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Abstract 

Wildfires have become the dominant source of particulate matter (PM2.5, < 2.5 µm diameter) leading 

to unhealthy air quality index occurrences in the western United States. Since people mainly shelter 

indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a 30 

key determinant of human exposure, and is potentially controllable with appropriate awareness, 

infrastructure investment, and public education. Using time-resolved observations outside and 
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inside over 1400 buildings from the crowdsourced PurpleAir sensor network in California, we found 

that infiltration ratios (indoor PM2.5 of outdoor origin/outdoor PM2.5) were reduced on average from 

0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, mean indoor 35 

concentration of PM2.5 nearly tripled during wildfire events, with lower infiltration in newer buildings 

and those utilizing air conditioning or filtration.  

Significance Statement 

Wildfires have become the dominant source of particulate matter in the western United States. 

Previous characterizations of exposure to wildfire smoke particles were based mainly on ambient 40 

concentration of PM2.5. Since people mainly shelter indoors during smoke events, the infiltration of 

wildfire PM2.5 into indoor environments determines exposure. We present analysis of infiltration of 

wildfire PM2.5 into more than 1400 buildings in California using more than 2.4 million sensor-hours 

of data from the PurpleAir low-cost sensor network. Findings reveal that infiltration of PM2.5 during 

wildfire days was substantially reduced compared with non-fire days, related to people’s behavioral 45 

change. These results improve understanding of exposure to wildfire particles and facilitate 

informing the public about effective ways to reduce their exposure. 
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Main Text 50 

Introduction 

Fine particulate matter (PM2.5) air pollution is the single-largest environmental risk factor for human 

health and death in the United States (US) (1). Wildfires are a major source of PM2.5, and are 

documented to cause adverse respiratory health effects and increased mortality (2). Toxicological 

and epidemiological studies suggest that PM2.5 from wildfires is more harmful to the respiratory 55 

system than equal doses of non-wildfire PM2.5 (3, 4). The number and magnitude of wildfires in the 

western US has increased in recent decades due to climate change and land management (5–7). 

Although the annual mean level of PM2.5 has substantially declined over this period following the 

implementation of extensive air quality policies to reduce emissions from controllable sources, the 

frequency and severity of smoke episodes with PM2.5 exceedances has increased sharply due to 60 

wildfires in the Pacific Northwest and California (8, 9). The annual mean PM2.5 in Northern California 

has increased since 2015 (SI Appendix, Fig. S1) due to massive seasonal fire events, and these 

events have become the dominant cause of PM2.5 exceedances. 

People in the United States spend 87% of their time indoors (10). However, the protection 

against air pollutants of outdoor origin provided by buildings is commonly overlooked in air quality, 65 

epidemiologic, and risk assessment studies (11). To accurately characterize and reduce population 

exposures to wildfire PM2.5, it is necessary to understand then optimize how buildings are used by 

their occupants to mitigate exposure. Previous estimations of indoor particles of outdoor origin 

typically relied on measurements from a limited number of buildings, and extrapolation of these 

measurements to other buildings based on the empirical infiltration and removal parameters (12, 70 

13). However, such extrapolation is not applicable to wildfire events because it does not take into 

account the distribution of protection provided by buildings (including natural and mechanical 

ventilation) due to lack of data measuring infiltration under representative conditions. The infiltration 

of outdoor particles is dependent on people’s behavior (11, 14, 15), which changes during wildfires 

(and in 2020 during the COVID-19 pandemic). Pollution levels during wildfire events, and 75 

knowledge of those pollution levels through available air quality data, directly impact human 
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responses aimed at controlling the infiltration of outdoor PM2.5 including reducing ventilation, using 

air conditioning, and using active filtration. Statistically robust observations of the variability of PM2.5 

infiltration during actual wildfire events across a broad cross-section of normally occupied 

residences provides the opportunity to understand the distribution of real infiltration rates affecting 80 

human exposure, and the factors controlling them, potentially informing guidance towards 

improvement. 

