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Abstract Artificial intelligence (AI) based self-learning or self-improving material discovery system 

is the holy grail of next-generation material discovery and materials science. Herein, we demonstrate 

how to combine accurate prediction of material performance via quantum chemical calculations and 

Bayesian optimization-based active learning to realize a self-improving discovery system for high-

performance photosensitizers (PS). Through self-improving cycles, such a system can improve the 

model prediction accuracy (best mean average error of 0.09 eV for singlet-triplet spitting) and high-

performance PS search ability, realizing the efficient discovery of PS. From a molecular space with 

more than 7 million molecules, 5950 potential high-performance PSs were discovered.  
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Introduction 

Material discovery is one of the most glorious duties for scientists and in a long history, it highly relies 

on the knowledge and experience of researchers. As such, the progress of material discovery is limited 

to the resource and manpower that are devoted to the field. The rapid development of artificial 

intelligence (AI), computational algorithms and hardware gradually changed the ways of material 

discovery through introducing technologies such as virtual screening, active learning, and neural 

network.1–7 These technologies enable the rapid development of materials design and meanwhile lead 

to a huge demand for experimental data, which is limited by manpower and resource. As such, much 

effort has been devoted to robotics-based experimental data collection to accelerate material discovery 

with the desired property.8-10 If the desired property of a material can be evaluated by computation (e.g. 

quantum chemical calculation), a self-improving material discovery system can be realized. However, 

it is challenging to accurately predict the material property simply by simulation.11-13 

Photosensitizers (PSs) are molecules that can harvest light energy and generate singlet oxygen, reactive 

nitrogen species, and radicals for different applications.14–17 Benefiting from the high reactivity of the 

photoproducts, PSs are highly desirable in many applications, including photodynamic therapy (PDT), 

antibacterial treatment, photocatalytic water treatment, and synthetic chemistry.18–22 Owing to the 

limited PS structural library, it is difficult to find an optimized PS for a particular application, e.g., a 

PS with high efficiency and near-infrared (NIR) absorption for PDT, or high photostability and good 

solubility for water treatment. Therefore, it is of both research and application interest to discover new 

PS structures. 14,23  

Recently, based on the understanding of the role of intersystem crossing (ISC) in singlet oxygen 

generation, our lab proposed a new design principle for PS by tuning the singlet-triplet energy gap 
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(ΔEST).24 Such a design strategy enables the precise design of PS with their efficiency optimized by 

molecular engineering on ΔEST. As a result, series of high-efficiency PSs with molecular structures 

different from typical PSs have emerged.23 Since ΔEST can be precisely calculated by Time-dependent 

Density Functional Theory (TD-DFT) method, pre-screening of promising PS candidates from ΔEST 

calculation candidates by quantum calculations before synthesis is becoming an efficient approach to 

PS discovery. However, the PS discovery is still limited to the time-consuming DFT and TD-DFT 

calculations and the construction of molecular candidates, which is experience-dependent, especially 

when multiple properties like both small ΔEST and particular absorption and emission wavelengths are 

required. 16,25 In this regard, the recent algorithm advancements in machine learning (ML) have shown 

that with sufficient training data and proper methods, instant prediction of molecular energy levels or 

molecular orbital information can be achieved with great accuracy.26,27 As for PS, an accurate enough 

prediction system for energy levels will greatly reduce the time required for molecular screening. 

Moreover, active learning methods like Bayesian optimization can suggest molecules with a set goal, 

for example, in search for molecules with small ΔEST. Such a recommendation process, together with 

DFT calculations, may be able to form a PS discovery loop system with self-improving capability for 

high throughput PS search and high accuracy of property prediction.  

Herein, we describe a self-improving PS discovery system that is based on the combination of accurate 

prediction of PS properties via DFT calculation and Bayesian optimization-based active learning. First, 

a single figure of merit for high-efficiency PS design is identified from the Jablonski diagram-based 

understanding of singlet oxygen generation and the derivation of equations from the Fermi Golden 

Rule. Our design principles for the molecular generation algorithm and the task for first-principles 

calculations will then be based on this figure of merit. Next, with the molecular generation algorithm, 
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12015 randomly selected molecules were constructed and labeled with results from TD-DFT 

calculations. These structures form the initial dataset and are used for model training through a 

molecular graph-based forward prediction model. Then, a Bayesian optimization-based active learning 

method is implemented to form a loop with DFT calculation to improve the model’s performance in 

our target property region. This will enable the framework to efficiently adapt to new chemical design 

space when there is a need to change the prior chemical knowledge. During the self-improving loops, 

the model prediction accuracy and PS search ability have been improved. Finally, choosing from the 

suggested promising candidates from our system, four new PSs were successfully synthesized with 

desired properties and performances comparable with or better than commercially available PSs.   

Results 

 

Figure 1. Linking Jablonski diagram to machine learning. A self-improving PS discovery system 

with quantum mechanism-based understanding and efficient molecular design rule for molecular 

generation algorithm, accurate calculation of figure of merit (ΔEST), and machine learning.  
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Linking Jablonski Diagram to Machine Learning  

As shown in the Jablonski diagram (Figure 1), the key process for singlet oxygen generation is 

intersystem crossing (ISC) from the singlet state to the triplet state. Thus, the design of high-

performance PS is basically the design of PS with a high ISC rate (kisc). According to the Fermi Golden 

Rule, the rate constant for the transition from one molecular state to another is shown in Eq 1, where 

in the ISC process, the initial state is S1 and the end state is T1. After pure spin Born-Oppenheimer 

(BO) approximation, the kisc can be expressed as Eq 2. Obviously, the ISC rate is inversely related to 

the S1-T1 gap. Therefore, reducing ΔEST is one of the key requirements to high efficiency in PSs, and 

this is also substantiated by the design of recently reported PSs.23-24,28-29 According to these recent 

works, a molecule shows remarkable PS efficiency when its ΔEST is lower than 0.3 eV. With this design 

principle, we developed a molecular design recipe of donor-acceptor (DA) and donor-acceptor-donor 

(DAD), which are supposed to have relatively low ΔEST as compared with non-DA-based molecules. 

