index 
is shown in panel (c). 
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Figure 9. Correlation between scaled HBD SASA from the octane MD 
simulations and experimental Dlog Poct–tol. The mean values of scaled HBD 
SASA are shown as filled circles and the full distributions over the 
conformational ensembles as violin plots. Linear regressions using the means 
are shown for all compounds (solid, grey line), and for only neutral compounds 
(dashed, orange line), with the corresponding equations and correlation 
coefficients listed in the legend. 

Chameleonicity quantified: Chameleonic efficiency indices 
 
The models of EPSA and Dlog Poct–tol presented above are 
primarily relevant for the understanding of membrane 
permeability. The best models were derived from the 
conformational ensembles in octane, where IMHB formation 
shields polarity. However, to achieve sufficient aqueous solubility, 
hydrogen bonds to water must be possible. The extent to which a 
molecule is able to change from IMHB formation in octane to 
intermolecular hydrogen bonding with water is the essence of 
chameleonicity. To enable the prospective evaluation of 
molecular designs ahead of synthesis, we propose two 
quantitative measures of chameleonicity: The chameleonic 
efficiency indices. The numerical values of the indices defined 
below are shown in Figure 8 as labels on a beige background. 
 
The chameleonic intramolecular hydrogen bonding efficiency 
(CHE) quantifies the difference in IMHB counts between non-
polar and aqueous environments, and is defined by Equation 8: 
 
CHE = (IMHBoct – IMHBwat)/HBDLipinski (8) 
 
where IMHBoct and IMHBwat are the conformational ensemble 
mean number of IMHBs formed in octane and water respectively, 
and HBDLipinski is the number of hydrogen bond donors according 
to Lipinski’s definition. [25] This index may be useful to evaluate 
how successful various molecular designs are at forming IMHBs 
in non-polar environments while exposing all hydrogen bond 
donors in water. It has the property that it is 1 only when all donors 
are engaged in IMHBs in octane and no IMHBs are formed in 
water. This is the best case possible but is unlikely to be achieved 
in practice. The compound with the highest CHE in this study, the 
macrocyclic HCV NS3/4A inhibitor glecaprevir (15), reaches a 

value of 0.52, with another three HCV NS3/4A and NS5A 
inhibitors (12, 21, and 24) in the range of 0.40-0.42. When there 
is no difference in IMHB formation between the solvents, the index 
is 0, corresponding to a non-chameleonic molecule. Although a 
clear cut-off between chameleonic and non-chameleonic 
molecules is not possible to determine based on the present 
results, values in the range of 0.3 to 0.5 should be considered as 
good design targets. 
 
The chameleonic hydrogen bond donor efficiency (CDE) 
quantifies the difference in hydrogen bond donor potential 
between non-polar and aqueous environments expressed as the 
scaled hydrogen bond donor SASA. It is defined by Equation 9: 
 
CDE = 1 – (SASAHBD,oct/SASAHBD,wat) (9) 
 
where SASAHBD,oct and SASAHBD,wat are the conformational 
ensemble means in octane and water respectively of the scaled 
donor SASA (Equation 2). This index may be useful to evaluate 
the difference in hydrogen bond donor potential between non-
polar environments and water. It has the property that it is 1 when 
there is no hydrogen bond donor exposure in octane (best case), 
and 0 when there is no difference in exposed donor potential 
between octane and water. The compound with the highest CDE 
is the PROTAC (25) with a CDE = 0.76 and a CHE = 0.31. 
Because the two indices quantify different aspects of 
chameleonicity, they are not well correlated. We propose that they 
are both useful to triage molecular designs but for slightly different 
purposes. The CHE index is useful to test if intended IMHBs are 
formed in non-polar environments but not in water, while the CDE 
index is useful to evaluate the consequences of IMHB formation 
for the exposed hydrogen bond donor potential.  
 
