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Abstract

We present a protocol for calculation of K-edge x-ray absorption spectra using time-dependent Kohn-
Sham (TDKS) calculations, also known as “real-time” time-dependent density functional theory
(TDDFT). In principle, the entire absorption spectrum (at all wavelengths) can be computed via
Fourier transform of the time-dependent dipole moment function, following a perturbation of the
ground-state density and propagation of time-dependent Kohn-Sham molecular orbitals. In practice,
very short time steps are required to obtain an accurate spectrum, which increases the cost, but
the use of Padé approximants significantly reduces the length of time propagation that is required.
Spectra that are well converged with respect to the corresponding linear-response (LR-)TDDFT
result can be obtained with < 10 fs of propagation time. Use of complex absorbing potentials helps
to remove artifacts at high energies that otherwise result from the use of a finite atom-centered
Gaussian basis set. Benchmark results, comparing TDKS to LR-TDDFT, are presented for several
small molecules at the carbon and oxygen K-edges, demonstrating good agreement with experiment
without the need for specialized basis sets. Whereas LR-TDDFT is a reasonable approach to
obtain the near-edge structure, that approach requires hundreds of states and quickly becomes cost
prohibitive for large systems, even when the core/valence separation approximation is used to remove
most of the occupied states from the excitation manifold. We demonstrate the cost-effective TDKS
approach by application to a copper dithiolene complex, where binding of a ligand is detectable via
shifts in the sulfur K-edge.

1 Introduction

Quantum chemistry is currently witnessing a resur-
gence of interest in x-ray spectroscopy,1–7 catalyzed by
the emergence of new technologies including coherent
ultrahigh harmonic generation,8 providing capabilities
for ultrafast time resolution at x-ray wavelengths,9–11

even with tabletop laser systems.12 This technology
has enabled x-ray absorption spectroscopy (XAS) and
x-ray photoelectron spectroscopy (XPS) studies of
solution-phase systems,13–16 as well as surface-sensitive
ultrafast spectroscopy at extreme ultraviolet (XUV)
wavelengths.17 Insofar as XAS is a widely-used tool to
study to interrogate bonding and oxidation state, these
advances offer the possibility to study element-specific
charge dynamics with ultrafast time resolution, and elec-
tronic structure theory will undoubtedly play a major
role in interpreting the results. In the present work, we
introduce an implementation of time-dependent Kohn-
Sham (TDKS) theory,18–22 nowadays more commonly
known as “real-time” time-dependent density functional
theory (RT-TDDFT),23,24 and apply it to K-edge XAS,
meaning 1s→ virtual excitations.

In the x-ray regime, the more conventional DFT-based
approach to excited states, namely, linear-response (LR-)
TDDFT,25–28 suffers from storage and computational
bottlenecks that are considerably more severe as com-
pared to the case where only a few low-lying valence
excitations are desired. The computational cost of LR-
TDDFT scales as O(no2v2),29 and its memory require-

ment as O(nov), where o and v are the number of oc-
cupied and virtual orbitals, respectively, and n is the
(prohibitively large) number of excited states required
to reach the x-ray regime. XAS calculations with LR-
TDDFT can be rendered tractable by means of an active-
space approximation that includes only the core orbitals
of interest, along with the full virtual space, such that
core-to-valence excitations appear as the lowest states in
the spectrum. In many-body theory this approximation
is known as “core/valence separation”,1,30–32 whereas in
LR-TDDFT it has been called the “restricted excitation
window” approach,6,33 but in either case it amounts to
freezing most of the occupied orbitals. For excitations
at the K-edge (i.e., those originating from 1s orbitals in
the occupied space), this approximation introduces neg-
ligible errors of ±0.02 eV,34 although it is less clear what
the errors might be for L- or M-edge excitations. Further-
more, hundreds of states may still be required to compute
anything beyond the near-edge feature of the x-ray spec-
trum, as demonstrated by examples presented below. For
similar reasons, LR-TDDFT calculations of semiconduc-
tors or other systems with a large density of states can
be prohibitively expensive,35–37 even if the corresponding
ground-state DFT calculation is feasible.

For these types of systems, TDKS represents an attrac-
tive alternative as the requisite computational resources
do not depend directly on the number of excited states,
because the entire broadband spectrum is computed at
once, via Fourier transform of the dipole autocorrelation
function. The total memory requirement is only twice
that of a ground-state DFT calculation. The computa-
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tional resources do depend on the energy regime of inter-
est, as a smaller time propagation step (∆t) is required
to reach higher excitation energies, as these correspond
to higher-frequency components in Fourier space. That
said, for large systems the finite-∆t error may be more
easily controllable as compared to errors engendered by
truncation of the excitation space in LR-TDDFT, be-
cause the former can be reduced with smaller time steps
and longer propagation time, whereas enlarging the exci-
tation space may encounter hardware (i.e., storage) limi-
tations. Because the TDKS and LR-TDDFT approaches
are formally20,25–27 and operationally38,39 equivalent in
the limit of a weak perturbation to the ground-state den-
sity, the TDKS approach can be used to reveal the true
TDDFT spectrum in the absence of any truncations.