This is because the energy difference between S1 and T1 is attributed to the valence electrons of S1 

with opposite spins, which causes electron repulsion to increase the total energy of the molecule. As 

such, reducing ΔEST is to mitigate the electron repulsion in the S1 state. As electron repulsion is 

inversely correlated to the distance between valence electrons, separating the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) distribution is the 

key to effectively reduce ΔEST. Thus, our candidate libraries obey the following combination recipe: 

donor-pi-acceptor (DA) or donor-pi-acceptor-pi-donor (DAD). For the calculation of ΔEST, the 

b3lyp/6-31g(d) hybrid functional and basis set were used after a benchmark comparison with other 

methods, the accuracy of the considered method is within 0.1 eV in most DA and DAD systems 

according to literature. As such, ΔEST calculation by TD-DFT can act as an evaluation tool in our 
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system, and molecules with small calculated ΔEST (< 0.2 eV) can be considered as good candidates. 

On the other hand, the HOMO-LUMO (H-L) gap of generated molecules can be used to evaluate their 

optical ranges and using the same DFT method, H-L gap values can be obtained with good accuracy 

as well. With such a first principles calculation-based evaluation tool, a self-improving loop with 

simultaneous improvement in molecular search ability and prediction accuracy in a particular 

molecular space (i.e. DA and DAD) can be formed with the assistance of neural networks and active 

learning. 
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Molecular Space Generation and Initial Prediction Model 

 

Figure 2. Molecular Space Generation, Graph Convolutional Neural Network (GCNN), and 

Initial Model Prediction Performance. (a) Schematic overview of molecular space generation 

algorithm for DA and DAD form PS and molecular graph convolutional neural network used for model 

training, (b)  MAE and distribution of ΔEST values predicted by the initial model against calculations 

by TD-DFT for DA form PSs and (c) DAD form PSs  
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A general molecular design space can contain more than 1060 different molecules with different 

structures that are infeasible to screen with.30 Using the expert design principles above and our 

developed algorithm for molecular generation31 (discussed in detail in the Methods section), we could 

largely reduce the chemical space to the scale of 106.  After constructing the confined expert design 

space that is feasible to be screened with a fast deep learning model, the initial training databases were 

then created via the quantum calculations to label their ΔEST values and H-L gaps, respectively. To 

ensure broad coverage and diversity of the initial databases, the molecules labeled by quantum 

calculations were randomly picked from the corresponding molecule structural library. Next, a 

molecular graph neural network32 was trained on the initial database to form an initial prediction model 

and this initial model was used as the navigation model in the first cycle of the active learning loop 

(Figure 2 and Figure S1). The hyperparameters used for the models were derived via hyperparameter 

optimization with a Gaussian process (Details in Table S1). An abstract structure of the molecular 

graph neural network is shown in Figure 2a, whereby a two-dimensional representation of a molecule 

is treated as the input. Useful information such as atomic number, element group, etc. was encoded in 

this representation. Several graph convolutional layers were then used to process the input into a fixed-

length representative molecular fingerprint, which was further processed with several fully connected 

layers to obtain the final property prediction. Since graphs are the most natural representations of 

organic molecules, the graph-based methods have state-of-the-art performances and thus GCNN is 

chosen in our study. Some comparison studies with traditional molecular fingerprint methods are 

shown in Supplementary Note, Figure S3.  

 

The ΔEST prediction performances for both the initial DA predictive model and DAD predictive model 
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are shown in Figure 3(b-c). These results are based on the models' performances on a fixed test set 

(770 for DA and 612 for DAD) that is independent of the training data. From both a single statistic 

indicator point of view (mean average error (MAE)) and based on the level of agreement between the 

distribution of ML predicted values and ΔEST computed by quantum calculations, the prediction 

performance of ΔEST is very close to the quantum calculated values.33-35 In addition, the DA model 

performs much better than the DAD model. This could be due to two major reasons. First, the whole 

design space of DAD form PSs is much larger (about 70 times) than that of DA form PSs, and therefore, 

the labeled data for DAD is much sparser than the ones for DA. Second, since the DAD molecules are 

larger than DA molecules in terms of the number of atoms and molecular weight, this could make the 

information in molecules harder to be encoded, leading to more difficulties in learning their 

quantitative structure-property relationships.  

The ΔEST prediction performances for both the initial DA predictive model and DAD predictive model 

are shown in Figure 3(b-c). These results are based on the models' performances on a fixed test set 

(770 for DA and 612 for DAD) that is independent of the training data. From both a single statistic 

indicator point of view, using mean average error (MAE), and the level of agreement between the 

distribution of ML predicted values and quantum calculated values point of view, the prediction 

performance of ΔEST is very close to the quantum calculated values.33-35 In addition, the DA model 

performs much better than the DAD model. This could be due to two major reasons. First, the whole 

design space of DAD form PSs is much larger (about 70 times) than DA form PSs, and therefore, the 

labeled data for DAD is much sparser than the ones for DA. Second, since the DAD molecules are 

larger than DA molecules in terms of the number of atoms and molecular weight, this could make the 

information in molecules harder to be encoded, leading to more difficulties in learning their 
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quantitative structure-property relationships.  