 
Limitations of MD simulations  
 
The method presented herein is based on plain MD simulations 
at a constant temperature of 300 K and a constant pressure of 1 
bar with a cumulative simulation time of 250 ns. Thus, to 
thoroughly sample the conformational space of the molecule 
under study, every rotatable bond must be able to rotate 
sufficiently fast that multiple rotamers will appear within the 250 
ns time window. In other words, the half-life for bond rotation, t1/2 
= (ln 2)/k where k is the rate of rotation, must be considerably less 
than 250 ns. Using the Eyring equation (10) and assuming a 
transmission factor κ = 1, this is equivalent to a rotational barrier 
ΔG‡ = 8.7 kcal/mol at a temperature T = 300 K. 
 

. = 	0 ."1ℎ 32	
45‡
67  

 (10) 
 
where κ is the transmission coefficient, kB is Boltzmann's constant, 
h is Planck's constant, and R is the gas constant. For most single 
bonds, the rotational barrier will be much lower than this value, 
but if constraints like cyclisation or partial double bond character 
are present, the rotational barriers can easily surpass this value. 
A typical amide bond has a rotational barrier of 15-20 kcal/mol 
corresponding to a half-life of 10-40 ms. It is thus extremely 
unlikely to observe a single rotational event for an amide bond 
using plain MD simulations of the time scales used here. Because 
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secondary amides have a strong preference for the trans rotamer, 
this is not necessarily a problem for our method as long as the 
trans rotamer is used in the input geometry. The population of cis 
rotamers under equilibrium conditions is generally very small for 
secondary amides not constrained in rings. However, for cyclic 
peptides and lactams of medium ring sizes, insufficient sampling 
would be expected, and such molecules were therefore not 
included in the set of 25 compounds used herein. It is worth noting 
that tertiary amides often do not show strong preferences for one 
rotamer over the other, and they may therefore be undersampled.  
 
Another problem arises for molecules with tautomeric forms, e.g., 
the HCV NS5A inhibitors 19-24. In these compounds, tautomers 
of the imidazole and benzimidazole moieties are possible, and in 
the absence of strong electronic effects, it is plausible that both 
tautomeric forms of the imidazole and benzimidazole moieties are 
populated. To determine how different the tautomers would be in 
terms of the hydrogen bonding and surface polarity described 
herein, we chose ledipasvir (23) as a representative example of 
the HCV NS5A class and performed the MD simulations on each 
of the four possible tautomers 23, 23a, 23b and 23c, see Figure 
10. Very small differences were observed between the pairs of 
benzimidazole tautomers 23 and 23a, and 23b and 23c, see 
Figure 11. Significant differences were however observed 
between the pairs of imidazole tautomers 23 and 23b, and 23a 
and 23c. Thus, results with a single tautomer of a complex 
molecule should be interpreted with caution when using this or 
any similar method for conformational ensemble generation. 
 

 

Figure 10. Possible tautomers of ledipasvir (23). 

   
 

   

Figure 11. Distributions of (a) molecular SASA, (b) 3D PSA, (c) counts of IMHBs, 
and (d) scaled HBD SASA for the conformational ensembles in octane (orange) 
and water (blue) of the tautomers of ledipasvir (23). Horizontal bars indicate the 
mean of the distributions. The chameleonic efficiency indices are given as labels 
on beige background. The CHE index is shown in panel (c) and the CDE index 
is shown in panel (d). 

Alternatives to molecular dynamics  
 
To address the potential issue of undersampling the 
conformational space of molecules with slow interconversion of 
conformers, we evaluated two other methods for conformer 
generation. First, Freeform from OpenEye [30] was tried on a set 
of 14 non-macrocyclic compounds. Macrocycles require a 
different workflow and were not included. Freeform consists of a 
three-step protocol: 
1. Conformer generation using Omega (40.000 conformations)  
2. Find all unique minima and perform an energy minimization  
3. Calculate the conformer free energy including conformer 

probability, vibrational and rotational entropy and solvation 
energy.  
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The conformational ensembles generated by Freeform were 
similar to those generated by MD in terms of total molecular and 
polar surface areas, scaled hydrogen bond donor SASA, and 
IMHB counts, see Supporting Information Figure S5. The 
correlation between scaled hydrogen bond donor SASA and Dlog 
Poct–tol was similar to that obtained for MD, See Supporting 
Information Figure S6. Freeform in vacuum gave a correlation 
coefficient R2 = 0.91-0.93 depending on the energy window (1-5 
kcal/mol) used to select conformers. 
 