The present work represents the product of a com-
pletely rewritten TDKS module in the Q-Chem software
(v. 5.4),7 bringing together various improvements to en-
hance the efficiency of broadband spectral calculations,
specifically with an eye towards XAS calculations. The
resolution of the broadband TDKS spectrum is limited
by the total propagation time and that cost is one or
more Fock matrix constructions per time step ∆t, for
which values on the order of ∆t = 0.02–0.20 a.u. are
commonly used,38–44 which equates to 0.5–5.0 as where
1 as = 10−18 s. Time propagation up to 100 fs has been
reported in a few cases,23,39,44 but more typical values
are 10–30 fs of simulated time,38,40–43 which still equates
to 10,000 or more time steps. The cost of each step
is roughly equivalent to that of one self-consistent field
(SCF) iteration of the ground-state calculation.

The requisite propagation time is reduced here through
the application of a Padé-accelerated Fourier transform
technique. This method is widely used in magnetic
resonance spectroscopy to treat noisy spectra with low
resolution,45,46 and Padé approximants have also previ-
ously been applied in RT-TDDFT.47 Our implementa-
tion also features the use of a complex absorbing po-
tential (CAP) in real space, which helps to remove spu-
rious peaks that are associated with the finite atom-
centered basis set. CAPs are widely used in the study of
metastable resonances,48–50 but their used in the context
of RT-TDDFT has previously been limited to the study
of strong-field ionization dynamics,51–54 where the CAP
it is necessary to absorb the outgoing electron. In the
present work, we demonstrate that even in bound-state
calculations the CAP eliminates spurious oscillations and
is especially important at the high energies probed in
XAS.

2 Theory

Section 2 2.1 provides a brief overview of TDKS theory
as well as the techniques such as Padé approximants and
CAPs that are used to accelerate the calculations. Be-
cause part of this work consists in a side-by-side compar-
ison of the TDKS and LR-TDDFT methods, the theory

behind the latter is briefly reviewed in Section 2 2.2.

2.1. TDKS Approach. A rigorous description of
TDKS theory from first principles can be found in
Refs. 19–21 and the discussion here is focused on prac-
tical considerations for computing absorption spectra.
The adiabatic approximation20 (i.e., locality in time) is
made throughout, so that the time dependence of the
exchange-correlation functional is carried strictly by the
time-evolving density ρ(r, t), and that ground-state func-
tionals can be used without alteration.

2.1.1. Theory. The time-dependent density ρ(r, t) is
expressed in terms of time-dependent Kohn-Sham molec-
ular orbitals (MOs),

ρ(r, t) =

occ∑
k

|ψk(r, t)|2 . (1)

Following a perturbation to the ground-state density,
these MOs propagate in time according to the TDKS
equations,

i~
dψk
dt

= F̂ψk(r, t) , (2)

which are one-electron analogues of the time-dependent
Schrödinger equation. Here, F̂ is the effective one-
electron Hamiltonian or Fock operator. The TDKS
equations are numerically integrated in time to obtain
{ψk(r, t)} from the initial ground-state MOs, {ψk(r, 0)}.
The latter are eigenfunctions of F̂ . A perturbative solu-
tion of eq. 2 affords the LR-TDDFT equations.27

In practice, the MOs {ψk} are expanded in a fixed basis
of atomic orbitals (AOs), and eq. 2 is equivalent to the
Liouville-von Neumann equation

i~
∂P

∂t
= FP−PF , (3)

where P is the matrix representation of ρ. Integration of
eq. 3 affords the time-dependent density matrix,

P(t+ ∆t) = U(t+ ∆t, t)P(t)U†(t+ ∆t, t) , (4)

where U(t + ∆t) is a unitary time-propagation opera-
tor for the time step t → t + ∆t. Because both P(t)
and F(t) are time-dependent quantities in eq. 3, the def-
inition of U(t + ∆t) involves time-ordering of F(t′) at
points t′ along the integration (t ≤ t′ ≤ t + ∆t), or else
a Magnus expansion of nested commutators.39 Various
forms for U(t+ ∆t) have been discussed in our previous
work,39 including schemes that iterate to self-consistency
over the course of a time step from t to t+ ∆t. However,
in the present work we focus on the modified-midpoint
algorithm,55 which corresponds to a propagator

UN = exp[−i(∆t)FN+1/2] (5)
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that updates the density matrix from tN to tN+1 = tN +
∆t. The quantity FN+1/2 is the Fock matrix at time
tN + ∆t/2.

The time step ∆t used must be small enough to en-
sure numerical stability, and its value also determines
the highest frequency-domain Fourier component that
can be determined accurately, i.e., the Nyquist frequency
fNy = π/(∆t) in atomic units. Previously, we found (as

an empirical rule) that excitation energies are accurate
up to somewhere between fNy/5 and fNy/8, depending

on the functional that is used.39

2.1.2. Absorption Spectra. The absorption cross
section S(ω) from a TDKS calculation is computed
from the imaginary part of the trace of the frequency-
dependent polarizability tensor,

S(ω) =

(
4πω

3c

)
Im
[
αxx(ω) + αyy(ω) + αzz(ω)

]
(6)

where

αλκ(ω) =
∂µλ(ω)

∂Eκ(ω)
(7)

for λ, κ ∈ {x, y, z}. The quantity αλκ(ω) describes
the frequency-domain response of the dipole moment to
an applied electric field Eκ(ω) in the κ direction. The
frequency-dependent dipole moment may be calculated
via discrete Fourier transform of the time-dependent
dipole moment:

µλ(ω) =

M∑
k=0

µλ(tk) e−iωtk , (8)

Here, M is the total number of time steps and tk = k∆t.
In a TDKS calculation, one computes the time depen-
dent density ρ(r, t), from which one can calculate µλ(t),
leading ultimately to an absorption spectrum. The reso-
lution of that absorption spectrum improves as the total
simulation time (tmax = M∆t) increases.