Bayesian Optimization and Quantum Calculation Based Self-Improving Cycle 
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Figure 3. Bayesian Optimization and Quantum Calculation Based Self-Improving Cycle. (a) 

Schematic overview of Bayesian optimization-based active learning for both DA and DAD form PSs, 

(b-c) Performance of DA and DAD models with the progression of active learning based on the 

percentage of PSs found with ΔEST < 0.2 eV in each active learning cycle and mean model performance 

on a fixed test set; * There is a change in molecular design space from cycle 3 with the addition of new 

substructures, (d) Visualization of the DA molecular space through active learning progression using 

t-SNE. 

 

As illustrated in Figure 3a, the Bayesian optimization (BO) score, or expected improvement (EI), was 

calculated by utilizing the molecular graph-based prediction model as the surrogate navigation model. 

In each cycle of active learning, the surrogate navigation models were trained on the database provided 

from the previous cycle (i.e., for the first cycle of the active learning cycle, the training database is the 

initial database; then, the database is updated with newly suggested structures and used as the training 

database for the second cycle). By applying dropout methods, 50 different versions of molecular graph-

based prediction models were provided from the same training database during each round. These 

navigation models were used to provide average predicted values of the ΔEST of all potential molecules 

that were unlabeled in the confined design spaces with labeled regions (i.e., the design space that is 

updated after adding labeled data in our database). The disagreement (i.e., standard deviation) between 

these navigation models was treated as the uncertainty part of the BO score calculation. The mean of 

all predicted ΔEST values was treated as the mean part of the BO score calculation. By considering the 

exploration-exploitation trade-off, whereby PSs with the highest EI (i.e. with both low predicted ΔEST 

and high prediction uncertainty), were recommended in each cycle. Adding such molecules with a high 
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EI score back to the training data will improve the model’s performance in the region containing 

molecules with desired properties the most. The suggested molecules with the highest EI scores were 

then labeled by quantum calculations to update the training database for the next cycle.  

Figures 3(b-c) show the change of MAE for the surrogate navigation models and the percentage of 

PSs with low ΔEST with the increasing cycles of active learning. Here, the navigation model 

performance was based on the model trained on the dataset updated after each cycle, and the percentage 

of PSs with low ΔEST were calculated out of the number of PSs selected in each cycle (i.e. for the 

initial dataset it was out of 7101 for DA and 4914 for DAD; for cycle 1, it was out of the number of 

PSs recommended to be added to the training set for the next cycle, with details in Table S2). By 

efficiently sampling from the design space with the active learning strategy, the MAEs for the models 

used for both DA and DAD generally decrease with the number of cycles. It is worthy to note that 

there were new PSs based on a new design space of donor, acceptor, and bridge substructures added 

from cycle 3 of active learning for synthetic accessibility reasons, and thus there was a decrease in 

model accuracy based on the test set MAE, for DA model especially. This indicates that even though 

the design space is changing, by efficiently sampling new data from the updated design space, the 

model could effectively adapt to the new space.  

For DA, as the initial model was already quite accurate (with a low average MAE of 0.09455 in the 

prediction of ΔEST), the number of PSs recommended in cycles 1 and 2 meeting the low ΔEST criteria 

were high (more than 90% of the recommended set). Therefore, the model would focus more on 

exploitation, compared to the exploration of the whole design space, and award a higher EI score to 

PSs with lower ΔEST, while at the same time be able to predict these PSs with high accuracy in the 

recommendations. From cycle 3 to 4, there was a decrease in the percentage of low ΔEST PSs 
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recommended as there was a drastic change in the design space screened by the model. About 86% of 

the changed molecular space was made up of new DA PSs combined from new recipe donors, 

acceptors, and/or bridge substructures. Based on the balance between exploitation and exploration, the 

model would prioritize the exploration of the new design space in the recommendation of PSs with 

higher uncertainty instead. Nevertheless, towards the end of active learning, the improvement at cycle 

5 is apparent with 80.8% of PSs meeting the low ΔEST criteria.      

For DAD, on the other hand, the initial model’s accuracy was low due to the vast molecular space of 

more than 7 million PSs while the model was only trained with 4914 DAD and 7691 DA PSs. Despite 

a larger training set with DA PSs included, the DAD structures were larger than those in DA form, and 

naturally, the model accuracy would not be as ideal. Thus, the model was focused more on the 

exploration of the whole design space and recommending DAD PSs with higher uncertainty instead 

of recommending PSs with low ΔEST accurately (for 4–5% of the recommendations meeting the criteria 

for cycles 1 to 3). With the changing design space from cycle 3 due to the addition of new donor, 

acceptor, and bridge substructures, fluctuating performances from cycles 3 to 7 are likely due to the 

changing trade-off between exploration and exploitation of the design space by the model. After 

several more cycles, there is a general improvement trend as seen from the decreasing average MAE 

and increasing percentage of PSs with low ΔEST. By cycle 10, the percentage of PSs in the 

recommendations with low ΔEST has reached 68.3% and the MAE has decreased by 13% from the 

initial model. This signifies that our active learning strategy is efficient in finding the desired low ΔEST 

molecules with higher accuracy, despite adding only a smaller proportion of new training data.  