Here, we exploit a recent trend in air quality sensing – public data from a network of 

ubiquitous crowdsourced low-cost PM2.5 sensors – to characterize how indoor air quality during 

wildfire episodes is affected by buildings and their occupants. We demonstrate that buildings 85 

provide substantial protection against wildfire PM2.5, and that behavioral responses of building 

occupants contribute to effective mitigation of wildfire smoke. Real-time PM2.5 sensors based on 

aerosol light scattering have proliferated as easy-to-use and low-cost consumer devices in recent 

years, providing a novel opportunity to explore the indoor intrusion of wildfire PM2.5. Among various 

devices available, the crowdsourced PurpleAir network has developed the most extensive public-90 

facing network currently available. As of June 2, 2021, there are 15,885 publicly accessible active 

PurpleAir sensors reporting data from across the earth, 76% are outdoor (12,088), and 24% are 

indoor (3,797). Of these PurpleAir sensors, 57% are installed in California (9,072), split into 69% 

outdoor (6,273) and 31% indoor (2,799). As shown in Fig. 1, California accounts for 74% of all 

indoor PurpleAir sensors worldwide, with adoption increasing most rapidly following individual 95 

wildfire episodes, as noted by prior work (16). We focus here on analyzing the data from these 

sensors deployed across the metropolitan regions of San Francisco and Los Angeles, California, 

where the public adoption of indoor and outdoor PurpleAir sensors is especially high, at least 

partially in response to the high frequency of recent wildfire events. Analyses are presented for the 

wildfire season in the San Francisco Bay Area of Northern California (NC) during August-100 

September 2020 (denoted NC 2020) and November 2018 (NC 2018), and for the Los Angeles area 

of Southern California (SC) in August-September 2020 (SC 2020). Maps of the measurement 

regions are provided in SI Appendix, Fig. S2 and S3. We analyzed the data from over 1,400 indoor 
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sensors and their outdoor counterparts to characterize levels of and dynamics of indoor PM2.5 and 

the fraction of outdoor PM2.5 that entered buildings, comparing wildfire and non-fire periods. The 105 

vast majority (> 87%) of sensors in our dataset are in buildings that are unambiguously identified 

as residential. We mainly focus on residential buildings, which is facilitated by linking individual 

PurpleAir sensor locations with a dataset of detailed home property characteristics (Zillow). 

 

Results and Discussion 110 

PM2.5 inside and outside an example building. Fig. 2 displays the PM2.5 concentrations 

measured by an indoor sensor and its nearest outdoor counterpart on wildfire days and non-wildfire 

days (classified by whether the daily average PM2.5 level measured by the nearest EPA Air Quality 

Measurement Station was above or below 35 µg m-3). The outdoor PM2.5 concentration was clearly 

affected by wildfire plumes for August 14-28, September 6-15, and September 28-30. On fire days, 115 

the 10-min average outdoor PM2.5 exceeded 500 μg m-3 several times. The indoor concentration 

was more than doubled in these periods due to the infiltration of wildfire particles. We also observed 

peaks of indoor PM2.5 exceeding the outdoor PM2.5 even on the most polluted days. These peaks 

typically lasted between 1 hour and 4 hours, which match well with the characteristics of 

cooking/cleaning peaks, reported in studies such as Patel et al. and Tian et al. (17, 18). Fig. 2C 120 

shows the concentration profiles of indoor and outdoor PM2.5, and 1D shows the outdoor PM2.5 and 

indoor PM2.5 with outdoor origins (after removal of identified indoor emission events). The infiltration 

of outdoor wildfire smoke caused the concentration of indoor PM2.5 to exceed 150 μg m-3 in this 

building (Fig. 2D).  

Differences of infiltration on fire days and non-fire days. Taking all the buildings in the NC 2020 125 

case into consideration, we found that the mean concentration of indoor PM2.5 more than doubled 

on the fire days compared to the non-fire days due to the infiltration of outdoor smoke (Table 1, SI 

Appendix, Fig. S4). On the fire days, the average outdoor concentration of PM2.5 was more than 4 

times the mean indoor PM2.5. Fig. 3A displays the distribution of the mean indoor/outdoor PM2.5 

ratio of each building on the fire days and the non-fire days. The average indoor/outdoor PM2.5 130 
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ratios for many buildings exceeded 1 due to indoor emission events, particularly on non-fire days. 