2.1.3. Padé-Accelerated Transforms. For high-
energy core excitation spectra a very small time step
is required, making it computationally expensive to ex-
tend the simulations to the 20–30 fs of total propagation
time that is often required to obtain a fully-converged
spectrum.39 A solution is to use a Padé-accelerated
Fourier transform, introduced in the present context by
Lopata and co-workers,47 in which µλ(ω) in eq. 8 is
viewed as a polynomial expansion in z = exp(−iω∆t):

µλ(ω) =

M∑
k=0

zkµλ(tk) (9)

The Padé technique approximates a power series using
rational functions whose numerator and denominator are

both power series expansions of a certain order. Taking
the polynomial order to be P = M/2, eq. 9 is equivalent
to

M∑
k=0

ckz
k

P∑
m=0

bmz
m =

P∑
k=0

akz
k . (10)

By convention b0 = 1, and thus eq. 10 consists of 2P
equations for a total of 2P variables, {ai} and {bi}, which
are solved by separating the equations by orders in z. In
matrix form, the solution for the {bi} coefficients is

b = G−1d (11)

where G is a P × P matrix with Gkm = cP−m+k, and
dk = −cP+k. Coefficients {ai} are obtained from the
{bi}:

ak =

k∑
m=0

bmck−m. (12)

Having a and b, the Fourier transform of µλ(ω) can be
constructed, and the result is that a shorter time se-
quence of input data is required to obtain a converged
Fourier transform. It should be noted that in contrast
to the Padé-accelerated transform technique that was
introduced in Ref. 47, which separately transforms the
contribution to µλ(t) arising from fluctuations in each
occupied–virtual function pair ψi(r, t)ψa(r, t), the ver-
sion that we have implemented transforms only the total
dipole moment in eqs. 8 and 9.

2.1.4. Complex Absorbing Potential. For energies
as high as those encountered in XAS, the electronic tran-
sitions involve final states that are embedded in an ioniza-
tion continuum. Lopata and co-workers have addressed
this issue by ad hoc replacing any positive SCF eigenval-
ues, representing unbound states, with complex-valued
eigenvalues in the MO representation of P(t),42,43 which
has the effect of giving those states finite lifetimes. Here,
we pursue a different approach based on a real-space
CAP.

Note that when atom-centered basis sets are used to
represent P(t), as opposed to plane waves or real-space
grids, the density matrix has compact support because
the basis has finite extent. This leads to spurious re-
flection of the outgoing charge density at the “potential
wall” that is created by the finite support of the basis set.
These reflections give rise to fictitious peaks and other
inaccuracies in the computed spectrum. To address this
problem, certain calculations presented below use field
amplitudes of 10−6 a.u., which is smaller than the values
of 10−4–10−5 a.u. that are more typical in TDKS calcu-
lations. However, the use of such a small excitation field
leads to numerical issues in distinguishing the true field-
induced density oscillations from numerical noise, since
the magnitude of the oscillations is small compared to the
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numerical value of the initial-state density, ρ(r, 0). As
such, calculations must be performed with tight conver-
gence thresholds. The density ρ(r, 0) is only a stationary
state up to the level of the SCF convergence threshold.

In order to avoid having small oscillations in ρ(r, t) be
inundated by interference with the reflected wave, we in-
troduce a CAP in order to absorb the outgoing wave. Our
implementation is similar to that used by Schlegel and
coworkers51–54 to study strong-field ionization dynam-
ics and is constructed from a set of overlapping, atom-
centered spherical potential functions. Each potential is
zero within the cutoff radius (r0) of the nucleus on which
it is centered, then rises quadratically with curvature η.
The CAP is therefore constructed from a set of atom-
centered functions

fCAP
k (r) =

{
0, ‖r−Rk‖ < r0
η‖r−Rk‖2, ‖r−Rk‖ ≥ r0

(13)

for k = 1, 2, . . . , NA, where Rk indicates the location of
the kth nucleus and NA is the number of atoms. The
value of the CAP itself at a given point r is taken to
be the minimum value of all the functions fCAP

k (r), with
the additional stipulation that the potential is cut off
at a maximum value Emax = 10 Eh in order to avoid
numerical overflow problems. Thus, the real-space CAP
function is defined as

υCAP(r) = min
{
Emax, f

CAP
1 (r), . . . , fCAP

NA
(r)
}
. (14)

In practice, we require matrix representations of the
real-space potential function υCAP(r). In the AO basis,
consisting of atom-centered Gaussian functions {gµ(r)},
this representation is

V CAP
µν =

∫
gµ(r) υCAP(r) gν(r) dr . (15)

The integral is evaluated by numerical quadrature, using
the DFT quadrature grid.56 The matrix VCAP does not
depend on time and can be constructed once, at the be-
ginning of a TDKS simulation, and is then added to the
Fock matrix at each time step:

FCAP(t) = F(t)− iVCAP . (16)

Note that VCAP is a symmetric matrix and therefore
−iVCAP is skew-Hermitian, meaning that FCAP is not
Hermitian despite the fact that F is symmetric. This
requires modification to the usual propagator, which is
accomplished by factorizing the relevant exponential us-
ing the splitting technique:

exp[−i(∆t)FCAP
]

= exp[−i(∆t)(F− iVCAP)]

= exp[−(∆t/2)VCAP] exp[−i(∆t)F]

× exp[−(∆t/2)VCAP] .