Finally, through t-distributed stochastic neighbor embedding (t-SNE) (Details in Supplementary Note, 

Figure S2), a visualization of the whole active learning process was chosen to investigate further into 
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our self-improving system. The initial random training data spread evenly over the entire design space 

(Figure 4d and Figure S2), which ensured our model's generalizability for the whole design space. And 

from cycles 1 to 5 (for DA model in Figure 4d), it was clear that most of the suggested molecules 

formed several significant clusters for each round, and only a few points were explored far away from 

others. This phenomenon showed a good trade-off between exploitation in suggesting low ΔEST 

molecules to learn better over them and exploration in gaining more understandings of regions with 

considerable uncertainty. In addition, the proposed molecules were also spread over the whole design 

space across all the rounds of active learning. This indicated our active learning strategy could find 

new molecular structures with low ΔEST that were dissimilar with each other and ensured our model 

could predict well over several different low ΔEST molecular regions. The diversity in new structures 

was especially preferred in our new PSs structure discovery task.  

Discovery of High-Performance PSs 
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Figure 4. Discovery of High-Performance PSs. (a-c) S-T gap versus the molecular weight of DA and 

DAD suggested in the final active learning cycle and for the selected 4 PSs. (d) Molecular structures 
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of 1-4, Ce6, MB, and RB. (e) UV-vis absorption spectra of 1-4 and (f) Photoluminescence spectra of 

1,3 and 4 at 5×10-6 M in DMSO/water mixture (v/v = 1/99). (h)-(i) The degradation rates, defined by 

ln (a0/a) and ln (a0/a)/APS of by ABDA 1-4, Ce6, MB and RB; A0 and A are the absorbance of ABDA 

in the presence of the PSs at 399 nm before and after irradiation, respectively. a0 and a is the initial and 

real-time absorbance at 399 nm. APS represents the light absorbed by the PSs, which is determined by 

the integration of areas under the absorption bands in the wavelength range of 400–800 nm. (j) 

Visualization of the selected 4 PSs among the DA and DAD molecular space by t-SNE. 

 

After computation, the search space was reduced to human tractable decision batches from the final 

cycle of suggestions by active learning, and the candidates were then assessed by PS experts according 

to their predicted property, H-L gapgap, structural novelty, and synthetic accessibility. Four candidates 

with H-L gap ranging from 1.33 eV to 2.51 eV (red to blue) were synthesized and tested experimentally 

to confirm the discovery ability of our system (Figure 4c and 4d). The selected molecules contain 

phenothiazine, acridinone, phenoxazine and triphenylamine donors combined with 2,2'-(anthracene-

9,10-diylidene)dimalononitrile, naphtho[2,3-c][1,2,5]thiadiazole, anthracene-9,10-dione and 

dibenzo[f,h]quinoxaline-2,3-dicarbonitrile  acceptors. All these structures have rarely been reported 

from previous PS materials or even DA-based materials. We first characterized the optical properties 

of the four compounds by measuring their absorption and emission spectra in DMSO/water mixtures 

(Figure 4e and 4f). In general, the prediction from our system agreed with experiments within the 

known accuracy of TD-DFT calculation and the noise in experimental measurements. As expected, 

compounds 1-4 showed an absorption band that lies in the blue, green, yellow, and red regions, 

respectively. We next tested the PS efficiency of 1-4 by using a light-induced 9,10-anthracenediyl-
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bis(methylene)dimalonic acid (ABDA) decomposition method (Figure S6, S7, Figure 4h, and 4i). In 

such a method, the faster ABDA absorption decrease represents the higher efficiency of singlet oxygen 

generation. Three commonly used commercial PSs, Chlorin e6 (Ce6), Methylene Blue (MB), and Rose 

Bengal (RB), were tested in the same conditions for comparison. Impressively, all four compounds 

showed a comparable ABDA degradation rate with three commercially available PSs. To exclude the 

influence of light absorption ability difference, we did another comparison by dividing the degradation 

rate with the integrated area of different compounds in the visible range (Figure 4i). Similarly, all 

compounds showed comparable efficiency with or higher efficiency than the three commercially 

available PSs. Compound 2 showed relatively lower PS efficiency, which should be attributed to its 

high planar structure and self-quenching effect in aggregate state. It is important to note that compound 

3 showed the highest degradation rate, which is 5-fold, 3-fold, and 2.5-fold more effective than those 

of Ce6, MB, and RB, respectively. These results not only verified the search ability of our system in 

new molecular space (Figure 4j) but also proved the potential of our system in next-generation 

commercial PS discovery within a targeted optical range.  

 

In summary, a self-improving PS discovery system with powerful molecular search ability and high 

accuracy of molecular property prediction was proposed in this study. To the best of our knowledge, 

this is the first time that self-learning or self-improving molecular material discovery has been realized. 

The idea to combine a calculable evaluation figure (ΔEST) and active learning to form a self-improving 

loop could inspire material discovery in a wide range of fields. For the PS discovery system, the key 

to success lies in a sufficiently deep fundamental understanding of PS property. The quantum 

mechanism-based understanding of PS property not only enables the evaluation of PS efficiency by 
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simulation but also helps to construct a very promising molecular library for PS search. In total, a large 

database of 13,804 PSs have been labeled throughout this work and after self-improving, an error of 

0.09 in MAE of ΔEST was achieved, a total of 2227 PSs with low ΔEST were labeled, and 3723 PSs 

covering the full visible range with predicted low ΔEST have been recommended. This makes our PS 

discovery system robust and useful, and the recommended PSs may find wide applications in different 

fields, such as photodynamic therapy, bacteria ablation, and photocatalytic water treatment.   

 

Methods 

Molecular Space Generation Algorithm 

Given a list of donor, acceptor, and bridge molecular substructures, to generate the entire molecular 

space for both DA and DAD PSs, a unique generation algorithm following fixed bonding positions 

was used. Molecular structures were converted from simplified molecular-input line-entry system 

(SMILES) form to RDKIT31 MOL object form for editing. For donor structures, they were given a 

single point of connection. For acceptor structures, some have more than one favorable point of 

connection. To create DA form PSs (Donor-Bridge-Acceptor), a bridge was used to connect a given 

donor at a specific given position with a given acceptor at one of its positions. To create DAD form 

PSs (Donor-Bridge-Acceptor-Bridge-Donor), an identical bridge structure was used to connect each 

donor with a central acceptor. In our database, not all acceptors have more than one connecting position. 