Second, we selected one example, glecaprevir (15) to test with 
Prime MCS from Schrödinger. [20, 31] Prime MCS does not allow 
changing the dielectric as it performs the final energy minimization 
in vacuum, so the generated conformers would need to be re-
evaluated in water to get accurate conformational energies in that 
solvent. Thus, the results are more comparable to those of MD in 
octane than in water. Prime MCS consists of a three-step 
protocol: 
1. Sampling splits naked macrocycle backbone into two pieces 

sampled independently using a library of known angles.  
2. Both pieces are then reconnected if they match.  
3. The side chains are built back to the macrocycle and the 

structure is energy minimized. 
The conformational ensemble generated by Freeform for 
glecaprevir (15) was very similar to that generated by MD in 
octane in terms of polar surface areas and hydrogen bond donor 
SASA, see supporting information Figure S7. Compared to MD, 
the total molecular SASA distribution was wider with a lower mean, 
and slightly fewer intramolecular hydrogen bonds were present 
on average. 
 
These two alternative methods sample the conformational space 
well, but do not explicitly take solvent molecules into account. 
Thus, the conformers they generate may not correctly represent 
intermolecular hydrogen bonding with solvent molecules.  

Conclusion 

The generation of conformational ensembles in aqueous and non-
polar environments using molecular dynamics yielded valuable 
insights into the chameleonic properties of the set of compounds 
in Figure 1. The concept of scaling the surface areas of hydrogen 
bond donors and acceptors with their respective hydrogen 
bonding strengths was updated and confirmed to improve the 
prediction of log P in cyclohexane/water as previously reported. 
[14] Predictive models for EPSA and Dlog Poct–tol were derived 
from the conformational ensembles obtained from MD simulations 
in octane. The best model for EPSA (R2 = 0.56, MUE = 9.9 Å2) 
was obtained when the hydrogen bond acceptor and donor SASA 
were treated as separate terms, with the total molecular SASA as 
a third term (Equation 5). Unlike the case of the log P prediction, 
no improvement in the EPSA model was found when using scaled 
surface areas. An excellent correlation was found between 
experimentally determined Dlog Poct–tol and the octane MD 
conformational ensemble mean hydrogen bond donor SASA 
scaled with Abraham’s A hydrogen bond strength (Figure 9). The 
ability to predict EPSA and Dlog Poct–tol is expected to be helpful 
to optimize membrane permeability but does not address the 
balance between permeability and solubility. This balance is 
impacted by the degree of chameleonicity of the molecule. To 

quantify this property, two indices of chameleonic efficiency, the 
chameleonic intramolecular hydrogen bonding efficiency (CHE) 
and the chameleonic hydrogen bond donor efficiency (CDE), are 
proposed. Taken together, these models and efficiency indices 
are envisaged to be valuable tools for the design of chameleonic 
molecules with an acceptable balance of permeability and 
solubility. 