(17)

In this factorization, the leading and trailing exponen-
tials involve symmetric ones and the middle exponential

involves a skew-Hermitian matrix, and each of these can
be easily diagonalized to evaluate the corresponding ex-
ponential function.

2.2. LR-TDDFT. The LR-TDDFT approach, which

is often simply called “TDDFT”,28 corresponds to taking
the linear response of eq. 3 to a weak perturbation.27

As such, LR-TDDFT can be regarded as the “weak-field
limit” of TDDFT, and identical spectra are obtained with
the TDKS approach when the perturbing field is small
and the time-dependent simulation is propagated for a
sufficiently long time.38,39

For completeness, we recapitulate the LR-TDDFT
eigenvalue equation for excitation energies ω:28(

A B
B† A†

)(
x
y

)
= ω

(
−1 0

0 1

)(
x
y

)
(18)

The orbital Hessian matrices A and B are given by

Aia,jb = (εa − εi)δijδab +
∂Fia
∂Pjb

(19a)

Bia,jb =
∂Fia
∂Pbj

(19b)

where i, j index occupied MOs and a, b index virtual
MOs. The Tamm-Dancoff approximation (TDA) sim-
plifies eq. 18 by neglecting the de-excitation amplitudes
y, which are often ∼ 100× smaller than the largest x
amplitudes. The resulting TDA eigenvalue equation is

Ax = ωx . (20)

This LR-TDDFT formalism has been adapted for the
calculation of core excitation spectra using frozen occu-
pied orbitals,6,33,57–59 i.e., core/valence separation. We
will compare this LR-TDDFT approach to the TKDS
approach, for benchmark purposes and to highlight ad-
vantages of the latter formalism.

3 Computational Methods

Results presented here based on a completely new im-
plementation of the TDKS model in Q-Chem v. 5.4,7

which replaces the original module written by Nguyen
and Parkhill.60,61 In the new module, time propaga-
tion can be accomplished either based on the modified-
midpoint algorithm55 or else self-consistent predictor–
corrector algorithms.39 The predictor–corrector algo-
rithms allow for stable simulations using much larger
time steps, although the primary limitation on ∆t in the
present work is the Nyquist frequency fNy = π/(∆t) that
sets the maximum excitation energy that can reliably be
obtained from a TDKS simulation. The requisite energy
scales for x-ray spectroscopy are quite high and thus ∆t
must be small, and for that reason all of the calcula-
tions reported here use the modified-midpoint propaga-
tor. Additional features needed for XAS, as described
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above, have been implemented in Q-Chem for the first
time as part of this work.

3.1. Functionals and Numerical Parameters. We
set ∆t = 0.02 a.u. for all calculations at the oxygen and
carbon K-edges, and ∆t = 0.004 a.u. for the sulfur K-
edge. Our most conservative previous estimate is that
TDKS spectra are valid up to energies corresponding to
fNy/8.39 Recalling that fNy = π/(∆t) in atomic units,
this puts the upper bound at 534 eV for the larger time
step and 2670 eV for the smaller one, which are the en-
ergy ranges that correspond to the oxygen and sulfur K-
edges, respectively. The method of Padé approximants,47

as described above, is applied to post-process all of the
time-dependent dipole moment data obtained from the
TDKS simulations, which accelerates convergence of the
spectrum and makes it possible to obtain good results
with short simulations. In our experience, simulation
times & 30 fs are required to obtain a fully converged
spectrum in the absence of acceleration techniques,39

whereas the Padé approach is able to resolve rough spec-
tra in as little as 3–5 fs of simulation time and well-
converged spectra in < 10 fs. Spectra reported here are
based on at least 5 fs of total propagation time and their
convergence has been checked against longer simulations.

In simulations that use a CAP, the turn-on radius in
eq. 13 is set to r0 = 9.5 bohr and the curvature to η =
4 a.u.. Note that for a Gaussian of the form g(r) =
exp(−ζr2), the full width at half maximum (FWHM)
is48

FWHM(ζ) =
2
√

ln 2

ζ1/2
, (21)

and the 2σ radial extent of g(r) is (2/ζ)1/2. As an ex-
ample, the most diffuse exponents for carbon and oxygen
in the def2-TZVPD basis set are both ζ ≈ 0.05 bohr−1,
corresponding to a 2σ radial extent of 6.3 bohr. As such,
the CAP affects only the outermost tail of the density.

Starting from a ground-state SCF calculation, which
is converged to a threshold of 10−8 Eh in the present
work, the density is perturbed by means of a δ-function
pulse in which the external field is only nonzero during
the first two steps. To normalize the initial perturbation
across different choices of ∆t, we report the integrated
field strength Ē whose components are

Ēκ = Eκ∆t (22)

for κ ∈ {x, y, z}. (The actual field amplitude, in the sense
of eq. 7, is therefore Eκ = Ēκ/∆t. However, that quantity
is not needed to compute the absorption spectrum, which
instead comes from the Fourier transform of the fluc-
tuating dipole moment function.) The perturbing field
consists of equal components in each Cartesian direction
(Ēx = Ēy = Ēz), which ensures that the perturbation cre-
ates a superposition of all excited states, regardless of
electronic symmetry. Unless otherwise specified, each of

these components is set to Ēκ = 10−6 a.u., although we
also report some calculations with stronger fields.