If both donor structures are the same, a symmetric DAD will be formed. If the donor structures are 

different, an asymmetric DAD will be formed. In our database, the naming convention is as follows: 

DA, DAD, and DxAD for DA, symmetric DAD, and asymmetric DAD PSs respectively. This process 

was repeated through all possible permutations according to our starting substructure list until all DA 
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and DAD PSs were formed. Chemical validity checks were done with RDKIT31 and chemically invalid 

structures were removed from our database. After the structures were combined, a script was used to 

convert all SMILES into Gaussian input files (.gjf) for subsequent quantum calculations with 

Gaussian09. 

Density Functional Theory and Time-Dependent Density Functional Theory Calculations 

The ground states of all molecules were fully optimized by the hybrid B3LYP, in combination with 6-

31G(d) basis set. The excited-state characteristics were calculated by the time-dependent density 

functional theory (TD-DFT) using optimized ground state geometries. TD-DFT in combination with 

the B3LYP hybrid functional method and the 6-31G (d) basis set has been shown to provide accurate 

energies for the excited-state of the DA molecular system with less than 0.15 eV error. In this work, 

Gaussian09 was used for all quantum calculation tasks.  

Molecular Graph Convolutional Neural Network 

Every molecule can be defined as an undirected graph 𝒢𝒢 = (𝑉𝑉,𝐸𝐸)  where nodes 𝑉𝑉  and edges 𝐸𝐸 

represent atoms in the molecules and strong bonds (i.e., covalent bonds and ionic bonds) between 

atoms, respectively. Each node 𝑉𝑉 contains the property feature 𝑥𝑥𝑖𝑖 of the atom it represents and each 

edge 𝐸𝐸 represents the connectivity between the nodes. The topology of a molecular graph is contained 

in the adjacency matrix of itself. During each layer of the molecular graph convolutional neural 

network, a hidden feature ℎ𝑖𝑖 at a particular node will be updated with the information (hidden features, 

atom features) from the neighboring nodes and itself (the initial hidden features are initialized with 

zeros). During this information exchanging process, a graph convolutional weight parameter matrix 

will be learned from the data. This learned matrix can ensure the information is exchanged in the best 

way to encode the most representative features of the molecule. After several times of information 
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exchange (depending on the number of layers of graph neural network), the processed hidden features 

at each node will be gathered by a graph gathering layer (can be a sum or average operation) to form 

the final molecular vector (i.e., the molecular fingerprint). Finally, this molecular fingerprint will be 

passed through several fully connected layers (i.e., dense layers) to produce the final predictions of 

both the Δ𝐸𝐸𝑆𝑆𝑆𝑆  value and H-L gap value of the molecule. All weight parameters in the graph 

convolutional layers and fully connected layers were trained and updated by gradient descent methods.  

Bayesian Optimization Method in Active Learning 

For Bayesian Optimization (BO), an expected improvement (EI) acquisition function that considers 

the trade-off between global search and local optimization, or in other words, exploration against 

exploitation, was used7. The EI function based on exploration-exploitation trade-off 36 was adapted to 

seek a minimized value of Δ𝐸𝐸𝑆𝑆𝑆𝑆 instead of a maximum and it used a trade-off value 𝜉𝜉 = 0.01. In our 

case, each prediction's mean and standard deviation was derived from 50 navigation models with 

different dropouts. The EI values were then ranked, and the leading 120 corresponding structures with 

the highest EI values were selected as the next points for labeling via DFT and TD-DFT before the 

next active learning cycle was repeated. It is noted that few molecules in the 120 set with invalid Δ𝐸𝐸𝑆𝑆𝑆𝑆 

values (i.e. 0) were removed.  In this work, the surrogate model was based on the graph convolutional 

neural network built with the DeepChem package (https://github.com/deepchem/deepchem)37. The 

model uncertainty for every prediction was calculated with the built-in function which was based on 

50 different navigation models with different dropout rates. After about 120 structures were 

recommended for labeling by DFT and TD-DFT, they were added back into the training set for the 

next cycle of model training before re-screening of the remaining unlabeled molecular space before 

another set of structures were recommended by the highest EI again. To evaluate the model 

https://github.com/deepchem/deepchem
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performances, the model in every cycle was validated on a fixed test set of 770 DA and 612 DAD 

structures, respectively. The fixed test set includes random structures from initial and all active learning 

cycles. An average MAE was obtained by running 5 repetitions of model training on the same training 

set for each cycle.  
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General 

All starting materials are commercially available and were used as supplied unless otherwise indicated. 

All experiments were conducted in air unless otherwise noted. 2-bromoanthracene-9,10-dione, 1,4-

dibromo-2,3-dihydronaphthalene-2,3-diamine, 2-chlorobenzoic acid, 3,6-dibromophenanthrene-9,10-

dione, and other chemicals and reagents for the synthesis were purchased from Sigma-Aldrich and Tee 

Hai Chem Ltd. and used as received without any further purification. Compounds 1-12 and related 

intermediates were synthesized and characterized according to the methods described in the supporting 

information. 