On fire days, the majority of indoor PM2.5 infiltrated from outdoors, but the indoor/outdoor PM2.5 

ratios were much lower because people closed their buildings and many also filtered their indoor 

air for protection from the smoke. Figure 3B shows the ratio of indoor PM2.5 of outdoor origin to 

outdoor PM2.5 (defined as the infiltration ratio). The infiltration factor (Fin) is the steady-state fraction 135 

of outdoor PM2.5 that enters the indoor environment and remains suspended there (14). It quantifies 

the extent that the building provides protection against outdoor particles (11). For particulate matter, 

Fin can be obtained from the ratio of indoor/outdoor concentration when there are not additional 

indoor sources or loss processes (19, 20). On fire days (PM2.5 > 35 µg m-3), due to the 

predominance of PM2.5 of outdoor origin, the infiltration ratio approaches the infiltration factor. The 140 

infiltration factors of PM2.5 for different buildings in NC 2020 have a geometric mean (GM) of 0.22 

(0.15, 0.35 for 25th and 75th percentiles, same below). On non-fire days (PM2.5 < 35 µg m-3), the GM 

infiltration ratio increases to 0.4 (0.32, 0.54), while on days with unhealthy air quality (PM2.5 > 55.4 

µg m-3), the GM infiltration ratio reduces to 0.19 (0.12, 0.31) (Table 1). However, around 25% of 

buildings had PM2.5 infiltration factors above 0.35 on the fire days (Fig. 3B). Occupants of these 145 

exposure hotspot buildings experienced much higher levels of wildfire smoke. For context, 

infiltration factors of homes and commercial buildings measured in the US are usually above 0.5 

(14, 21), and the infiltration factor of office buildings with 85% ASHRAE filters were predicted to be 

around 0.18 (22).  The difference in mean infiltration ratio between fire days and non-fire days are 

most apparent in the daytime (SI Appendix, Fig. S5), consistent with more ventilation typically 150 

occurring during daytime (23). The lower infiltration factors for the buildings on fire days indicates 

the efficacy of reduced ventilation and enhanced removal of particles as people took measures to 

protect themselves from smoke exposure, and that more behavioral changes happened in daytime. 

Infiltration ratios of PM2.5 were not significantly different between fire days and non-fire days in the 

SC 2020 case (Fig. 4), in contrast to the 2020 NC observations. This difference is probably because 155 

the hotter weather in Southern California caused more frequent use of air conditioning systems 

(and shutting windows), which is implied by a higher 2 pm mean indoor-outdoor temperature 
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difference (~4ºC) than buildings in the San Francisco Bay Area (~2ºC). Another possibility is that 

the PM2.5 pollution levels in the Greater Los Angeles area were not high enough to induce people 

to change their behaviors (SI Appendix, Fig. S6-S9).  160 

Infiltration and building characteristics. Differences in fire-day infiltration ratios may also stem 

from differences in building characteristics. As shown in Table S4 in SI Appendix, buildings with 

fire-day infiltration ratio < 0.15 were widely distributed in the study area. However, buildings with 

fire-day infiltration ratio > 0.35 were mostly located in San Francisco where the climate is cooler 

and air conditioning is much less common. Buildings in California Climate Zone 12 (Northern 165 

California Central Valley) had lower infiltration ratios than any other climate zones in the San 

Francisco Bay Area (SI Appendix, Fig. S10). Due to the summer hot weather, substantial cooling 

is required for buildings in this zone (24). Air conditioning and associated filtration systems 

apparently decrease the indoor PM2.5 in those buildings. In addition, since the mid-late 1990s, most 

new residential buildings in the US are equipped with air conditioning systems (25). Since 2008, 170 

new buildings in California are mandated to have mechanical ventilation systems (26). Many of the 

newer buildings also have filtration systems (27). The changes in the building stock are apparent 

in the resulting data, as residences built after 2000 had significantly lower infiltration ratios on both 

fire days and non-fire days compared with older buildings (SI Appendix, Fig. S10), which is 

consistent with the findings of a recent wildfire smoke infiltration study in Seattle (28). We further 175 

classified the buildings in the NC 2020 case into cool buildings and hot buildings based on whether 

the 95th percentile indoor temperature reached 30ºC. These cool buildings were more likely to have 

air conditioning systems on. As shown in SI Appendix, Fig. S11, the cool buildings have significantly 

lower fire-day infiltration ratios than the hot ones (p < 0.01), and around 20% of cool buildings had 

extremely low infiltration ratios (< 0.1). In sum, these results demonstrate that (i) this sensing and 180 

analysis approach yields findings in line with mechanistic plausibility (ii) and that the diversity of 

building characteristics within a region leads to substantial heterogeneity in the degree to which 

populations are protected indoors from wildfire PM2.5.   
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Decay rate constants for PM2.5 were determined for all indoor observations using a box 

model (Equation 2). The difference in the decay rate constants of PM2.5 indoors further reveals why 185 

the infiltration ratio was lower on fire days. Fig. 5 shows the distribution of mean total loss rate 