Some basis-set testing is presented in Section 3 3.2. For
density functionals, we use the “short-range corrected”
(SRC) functionals SRC1 and SRC2.62,63 These are range-
separated hybrid functionals based on the short-range
exchange functional µBLYP,64,65 which were parameter-
ized specifically for x-ray spectroscopy at the K-edge.62,63

These functionals use a large fraction of Hartree-Fock ex-
change attenuated on a length scale of < 1 Å,62 which
presumably corrects for differential self-interaction error
between the core and valence virtual orbitals. Actu-
ally there are two versions of both functionals, SRCn-
r1 and SRCn-r2,5 where the former are parameterized
for “first-row” elements (C, N, O, etc.) and contains
50% (SRC1) and 55% (SRC2) short-range Hartree-Fock
exchange, whereas the “second-row” versions (SRCn-
r2) contain 87% (SRC1) and 91% (SRC2) short-range
Hartree-Fock exchange.

3.2. Tests of Basis Set and Active Spaces. Sev-
eral previous studies have explored modified Gaus-
sian basis sets for use in XAS calculations.66–70 In
some cases, standard Gaussian basis sets have been
“uncontracted”,66–68 meaning that each Gaussian prim-
itive is used as an independent basis function, in order
to improve the variational flexibility of the core func-
tions, which are usually highly contracted. A separate
strategy68–70 is to use basis sets that include core–valence
polarization functions, such as cc-pCVXZ.71 It has been
suggested that the latter basis sets work well for core-
level spectroscopy precisely because the additional core-
valence polarization functions are uncontracted.69

In contrast to the behavior observed with correlated
wave functions,67,70 our testing with LR-TDDFT reveals
that uncontracting the basis sets modifies the excitation
energies by only ∼ 0.1 eV; see Figs. S1 and S2. We exam-
ined oxygen K-edge excitations in formaldehyde, acetone,
uracil, and methionine, and found this to be true for each
of the first 25 O(1s) → virtual transitions, in a variety
of basis sets including 6-311++G**, 6-311(2+,2+)G**,
(aug-)cc-pVTZ, (aug-)cc-pCVTZ, and def2-TZVVPD.
These 25 states span a range of up to 45 eV in some cases.
Comparing cc-pVTZ to cc-pCVTZ in the case of acetone,
the excitation energy for the first transition [O(1s) →
LUMO] at 531.4 eV changes by < 0.1 eV, while that for
the 25th excited state (at 549.6 eV) changes by 0.7 eV. A
previous LR-TDDFT study also concluded that basis set
effects are rather small for XAS calculations, although
somewhat more pronounced for x-ray emission.68 (Emis-
sion is not considered here.) A summary of basis set
effects is presented in Table S1, which also demonstrate
that the SRC functionals predict oxygen and carbon K-
edge excitation energies within 0.1–0.2 eV for the afore-
mentioned molecules, without any relativistic correction.

The LR-TDDFT calculations described above were
performed using a frozen occupied orbital approximation
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Fig. 1. XAS spectra of methionine at the oxygen K-edge, ob-
tained from TDKS simulations with Padé-accelerated Fourier
transforms at the SRC1-r1/def2-TZVPD level, starting from a
δ-function perturbation with Ēx = Ēy = Ēz = 10−4 a.u.. The
two spectra differ only in the total length of simulation time,
as indicated in the legend, and the close agreement suggests
that the simulation with tmax = 5.8 fs is converged.

in which in the only active occupied MOs are the 1s or-
bitals of the atom in question.57 (For carbon or oxygen
K-edge XAS, this means the 1s orbitals for all of the
carbon atoms or all of the oxygen atoms, respectively.)
Fig. S1d compares the oxygen K-edge LR-TDDFT spec-
trum for methionine using this reduced excitation space,
versus the one that is computed using the full excita-
tion space. This results in very little change to the spec-
trum, consistent with LR-TDDFT results reported by
Besley and co-workers,57,59 and with the general valid-
ity of core/valence separation for K-edge excitations.34

The TDA (eq. 20) also results in negligible changes to
the spectrum (Fig. S1e) and is used in all subsequent
LR-TDDFT calculations.

4 Results and Discussion

4.1. Evaluation of TDKS Protocols. We first
demonstrate the utility of Padé-accelerated transforms
to dramatically reduce the total simulation time required
to obtain a converged spectrum. To check convergence
with respect to total simulation time, we calculate the
XAS spectrum of the methionine molecule at the oxy-
gen K-edge. Two such spectra are plotted in Fig. 1,
both of which make use of Padé approximants but cor-
responding to different simulation lengths, tmax = 5.8 fs
versus tmax = 7.3 fs. The two spectra are in very good
agreement, suggesting convergence in < 6 fs of simulation
time, which is considerably smaller than what is required
in the absence of Padé approximants.