NMR spectra were recorded on a Bruker ARX 400 NMR spectrometer. Chemical shifts were recorded 

in parts per million referenced according to residual solvent (CDCl3 = 7.26 ppm) in 1H NMR and 

(CDCl3 = 77.0 ppm) in 13C NMR. Mass spectra were reported on the AmaZon X LC-MS for ESI. Data 

were measured using omega and phi scans of 0.5° per frame. UV-vis absorption spectra were obtained 

on a Shimadzu Model UV-1700 spectrometer. Photoluminescence (PL) spectra were measured on a 

Perkin-Elmer LS 55 spectrofluorometer. All UV and PL spectra were collected at 24 ± 1 °C. 

Hyperparameter Optimization with Gaussian Process  

Hyperparameters are external configurations of a model that are used in the training process to 

estimate the model parameters and it is necessary to tune the hyperparameters finely to obtain an 

accurate prediction model. Hyperparameters for both initial DA and DAD models were optimized 

with a Bayesian optimization-based gaussian search process. The optimization process was done 

with scikit-optimize (https://scikit-optimize.github.io/#skopt.gp_minimize) to minimize MAE till 50 

https://scikit-optimize.github.io/#skopt.gp_minimize
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trials have been done. In each cycle, a fixed training (80%) and test set (20%) were used for DA and 

DAD models. The following hyperparameters were tuned: 

- Graph convolutional layers: A list of graph convolutional layers with each value representing 

the number of nodes in each layer. 

- Dense layers: A list of dense fully connected layers with each value representing the number 

of nodes in each layer.  

- Dropout: Probability (between 0 and 1) that neurons in the hidden layers are ignored; dropout 

is added to prevent overfitting.  

- Learning rate: The multiplier for gradient descent and determines how fast the parameter 

changes.  

- Epochs: Number of complete passes through the training dataset by the model  

- Batch size: Number of training samples used in each epoch.  

It is noted that it is impossible to determine the best hyperparameters for a specific problem. Thus, 

the table below shows the final hyperparameters that are used in all models in the initial model 

training and across all active learning cycles, in which they are considered to produce accurate 

enough model predictions.  
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Table S1. Hyperparameters for both DA and DAD models 

 DA Model DAD Model 

Structures in training set DA DA and DAD 

Graph convolutional 

layers 

295, 295, 295, 295, 295, 

295 

512, 512, 512, 512 

Dense layers 382, 382, 382, 382 128, 128, 128 

Dropout 0.00874 0.01 

Learning rate 0.0001 0.001 

Batch size 10 10 

 

Detailed Active Learning Data Progression Breakdown 

The specific breakdown in labeled data used for model training in each cycle is summarized below. 
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Table S2. Breakdown of the number of labeled structures used for model training in each 
active learning cycle before a screening of the unlabeled space 

Cycle 

(N) 

DA Model DAD Model 

DA DA DAD 

Training  Added Suggestions 
for Cycle N+1 

Training Training Added Suggestions 
for Cycle N+1 

0 
(Initial) 

7101  

7691 

4914  

1 7101 119 4914 119 

2 7220 112 5033 120 

3 * 7332 120 5153 120 

4 7452 119 5273 120 

5 7571 120 5393 120 

6 # 7691  5513 120 

7   5633 120 

8   5753 120 

9   5873 120 

10   5993 120 

11 #   6113  

Total 7691 590 6113 1199 

* It is noted that initially, the search space is formed by the combinations of 96 donors, 98 acceptors, 
and 14 bridges (including single bond). From cycle 3 onwards, 13 new donors, 5 new acceptors, and 
9 new bridges were added to the substructure list and from cycle 5 onwards, 3 new acceptors were 
added.  
# In these cycles, the DA model is trained on 7691 PSs and the DAD model is trained on 13804 PSs 
before these final models are used for the predictions on the remaining unlabeled dataset for final 
recommendations.  
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To evaluate the model performances, the model in every cycle was validated on a fixed test set of 770 

DA and 612 DAD structures, respectively. The fixed test set includes random structures from initial 

and all active learning cycles. A mean MAE was obtained by running 5 repetitions of model training 

on the same training set for each cycle.  

 

Prediction of HOMO LUMO Energy Gap  

The prediction models for both DA and DAD form PSs are trained to predict the H-L gap as well. 

Figure S1 shows the initial prediction performance for H-L gap. Just like the prediction of ΔEST (Figure 

2b-c), the predicted values of H-L gap are very close to the quantum calculated values. The H-L gap 

prediction performance for the DA model is also better than that of the DAD model, due to 

significantly larger design space for DAD and larger molecules for DAD compared to DA PSs.  

 

Figure S1. Prediction of H-L gap by initial models (a) MAE and distribution of H-L gap predicted 

by the initial model against calculation by TD-DFT for DA form PSs and (b) DAD form PSs. 

 

t-Distributed Stochastic Neighbor Embedding from Neural Fingerprints 
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t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised machine learning algorithm. 

It is often used for clustering and visualization of high-dimensional data such as the molecular 

fingerprints in this study. The algorithm starts by calculating the conditional probability of similarity 

between high-dimensional data points (i.e., the high-dimensional molecular fingerprints) and also 

between their low-dimensional counterparts (i.e., two-dimensional vectors that can be visualized) by 

the Euclidean distances of data points. A cost function, which is defined as a single Kullback-Leibler 

(KL) divergence between joint probability distributions in the high-dimensional space and the low-

dimensional space is then minimized. By minimizing the cost function, t-SNE can ensure the points 

that are similar in high-dimensional space are close to each other in the low-dimensional space. KL 

divergence measures the distance between two random distributions. When two random distributions 

are the same, their KL divergence is equal to zero. When the difference between two random 

distributions increases, their KL divergence also increases. 