constant of PM2.5 on fire days and non-fire days in the buildings. The mean and median total loss 

rate constants (λt) are 1.6 h-1 and 1.3 h-1 on fire days, and 2.0 h-1 and 2.2 h-1 on non-fire days, 

respectively. Comparing individual buildings on fire days and non-fire days, 70% of them have 

lower particle loss rate constants on fire days, indicating a high percentage of buildings whose 190 

occupants took effective action to reduce PM2.5 infiltration. During the fire days, the decrease in air 

exchange rate exceeded the enhanced indoor filtration, making the loss rate smaller. Since the 

infiltration ratio (infiltration rate/total loss rate, / ( )lossaP a k+ )  was also lower on fire days, it can 

be inferred that the infiltration rate (air exchange rate × penetration factor, aP) was lower on fire 

days (Equations 1 and 3). We expect both air exchange rate and penetration factor to drop on fire 195 

days. Closure of windows and doors will lead to a lower air exchange rate. The usage of filtration 

systems on incoming air and closure of openings will lead to a lower penetration factor (12).  For 

the SC 2020 case, the estimated particle loss rate constants (1.48 h-1 for both fire days and non-

fire days) are lower than in the San Francisco Bay Area (SI Appendix, Fig. S12), which further 

implies that a larger fraction of PurpleAir sensor owners in the Los Angeles area kept their 200 

windows/doors closed.  

People are more likely to open the windows when the indoor temperature is higher than 

the outdoor temperature in summer (29, 30). In the NC 2020 and SC 2020 cases, the difference in 

daytime indoor/outdoor temperature alternated between positive and negative values (SI Appendix, 

Fig. S13). However, in the NC 2018 case, due to the colder outdoor temperatures in November, 205 

we infer that people probably closed their windows for a longer time, explaining the lower loss rate 

constants observed. This was expected to reduce the difference between the infiltration ratio on fire 

days and non-fire days. However, this ratio is still statistically significantly higher (p < 0.05) on fire 

days, which suggests the widespread application of filtration systems. 
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Our conclusions come with caveats. First, we treated each building as a well-mixed box, 210 

which assumes the indoor sensor measurement can represent the PM2.5 levels of the entire 

building. Second, our algorithm to remove the indoor-source peaks could miss lower indoor 

emission events. In addition, we assumed a universal quasi-linear response for all the PurpleAir 

sensors throughout the analysis period. Such treatment could lead to biases, but our results should 

still reflect the average trend. Indoor environments with PurpleAir sensors may not be 215 

representative of the entire distribution of buildings (details are provided in the SI Appendix). 

Adoption of PurpleAir sensors (at least ~200 US dollars per sensor) is higher among affluent people 

concerned about exposure to PM2.5. Consistent with the expectation of an affluent “early-adopter” 

effect, PurpleAir owners live in homes with estimated average property values 21% greater than 

the median property value for their cities (SI Appendix, Table S3 and Fig. S14). The 2015 U.S. 220 

Residential Energy Consumption Survey shows that households with less than $40,000 annual 

income are less likely to use air-conditioning equipment than other households (31). Low-income 

houses tend to be older, and they are shown to have larger leakage than other houses (32, 33). 

Lower-income households can therefore have disproportionately higher exposure to wildfire 

smoke. Finally, although we were not able to disentangle the influence of multiple regionally varying 225 

parameters (such as building type, floor area, property values) on penetration of wildfire smoke 

with the current distribution of indoor sensors, more extensive sensor adoption in coming years 

may allow future work to address this limitation.   

This work demonstrates that crowdsourced environmental sensing can provide valuable 

information about how people are protecting themselves from the increasingly severe 230 

environmental hazard of wildfire smoke. We find that common adaptation measures, including 

reducing ventilation and active air filtration, effectively mitigate the average indoor exposures of all 

the buildings by 17% and 74% relative to baseline and outdoor conditions, respectively. This work 

further suggests that such protective measures could be enhanced through public education to 

substantially mitigate indoor exposures at the population scale in the future. Given anticipated 235 

increases in wildfire smoke in coming decades, it is critical to evaluate these findings in other 
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settings, including in lower-income communities and in other climate regions affected by wildfires. 

While our data imply that early adoption of crowdsourced indoor PurpleAir sensors seems to be 

propelled by wildfire events (Figure 1), gaining more broadly representative insight into the 

distribution of indoor PM conditions might benefit from complementary approaches to 240 

disseminating these sensors, such as targeted deployments in lower-income communities. Overall, 

our results suggest the increasing ubiquity of indoor and outdoor air pollution sensors can aid in 

understanding exposures to episodic pollution sources such as wildfires.  