We next demonstrate the use of the CAP. Figure 2 dis-
plays the same oxygen K-edge spectrum for methionine,
but computed with a larger δ-function pulse (Ēx = Ēy =
Ēz = 10−4 a.u., as compared to Ēx = Ēy = Ēz = 10−6 a.u.
in Fig. 1), and in the present case computed either with
or without a CAP. Some small variations in the relative
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Fig. 2. XAS spectra of methionine at the oxygen K-
edge, computed from TDKS simulations at the SRC1-r1/def2-
TZVPD level with and without a CAP. Both TDKS calcula-
tions were propagated for 7.3 fs following a δ-function pulse
of magnitude Ēx = Ēy = Ēz = 10−4 a.u..
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Eκ = 10–4 a.u.,
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Fig. 3. XAS spectra of methionine at the oxygen K-
edge, computed from TDKS simulations at the SRC1-r1/def2-
TZVPD level starting from a δ-function pulse as indicated.
(The larger field strength uses a CAP but the smaller field
strength does not.) Both TDKS calculations were propagated
for 7.3 fs.

intensities of various features are evident, when compar-
ing the spectra with and without the CAP, but mostly
the spectra are quite similar.

This comparison serves as a baseline for the compar-
ison that is shown in Fig. 3, in which the same spec-
trum for methionine is computed with field strengths of
Ēx = Ēy = Ēz = 10−4 a.u. and Ēx = Ēy = Ēz = 10−6 a.u.
in the presence or absence of a CAP, respectively. (The
spectrum computed with the smaller impulse field, with
a CAP, is common to both Figs. 2 and 3.) The two spec-
tra in Fig. 3 are nearly identical and much more similar
to one another as compared to the two spectra shown in
Fig. 2, demonstrating that the CAP-free spectrum con-
verges (in the limit of a weak impulse) to the same spec-
trum that is obtained using a stronger field, augmented
with a CAP. This suggests that the CAP is fulfilling its
role, eliminating artifacts due to reflection of the outgo-
ing wave and thus allowing larger field strengths to be
used. Larger field strengths mean less numerical noise.
It is worth noting that the use of a real-space CAP is
computationally straightforward and does not require a
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Fig. 4. XAS spectra of acetone at the carbon K-edge, com-
puted at the SRC1-r1/6-311(2+,2+)G** level using either the
TDKS approach or else LR-TDDFT. The LR-TDDFT spec-
trum consists of 25 roots and uses an active space consisting of
the C(1s) occupied MOs along with all of the virtual MOs, and
each excitation energy broadened using a Lorentzian function
with a width parameter Γ = 0.6 eV. The TDKS calculation
was propagated for 7.3 fs but the spectrum is indistinguish-
able from that obtained using 14.4 fs of propagation time.

priori determination of vacuum energy cutoffs, as needed
for the MO-based absorbing potential that has been em-
ployed by Lopata and co-workers,42,43 which modifies the
SCF eigenvalues rather than adding an explicit potential.

4.2. Comparison to LR-TDDFT. We next com-
pare the spectra obtained with the TDKS approach to
more traditional LR-TDDFT calculations, using carbon
K-edge XAS of acetone as a first example (Fig. 4). The
LR-TDDFT result is obtained by a restricted set of single
excitations in which the active space consists of the com-
plete set of virtual orbitals, along with the three C(1s) or-
bitals from the occupied space. The first 25 LR-TDDFT
states are computed and the resulting stick spectrum is
broadened using a Lorentzian function whose width pa-
rameter is selected to match the width of the first feature
in the TDKS spectrum, around 286 eV in Fig. 4. The
intensity units are arbitrary and the spectra have been
scaled so that their intensities are the same for that first
peak. The LR-TDDFT spectrum then provides a nearly
quantitative match to the TDKS spectrum through the
second peak, at 288.5 eV, although 25 excited states
proves to be insufficient to go beyond the second peak
in the state-by-state LR-TDDFT approach. Two minor
peaks at 289.5 and 291.0 eV, in between the second and
third major peaks, are clearly evident in the LR-TDDFT
spectrum but with too little intensity, and above that
the intensity quickly falls off to zero as the calculation
reaches the requested number of states. Note that the
TDKS spectrum is valid in this case across the entire en-
ergy range of C(1s) → virtual transitions, because the
time step (and therefore the Nyquist frequency) was set
based on the higher-energy oxygen K-edge, and the lower-
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Fig. 5. XAS spectra of acetone at the oxygen K-edge, com-
puted at the SRC1-r1/6-311(2+,2+)G** level using either the
TDKS approach or else LR-TDDFT. The LR-TDDFT spec-
trum consists of 25 roots and uses an active space consisting
of the O(1s) occupied MOs along with all of the virtual MOs,
and each excitation energy broadened using a Lorentzian
function with a width parameter Γ = 0.6 eV. The TDKS cal-
culation was propagated for 7.3 fs but the spectrum is indis-
tinguishable from that obtained using 14.4 fs of propagation
time.

energy carbon K-edge spectrum is a by-product of the
same calculation. In contrast, the 25 states computed in
the LR-TDDFT calculation span a range of only about
6 eV, from 286–291 eV.

The analogous comparison between LR-TDDFT and
TDKS at the oxygen K-edge is presented in Fig. 5, again
for the acetone molecule. It should be noted that the
TDKS spectrum here comes from the same simulation
that was used to obtain the carbon K-edge spectrum in
Fig. 4, whereas the LR-TDDFT approach requires a sepa-
rate calculation at either edge, with different truncations
of the active space. With only the O(1s) orbitals in the
occupied part of the active space, the first 25 roots span
an energy from from 531–543 eV. This LR-TDDFT cal-
culation matches the first peak in the TDKS spectrum,
which is isolated from the rest of the spectrum, and the
energies of the second and third peaks also match fairly
well although there are discrepancies in the relative in-
tensities of the higher-energy features. Above 540 eV,
the two spectra are clearly different.