Experimental Section 

Materials  

Compounds 1-24 were sourced via Aldrich Market Select using the 
following suppliers: Adooq Bioscience (California, USA) – boceprevir (13), 
dabigatran etexilate (3), daclatasvir (19), eliglustat (7), ledipasvir (23), 
tacrolimus (10), telaprevir (14); Aldrich-CPR (Sigma-Aldrich, Wisconsin, 
USA) – erythromycin (9); Ambeed Inc (Illinois, USA) – aliskiren (1), 
atazanavir (4), sofosbuvir (8), venetoclax (11); Carbosynth Ltd 
(Oxfordshire, UK) – pibrentasvir (21); Cayman Chemical – simeprevir (18), 
velpatasvir (24); MedChem Express (New Jersey, USA) – avanafil (2), 
cobicistat (5), elbasvir (22), glecaprevir (15), ombitasvir (20); Target 
Molecule Corp. (Massachusetts, USA) – asunaprevir (12), edoxaban (6), 
grazoprevir (16), paritaprevir (17). Stock solutions in DMSO with a 
concentration of 10 mM were prepared and used for all analyses. 
Ammonium formate, DMSO, formic acid, methanol, Na2HPO4 and KH2PO4 
were sourced from Thermo Fisher Scientific (Leicestershire, UK). 
Ammonium acetate, cyclohexane, metoprolol, octanol and toluene were 
sourced from Merck/Sigma-Aldrich (Dorset, UK). 0.1 M phosphate buffer 
(pH7.4) was prepared by combining aqueous solutions of 0.05 M Na2HPO4 
and 0.05 M KH2PO4. For log D measurements, Abgene 96-well 0.8 mL 
polypropylene plates (Thermo Fisher Scientific, Leicestershire, UK) were 
used; and Corning Costar 1.2 mL polypropylene cluster tubes 
(Merck/Sigma-Aldrich, Dorset, UK) were used as sample tubes. UPLC 
analysis for log D measurements used a Acquity HSS T3 (1.8 µm) 2.1 x 
30 mm (Waters, Hertfordshire, UK) column fitted with SecurityGuard 
ULTRA fully porous polar C18 cartridge (Phenomenex, Cheshire, UK). 
EPSA analysis used a 20 mM ammonium formate in methanol mobile 
phase modifier, CO2 (2.8 grade, 99.8% purity) from Air Products 
(Oxfordshire, UK) and a 4.6 mm × 250 mm Chirex 3014 column with a 5 
μm particle and 100 Å pore size (Phenomenex, Cheshire, UK). 

Instrumentation and analysis 

All log D measurements used a FB15051 Fisherbrand sonicator (Thermo 
Fisher Scientific, Leicestershire, UK), Heraeus Multifuge X3R centrifuge 
(Thermo Fisher Scientific, Leicestershire, UK) and Eppendorf 
Thermomixer comfort (Eppendorf, Hertfordshire, UK); and analysis was 
performed via ultra-high pressure liquid chromatography (UPLC) 
incorporating mass spectrometer (MS) detection. The UPLC-MS system 
was controlled via MassLynx software (Waters, Hertfordshire, UK) and 
consisted of an Acquity binary solvent manager (Waters, Hertfordshire, 
UK), Acquity four-position heated column manager (Waters, Hertfordshire, 
UK), 2777 ultra-high pressure autosampler (Waters, Hertfordshire, UK) 
and a Xevo triple quadrupole MS (Waters, Hertfordshire, UK). The column 
was heated to 40 °C and an injection volume of 4 µL was used for all 
samples analysed. The gradient ranged from 100% mobile phase A and 
0% methanol to 5% mobile phase A and 95% methanol at a flow rate of 
1000 µL min-1 over 0.9 min. For the majority of compounds, the mobile 
phase A was 10 mM ammonium formate plus 0.1% v/v formic acid in water; 
for asunaprevir (12), glecaprevir (15), grazoprevir (16) and simeprevir (18) 
mobile phase A was 10 mM ammonium acetate in water. The MS analysis 
was carried out in multiple reaction monitoring (MRM) mode using MRM 
methods developed for each compound. TargetLynx software (Waters, 
Hertfordshire, UK) was used to determine a compound’s peak area 
response ratio to the internal standard for all MRM chromatograms 
associated to all serial diluted organic and buffer phase samples. A relative 
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concentration calibration curve was established using the peak area 
response ratios of at least three of the serial diluted samples from either 
the organic or buffer phase. 

EPSA analysis was performed following the reported method [4] via 
supercritical fluid chromatography (SFC) using a Waters-Thar Resolution 
MS SFC system, incorporating a Waters 3100 single quadrupole with an 
ESI source (Hertfordshire, UK), and controlled via MassLynx software 
(Waters, Hertfordshire, UK). The column was heated to 40 °C and an 
injection volume of 10 µL was used for all samples analysed. A flow rate 
of 5 mL min-1 and an outlet backpressure of 140 bar was used. A sample 
run lasted 17 min, during which time the mobile phase composition was 
varied, using a linear gradient, from 5% to 60% modifier at 5% min-1, 
holding at 60% for 5 min before returning to 5%. The MS scanning mode 
used a mass range of 150-1500 m/z. 