To visualize the molecular space of the DA and DAD datasets through active learning progression, the 

neural fingerprint of every structure was predicted by the final DA model from the last round of active 

learning. The predicted neural fingerprints were fitted in a t-SNE model with 2 components, perplexity 

of 50, a learning rate of 200 and optimized for 1000 iterations to reduce KL divergence. The final 2-

dimensional embedded features were plotted for structures in the unlabeled space, initial training set, 

predictions by each active learning cycle, and the final recommended 4 structures. In this work, neural 

fingerprints were predicted with help of the DeepChem package 

(https://github.com/deepchem/deepchem), and t-SNE model was done with sklearn (https://scikit-

learn.org/stable/modules/generated/sklearn.manifold.TSNE.html)  

https://github.com/deepchem/deepchem
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure S2. t-SNE for DAD Sample Space and with Active Learning Progression 

For the visualizations of DA space (in Figure 3d), the final DA model from the last active learning 

cycle was used to predict the neural fingerprints of the full unlabeled DA molecular space, initial 7101 

random DA structures used for initial model training, and structures added in every active learning 

cycle from cycle 1 to cycle 5. For the visualizations of DAD space (in Figure S2, the final DAD model 

from the last active learning cycle was used to predict the neural fingerprints of a random subset of the 

initial unlabeled space (> 110000 DAD), initial 4914 random DAD structures used for initial model 

training, and structures added in every active learning cycle from cycle 1 to cycle 7. For the 

visualizations of the combined DA and DAD space along with the 4 recommended structures (in 

Figure 4d), the final DA model from the last active learning cycle was used to predict the neural 

fingerprints of the initial 7101 DA and 4914 DAD structures, and the final 4 selected DA and DAD 

structures.  

Comparing Molecular Fingerprint Methods 
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Figure S3. Comparison of model performances on initial dataset between graph-based deep learning 

method and traditional molecular fingerprints methods. As shown, for both DA and DAD form PSs, 

the graph-based deep learning method has shown better performance than traditional molecular 

fingerprints methods. This result is aligned with signature references as graphs are the most suitable 

representations of molecules and self-learned features are usually more efficient.  

 

 

 

 

Daylight  

Daylight fingerprint captures the patterns of molecular features such as atoms, the nearest neighbors 

of atoms, and so on. Then the information will be hashed into bit strings and all bit strings will be 

linearly combined to form a final binary fingerprint.1 

Atom Pair 
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The atom pair fingerprint is defined in terms of the atomic environments of, and shortest path 

separations between, all pairs of atoms in the topological representation of a chemical structure.2 

Topological Torsion  

Topological torsion consists of four consecutively bonded non-hydrogen atoms along with the 

number of non-hydrogen branches. It is essentially a topological analog of the basic conformational 

element, the torsion angle.3 

 

 

 

 

Figure S4. The absorption peak areas of 1-4 (a-d). 
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Figure S5. The absorption peak areas of Ce6, MB, and RB (a-c). 
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Figure S6. Photo-degradation of ABDA with 1-4 (a-d) in DMSO/water (v/v = 1/99) in five minutes, 

concentration of PSs: 5×10−6 M. 
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Figure S7. Photo-degradation of ABDA with Ce6, MB, and RB (a-c) in DMSO/water (v/v = 1/99) in 

five minutes, concentration of PSs: 5×10−6 M. 
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Synthesis of 1-4. 
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Scheme S1. The synthetic route towards compound 1-4. 
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Synthesis of I1. A 100 mL round-bottom flask equipped with a magnetic stir bar was charged with 2-

bromoanthracene-9,10-dione (375 mg, 1.29 mmol), phenothiazine (283 mg, 1.42 mmol), cesium 

carbonate (535 mg, 3.87 mmol) and toluene (15 mL). The solution was stirred at room temperature. 

After 10 min, a solution of palladium(II) acetate (8.67 mg, 0.04 mmol) and tri-tert-butyl phosphine (29 

mg, 0.14 mmol) in toluene (5 mL) was added dropwise over 5 min. The reaction mixture was stirred 

and heated to 120 °C under reflux for 24 h. After cooling to room temperature, the resulting mixture 

was treated with water (40 mL) and extracted with chloroform (20 mL × 3). The organic phase was 

separated, washed twice with brine, dried over anhydrous MgSO4. Then the solution was concentrated 

under reduced pressure, and the residue was purified by column chromatography on silica gel 

(hexane/chloroform = 10/1) to afford I1 (355 mg, 70% yield) as a light yellow solid. 1H NMR (400 

MHz, CDCl3) δ 8.29 (d, J = 7.5 Hz, 1H), 8.23 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.90 (d, J 

= 2.7 Hz, 1H), 7.82 – 7.66 (m, 2H), 7.54 – 7.46 (m, 4H), 7.45 – 7.35 (m, 3H), 7.28 (t, J = 8.3 Hz, 2H). 
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Synthesis of 1. To the solution of compound I1 (40.5 mg, 0.10 mmol) and malononitrile (39.6 mg, 

0.60 mmol) in dichloromethane (10 mL) was added titanium tetrachloride (0.08 mL, 0.7 mmol) slowly 

at 0 oC. After the reaction mixture was stirred for 30 min, pyridine (0.06 mL, 0.7 mmol) was injected 

and stirred for another 30 min. Then the mixture was heated at 45 oC for 48 h. After the mixture was 

cooled down to room temperature, the reaction was quenched by water (30 mL) and the mixture was 

extracted with dichloromethane. The collected organic layer was washed by brine, dried over Na2SO4 

and concentrated under reduced pressure. The desired residue was purified by column chromatography 
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using n-hexane/dichloromethane (1/5, v/v) as eluent to give the desired product 1 as a dark red solid 

(32 mg, 63.5 % yield).1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 7.3 Hz, 1H), 8.02 (d, J = 7.3 Hz, 1H), 