Having compared the spectra for acetone obtained
with TDKS and LR-TDDFT at a single level of the-
ory, we next extend this analysis to compare two differ-
ent molecules (acetone and formaldehyde), two different
functionals (SRC1-r1 and SRC2-r1), and two different
basis sets [6-311(2+,2+)G** and cc-pCVDZ]. Table 1
lists the lowest excitation energies obtained from LR-
TDDFT, using the usual O(1s) and C(1s) active-space
approximation for the oxygen and carbon K-edges, and
compares these values to the corresponding peak in the
TDKS spectrum. Differences are . 0.1 eV with a maxi-
mum deviation of 0.14 eV, demonstrating consistency in
the first peak positions between TDKS and LR-TDDFT
as applied to K-edge states. From another point of view,
this comparison (and the ones presented Figs. 4 and 5)
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Table 1. Comparison of Carbon and Oxygen K-Edge Peaks Obtained with
TDKS Versus LR-TDDFT.

Functional Basis Set
(CH3)2CO H2CO

∆Ea deviationb ∆Ea deviationb

SRC1-r1 6-311(2+,2+)G** 286.07 +0.09 285.62 +0.05
SRC2-r1 6-311(2+,2+)G** 286.59 +0.05 286.09 +0.04
SRC1-r1 cc-pCVDZ 286.40 +0.08 286.09 −0.10
SRC1-r1 6-311(2+,2+)G** 531.35 +0.09 530.92 +0.14
SRC2-r1 6-311(2+,2+)G** 531.08 +0.09 530.82 +0.07
SRC1-r1 cc-pCVDZ 531.54 +0.12 531.14 +0.03

aLowest LR-TDDFT excitation energy, with an occupied active space that in-
cludes only the C(1s) or O(1s) orbitals. b∆E(TDKS) − ∆E(LR-TDDFT)
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Fig. 6. XAS spectra of methionine at the oxygen K-edge,
computed at the SRC1-r1/def2-TZVPD level from both a
TDKS simulation and from either of two LR-TDDFT cal-
culations. The latter employ an active space consisting of
the O(1s) occupied MOs and all of the virtual MOs, but a
different number of eigenvalues (either 25 or 400) is com-
puted. In either case, the stick spectra are broadened us-
ing a Lorentzian function with a width Γ = 0.18 eV. The
TDKS spectrum is computed (using a CAP) based on 7.3 fs
of total propagation time, following a δ-function impulse with
Ēx = Ēy = Ēz = 10−4 a.u. As discussed in the text, features
below 531 eV correspond to N(1s) → continuum transitions,
whereas the oxygen K-edge begins above 531 eV. Figure is
adapted from Ref. 7; copyright 2021 American Institute of
Physics.

confirm the accuracy of the core/valence separation ap-
proximation for K-edge excitations.34

Finally, we compare TDKS and LR-TDDFT spectra
for methionine at the oxygen K-edge, in Fig. 6. Two LR-
TDDFT spectra are shown, consisting of either 25 or 400
roots with the usual K-edge truncation of the occupied
space in both cases, meaning that only O(1s) orbitals are
included from the occupied space. Two pre-edge features
(one at 530 eV and another just below that) are missing
from the LR-TDDFT spectrum, indicating that these do
not originate from O(1s) orbitals. These features cor-
respond to excitations from N(1s) orbitals to the very
highest-energy virtual MOs, that latter of which are “or-

thogonalized discretized continuum” states.48 This be-
comes clear if one computes all o × v eigenvalues of the
LR-TDDFT eigenvalue problem in eq. 20, which is feasi-
ble in smaller basis sets. As shown in Fig. S3, when the
full set of LR-TDDFT eigenvalues is examined, there is
a semi-continuous sequence of dark states that connects
each of the x-ray K-edges (carbon, nitrogen, oxygen, . . .),
representing core → continuum excitations. These are
called “intruder states” in Ref. 47, although this risks
confusion with (unrelated) terminology in multireference
perturbation theory.72,73 These ionization contributions
are eliminated in Ref. 47 by transforming P(t) into the
MO basis and removing individual contribution Pia(t)
corresponding to the undesirable (discretized continuum)
orbitals ψa. We have not done so here, as it is easy to rec-
ognize the that oxygen K-edge spectrum in Fig. 6 begins
with the feature at 532.5 eV.

Regarding that feature, the oxygen K-edge at 532.5 eV
appears at the same energy in all three spectra in Fig. 6.
However, the LR-TDDFT oscillator strength drops off
precipitously at higher energies and subsequent features
exhibit discrepancies with respect to the TDKS calcu-
lation, in the range of 533–535 eV, which persist even
when 400 excited states are included in the LR-TDDFT
calculation. Tests of the effect of restricting the LR-
TDDFT excitation manifold (Fig. S1 of this work and
also Ref. 57), as well as the accuracy of the core/valence
approximation for K-edge excitations more generally,34

suggest that errors arising from frozen occupied orbitals
cannot account for the observed discrepancies. At the
same time, convergence tests of the TDKS approach (Sec-
tion 4 4.1) suggest that the real-time spectrum is con-
verged.