Experimental procedure for log D measurements 

An aliquot (10 µL) of a 10 mM DMSO stock of a compound was added to 
a well within a 96-well plate containing organic solvent (490 µL; 1-octanol, 
cyclohexane or toluene), pre-saturated with 0.1 M phosphate buffer (pH 
7.4). The 96-well plate was then sonicated (0.50 hr) and subsequently 
centrifuged (200 g, 22 °C, 0.25 hr) to pellet any undissolved compound. 
An aliquot (300 µL) of the organic phase solution was added to an 
individual sample tube containing 0.1 M phosphate buffer (600 µL, pH 7.4), 
pre-saturated with organic solvent, which was allowed to equilibrate on a 
thermomixer (1000 rpm, 37⁰C, 0.50 hr) and subsequently centrifuged (200 
g, 22 °C, 5 min). An aliquot (100 µL) of the partition mixture organic phase 
was transferred to another sample tube; the remaining organic phase was 
removed. An aliquot (100 µL) of the partition mixture buffer phase was 
transferred to another sample tube and subsequently centrifuged (200 g, 
22 °C, 5 min). An aliquot (5 µL) of the isolated partition mixture organic 
phase was dissolved in DMSO (95 µL) and mixed; and a further four serial 
10-fold dilutions in DMSO were made (i.e., 5 µL of diluted solution in 45 µL 
DMSO). An aliquot (5 µL) of the isolated partition mixture buffer phase was 
dissolved in DMSO (95 µL) and mixed; and a further two serial 10-fold 
dilutions in DMSO were made (i.e., 5 µL of diluted solution in 45 µL DMSO). 
Each diluted sample was further diluted 10-fold into DMSO containing 
metoprolol (0.55 µM), as an internal standard, and subsequently analysed 
via UPLC-MSMS. A log D value for a compound was determined from the 
logarithmic base-10 of the ratio of its relative concentration in the organic 
phase compared to its relative concentration in the buffer phase; adjusted 
for dilution factors. 

Experimental procedure for EPSA measurements 

An aliquot (15 µL) of a 10 mM DMSO stock of a compound was diluted to 
3 mM using DMSO (35 µL). The subsequent sample was analysed on the 
SFC-MS system in triplicate. 

Molecular dynamics simulations 

Molecular dynamics simulations were performed using Desmond v5.1 
from the Schrödinger suite 2017-3 with default parameters as reported 
previously. [9] For each molecule in Figure 1, five runs of 50 ns saving a 
frame every 0.1 ns were performed for each solvent. Thus, a total of 2500 
conformations for each drug-solvent combination was obtained. The 
neutral form of the molecule was used in all cases. A cubic simulation box 
with a buffer size of 20 Å was used to prevent the ligand to interact with its 
own image. For simulations in water the TIP3P model was used and for 
simulations in n-octane a custom solvent box was constructed as 
recommended by Schrödinger. All simulations were performed using the 
OPLS3 force field. Per-atom exposed vdW SA and SASA were calculated 
for each conformer using the Schrödinger Maestro [20] API function 
‘calculate_sasa’ from the ‘schrodinger.structutils.analyze’ library with a 
probe radius of 0.000001 for vdW SA and 1.4 for SASA. Intramolecular 
hydrogen bonds were detected and counted using the API function 
‘get_hydrogen_bonds’ from the ‘schrodinger.structutils.interactions.hbond’ 

library with default parameters. To derive the fraction exposed surface 
area, the exposed surface area of each polar atom was divided by the 
maximum possible exposed surface area for an atom of the same type in 
a molecule where no steric shielding is possible. As an example, the 
maximum exposed surface area of an alkanol oxygen atom was defined 
as the surface area of the oxygen atom in methanol. For each atom type, 
a prototypical molecule was used to construct table entries for maximum 
exposed vdW SA and SASA, see Supporting Information Tables S1 and 
S2. The Schrödinger API was used as described above for these 
calculations. Hydrogen bond strengths were added to the tables from the 
literature, [15, 16, 17, 21] and the values of Abraham’s A and pKBHX used 
for each atom are shown in Supporting Information Table S3. All 
calculations were performed using a Python script within the Maestro 
interactive Python console, see Supporting Information. 
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