 

Materials and Methods 245 

Selection of Sensor Correction Models. The performance of low-cost PM2.5 sensors is 

dependent on humidity, temperature, particle size distribution and level of particulate matters (34–

40). To evaluate the performance of the PurpleAir sensors against reference US EPA PM2.5, we 

linked hourly average measurements from all 16 reference monitors in the study domain (for the 

entire study period) with surrounding (within 5 km) outdoor PurpleAir sensors, as detailed in the SI 250 

Appendix (section “Selection of Sensor Correction Models”, Figures S6-S9, Tables S1 and S2). We 

then evaluated the relationship between PM2.5 data from PurpleAir sensors and US EPA monitors 

for multiple calibration schemes in four categories: (i) the manufacturer’s default calibration, (ii) 

previously reported calibration factors for wildfire smoke from the literature (35, 41), (iii) 

parsimonious empirical calibration relationships based on linear regression using this dataset, and 255 

(iv) a machine learning (random forest) based calibration scheme using this dataset. As described 

in the SI Appendix, for the main case (NC 2020), we found that a parsimonious ordinary least-

squares model fit nearly precisely matched the manufacturer’s default calibration (slope = 1.00, 

intercept = 0), and provided good agreement with the EPA measurements for this dataset, with R2 

= 0.79 and normalized root mean square error = 0.63. This parsimonious model performed as well 260 

or better than other published linear calibration models for wildfire smoke, a finding that 

underscores that the specific calibration of the Plantower aerosol photometer varies among settings 

and episodes. For the range of increasingly complex calibration models considering extra 
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parameters for the PurpleAir vs. reference monitor that we developed, we found moderate further 

improvement to sensor precision and accuracy, but with qualitatively unchanged results (see SI 265 

Appendix). Accordingly, we rely on our most parsimonious calibration equation – effectively the 

same as the manufacturer’s default settings – for its more straightforward interpretability in our core 

analyses. 

 

Decomposition of Indoor PM2.5 In addition to infiltration of PM2.5 from outdoors, cooking, cleaning 270 

and resuspension are the main sources of indoor PM2.5 (17, 18, 42). Prior to assessing the amount 

of indoor PM2.5 resulting from infiltration of wildfire smoke, we first identified and removed the events 

(peaks) caused by indoor sources based on the magnitude and duration of indoor PM2.5 peaks. 

Details of the algorithm can be found in the SI Appendix. 

 275 

Other QA and QC 

As described in detailed QA/QC procedures in the SI Appendix, we sought to ensure appropriate 

sensor selection, and to exclude sensors that were likely mislabeled. 

Mass Balance Model. We explored the dynamics of indoor PM2.5 with a well-mixed box model. 

When the indoor and outdoor particles are in steady state, and the indoor source is small, we have: 280 

0 ( )in in
out loss in in

out loss

dC C aPaPC a k C F
dt C a k

= = − + ⇒ = =
+  [1] 

where a is the air exchange rate, P is the penetration factor of particles, kloss is the loss rate constant 

including deposition and indoor filtration. Cin and Cout are the indoor and outdoor concentrations, 

respectively (14, 19). Fin is the infiltration factor (which is close to the infiltration ratio).  

Particle Loss Rate Constant Calculation. After major indoor emission events, the indoor 285 

concentration of PM2.5 will decay following: 

( )in
loss in

dC a k C
dt

= − +  [2] 
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Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (43). We define the total indoor 

particle loss rate constant (λt) as: 

t lossa kλ = +  [3] 290 

Details of the derivation of these equations and the algorithms are provided in the SI Appendix. 

Building information. Property data were obtained by matching coordinates associated with the 

PurpleAir sensors to addresses. The list of addresses was then inputted to Zillow, a publicly 

accessible website to find the publicly available building information such as building age and 

livable area. Zillow uses existing building information and a proprietary algorithm to derive an 295 

estimate of the current (as of December 2020) price of the home or apartment. More details are 

provided in the SI Appendix. 

Data availability Data used in this work can be freely downloaded from the PurpleAir and EPA 

websites (links are provided in the SI Appendix). 
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Figures and Tables 

 

Figure 1. Number of publicly accessible indoor PurpleAir sensors in the United States and 415 

California. Shadings show major wildfire periods (start date to containment date of fires with > 

50,000 total acres burned) in California. Wildfire periods are from Cal Fire website 

(https://www.fire.ca.gov/incidents/). 