4.3. Case Study: Sulfur K-edge of a Copper
Dithiolene Complex Lastly we present an exem-
plary application, computing XAS at the sulfur K-
edge for oxidized and reduced forms of a copper
bis(maleonitriledithiolate) complex, [Cu(mnt)2]1−/2−,
where mnt = 1,2-dicyanoethylene-1,2-dithiolate (inset of
Fig. 7). The (mnt)2− moiety is one of the simplest exam-
ples of a dithiolene ligand and a prototypical noninnocent
ligand in transition metal chemistry.74 Metal dithiolene
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Fig. 7. XAS at the sulfur K-edge, computed for a Cu-thiolene
complex whose structure is shown, computed using TDKS
(∆t = 0.004 a.u. and Ēx = Ēy = Ēz = 10−4 a.u., with 14.7 fs
of total propagation time) at the SRC1-r1/6-31G* level. The

metal complex is [Cu(mnt)2]1−/2− in either of two oxidation
states, and the spectrum of the free (mnt)2− ligand is also
shown for comparison.

complexes display an intense pre-edge feature typical of
ligand K-edges in the spectroscopy of transition metal
complexes, where both the position and the integrated
intensity of the pre-edge feature are sensitive to the ox-
idation state of the metal. Any change in the electronic
structure of the complex is thus expected to manifest in
sulfur K-edge XAS.

That spectrum has been computed using the TDKS
approach for both [Cu(mnt)2]1−/2− oxidation states as
well as for the free (mnt)2− ligand, with results shown
in Fig. 7. The sulfur K-edge is a higher-energy regime
as compared to the second-row elements examined above
and these calculations therefore use a smaller time step,
∆t = 0.004 a.u., following a δ-function perturbation with
Ēx = Ēy = Ēz = 10−4 a.u.

For the Cu(II) and Cu(III) complexes, we find the first
peak appears at 2448.8 eV and 2447.5 eV, respectively.
This feature corresponds to a S(1s)→ Cu(3d) transition
and the higher oxidation state, Cu(III), experiences in-
creased charge donation from the sulfur center, leading to
a larger intensity as compared to the same transition in
the reduced form of the complex. Because this ligand-to-
metal charge-transfer transition is absent in the spectrum
of the free ligand, the lowest-energy peaks in the spec-
trum of free (mnt)2− correspond to overlapping ligand-
centered S(1s) → π∗ transitions. The analogous transi-
tions in the Cu(II) complex can be observed at 2449.3 eV
and in the Cu(III) complex at 2450.1 eV, blue-shifted
relative to the free ligand. A similar blue-shift has been
observed experimentally,75 where it was rationalized in
terms of stabilization of the S(1s) orbitals in the bound
ligands relative to the free ligand,with an increase in pos-
itive charge on the sulfur center.

TDKS calculations therefore reproduce the observed
spectroscopic effect of a change in oxidation state on the
Cu center, as it manifests in the intensity of ligand-to-
metal transitions at the sulfur K-edge, as well as the
blue-shifting of the ligand-centered edge transitions. It
should be noted that with a time step (and corresponding
Nyquist frequency) suitable to obtain the sulfur K-edge,
one obtains from the TDKS simulation all of the lower-
energy K-edge spectra as well, including carbon, nitro-
gen, and oxygen in the present example. This demon-
strates the practical utility of the TDKS approach, as
these would be separate calculations with LR-TDDFT.
In addition, we have seen that several hundred excited
states is only sufficient to compute the first 3–5 eV of a
typical broadband K-edge spectrum, a problem that will
grow worse in solid-state semiconductor materials with a
denser manifold of bound virtual levels.

5 Conclusions

This work describes an implementation of TDKS or
“real-time” TDDFT and explores its application to core-
level XAS at the K-edge of various main-group elements.
The TDKS approach allows for all of the relevant K-edges
to be computed at once in a single broadband calculation,
up to an energy scale that varies inversely with the time
step that is used to integrate the equations of motion.
The more traditional LR-TDDFT approach requires that
such spectra be computed state-by-state, and hundreds of
states must be computed to extend the spectrum 3–5 eV
beyond the lowest transition (1s → LUMO). By em-
ploying the method of Padé approximants to accelerate
convergence of the Fourier transform of the fluctuating
dipole moment, and a novel use of absorbing potentials
that helps to remove artifacts caused by reflection of the
outgoing wave at larger field strengths, we are able to
obtain resolved broadband spectra in as little as 3–5 fs of
simulation time and fully-converged spectra in < 10 fs,
significantly shorter than the 20–30 fs that is usually re-
quired.

We document that the dependence on the Gaussian ba-
sis set is not nearly so severe as what has been reported
in the literature for other quantum chemistry approaches
aimed at core-level spectroscopy. For TDKS, standard
Gaussian basis sets that are common for ground-state
DFT can be used without modification. All of the rel-
evant K-edges (carbon, nitrogen, oxygen, . . .) up to the
highest-energy one are obtained in a single calculation,
since it is the highest-energy part of the spectrum that
dictates the time step that is required for the simulations.
Together, these features make TDKS a powerful tool for
x-ray spectroscopy, especially for solid-state semiconduc-
tor materials with a potentially dense manifold of bound
virtual levels, for which the state-by-state nature of the
LR-TDDFT approach will become prohibitively expen-
sive.
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