 

https://www.fire.ca.gov/incidents/
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 420 

 
Figure 2. Relationship of indoor and outdoor PM2.5 for an example house (A) Scatterplots of PM2.5 

measured at 10-min resolution by an indoor PurpleAir sensor against the nearest outdoor PurpleAir 

measurement, differentiating fire days (red) and non-fire days (blue), illustrative of the levels of 

PM2.5 pollution of buildings in the NC 2020 case. (B) Scatterplots of indoor PM2.5 of outdoor origin 425 

against outdoor PM2.5. (C) Concentration time profile of indoor and outdoor PM2.5 measured by the 

two sensors. (D) Concentration time profile of infiltrated PM2.5 and outdoor PM2.5. The figures 

demonstrate the indoor PM2.5 were clearly affected by the outdoor smoke, and our algorithm can 

effectively remove the indoor peaks due to indoor emissions. 
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Figure 3. Distribution of the indoor/outdoor ratio and the infiltration ratio in the San Francisco Bay 

Area in August and September 2020. (A) Mean Indoor/Outdoor PM2.5 ratio of buildings during fire 435 

days and non-fire days and (B) mean infiltrated PM2.5/Outdoor PM2.5 ratio of buildings during fire 

days and non-fire days. Buildings have lower indoor/outdoor PM2.5 ratio and infiltration ratio on fire-

days. 
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 440 
 
Figure 4. Violin plots of particle infiltration ratios during fire and non-fire periods. N = 1274 buildings, 

2.1×106 sensor-hours for NC 2020, N = 115 buildings, 2.8×105 sensor-hours for SC 2020 and N = 

52 buildings, 4.4×104 sensor-hours for NC 2018. Each violin plot shows the probability density of 

the infiltration ratio and a boxplot of interquartile range with whiskers extended to 1.5 times the 445 

interquartile range. Circles indicate the median, and horizontal lines indicate the mean. 
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Figure 5. Frequency distribution of indoor PM2.5 total loss rate constants (λt) in buildings in the San 

Francisco Bay Area on the fire days and non-fire days in August-September 2020 (decay peaks 450 

were found in N = 1195 buildings). A reduced total PM2.5 loss rate constant on the fire days indicates 

a reduction in ventilation. 
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Table 1. Statistical parameters of the concentration indoor/outdoor ratios for buildings with PurpleAir sensors in August-September 2020 in the San 

Francisco Bay Area (35 µg m-3 daily average PM2.5 concentration measured at the nearest EPA measurement site was used as the threshold for fire 

days and non-fire days). N = 1274. Unhealthy days are defined as days with daily average PM2.5 concentration above 55.4 µg/m3. GM = Geometric 

Mean, GSD = Geometric Standard Deviation. 

 Mean outdoor conc 
µg m-3 

Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratio 

 Mean ± s.d. Mean ± s.d. GM, 
GSD 

γ β Mean ± 
s.d. 

GM, 
GSD 

γ β Mean ± 
s.d. 

GM, 
GSD 

γ β 

Non-fire 
days 

16.0 ± 6.6 7.1±4.5 6.2, 1.7 8.1 1.75 0.94±1.05 0.72, 2.0 1.03 1.24 0.43±0.15 0.40, 1.6 1.03 1.24 

Fire days 85.4 ± 32.0 20.5±15.6 16.1, 2.0 22.8 1.46 0.42±0.49 0.31, 2.1 0.46 1.20 0.26±0.14 0.22, 1.8 0.30 1.94 

Unhealthy 
days 

115.3 ± 38.8 25.1±20.2 18.8, 2.2 27.6 1.37 0.32±0.42 0.23, 2.2 0.34 1.17 0.23±0.14 0.19, 2.0 0.26 1.70 

 

Quantile-quantile plots (SI Appendix, Fig. S4) show the mean concentration of indoor PM2.5 in all the buildings can be satisfactorily described by the 

Weibull distribution. The scale parameter and shape parameter of the Weibull fit are γ and β, respectively. The probability distribution function for x 

is 
1 ( / )( ) ( ) xxf x e

ββ γβ
γ γ

− −= , where x > 0. Parameters of the SC 2020 and NC 2018 cases are not shown here due to the small sample sizes, which 

are less representative of all the buildings in these areas at that time. 
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