7.94 (d, J = 9.0 Hz, 1H), 7.63 – 7.54 (m, 5H), 7.48 – 7.40 (m, 4H), 7.26 (t, J = 7.0 Hz, 2H), 7.16 (dd, 

J = 9.0, 2.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 161.15, 159.48, 148.49, 139.40, 135.23, 132.35, 

132.11, 131.81, 130.87, 130.01, 129.59, 129.32, 128.07, 127.94, 127.41, 127.27, 119.76, 115.45, 

114.15, 113.92, 113.18, 111.34, 83.10, 79.03. 
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Synthesis of I2. In a 100 mL flask,1,4-dibromo-2,3-diaminonaphthalene (1.8 g, 5.5 mmol) was 

dissolved in 23 mL of anhydrous pyridine and then 1.31 mL (16.1 mmol) of thionylaniline and 7.0 mL 

(55 mmol) of chlorotrimethylsilane are added. The reaction was heated at 80 °C overnight with stirring. 

After the reaction cooled to room temperature, 20 mL of ethanol was added to the mixture. The 

precipitate was filtered, washed with ethanol, and then recrystallized from a mixture of ethanol and 

chloroform to give I2 (1.5 g, 70% yield) as orange needles. 1H NMR (400 MHz, CDCl3) δ 8.43 (dd, J 

= 7.0, 3.2 Hz, 2H), 7.61 (dd, J = 7.0, 3.2 Hz, 2H). 

010203040506070809010011012013014015016017080
Chemical Shift (ppm)

79
.0

3
83

.1
0

11
1.

34
11

3.
18

11
3.

92
11

4.
15

11
5.

45
11

9.
76

12
7.

27
12

7.
41

12
7.

94
12

8.
07

12
9.

32
12

9.
59

13
0.

01
13

0.
87

13
1.

81
13

2.
11

13
2.

35
13

5.
23

13
9.

40
14

8.
49

15
9.

48
16

1.
15



19 
 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0.5
Chemical Shift (ppm)

2.
00

2.
02

7.
60

7.
61

7.
62

7.
62

8.
42

8.
43

8.
44

8.
44

 

N
S

N

N

Br

O

 

Synthesis of I3. A mixture of phenoxazine (0.5 g, 2.6 mmol), I2 (400 mg, 2.4 mmol), palladium acetate 

(90 mg, 0.4 mmol), [(t‐Bu)3P]HBF4 (348 mg, 1.2 mmol), and sodium tert‐butoxide (0.92 g, 9.6 mmol) 

in 25 mL anhydrous toluene was stirred and reflux at 110 °C under argon atmosphere for 72 h. After 

cooling down to room temperature, the reaction mixture was poured into saturated brine and extracted 

with dichloromethane. Then, the organic phase was dried over anhydrous Na2SO4. After removal of 

the solvent, the crude product was purified by column chromatography (silica, 

hexane/dichloromethane (v/v) = 1:10) to give I3 (273 mg, 45% yield) as a purple powder. 1H NMR 

(400 MHz, CDCl3) δ 8.38 – 8.23 (m, 1H), 8.05 – 7.88 (m, 1H), 7.32 – 7.16 (m, 2H), 6.60 (d, J = 9.4 

Hz, 2H), 6.45 (t, J = 7.6 Hz, 2H), 6.32 – 6.17 (m, 2H), 5.28 (d, J = 8.1 Hz, 2H). 
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Synthesis of I4. 2-Bromoanthracene-9,10-dione (574 mg, 2.0 mmol), bis(pinacolato)diborane (1.02 g, 

4.0 mmol), potassium acetate (687 mg, 7.0 mmol), Pd(dppf)Cl2 (73 mg, 0.23 mmol, dppf = 1,1’-bis 

(diphenylphosphanyl)ferrocene) and dioxane (20 mL) were mixed together in a 250 mL flask. After 

degassing, the reaction mixture was kept at 100 oC for 2 days, and then cooled down to room 

temperature. The organic solvent was distilled out, and the residual solid was dissolved in 

dichloromethane and washed with water. After solvent removal, the crude product was purified on a 

silica gel column using n-hexane/ethyl acetate (20:1, v/v) as the eluent to afford compound I4 (504 

mg, 75.2% yield) as a very viscous liquid. 1H NMR (400 MHz, CDCl3) δ 8.75 (s, 1H), 8.34 – 8.27 (m, 

3H), 8.20 (d, J = 9.0 Hz, 1H), 7.82 – 7.76 (m, 2H), 1.26 (s, 12H). 
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Synthesis of 2.  Compound I4 (270 mg, 0.60 mmol), compound I3 (130 mg, 0.20 mmol), potassium 

carbonate (552 mg, 4.0 mmol), THF (12 mL)/water (4 mL), and Pd(PPh3)4 (15 %) were carefully 

degassed and charged with nitrogen. The reaction mixture was then stirred at 60 oC for 12 h. After 

cooling down the reaction mixture to ambient temperature, it was extracted with DCM and washed 

with water. The DCM layer was separated and dried over MgSO4. After evaporation of the solvent, 

the crude product was purified by column chromatography on silica gel by using n-

hexane/dichloromethane (1/2 ~ 0/1, v/v) as the eluent to afford a dark blue solid 2 (112 mg, 51.8% 

yield). 1H NMR (400 MHz, CDCl3) δ 8.61 (s, 1H), 8.56 (d, J = 7.9 Hz, 1H), 8.36 – 8.28 (m, 3H), 8.12 
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(d, J = 9.9 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.82 – 7.78 (m, 2H), 7.48 – 7.40 (m, 2H), 6.78 (d, J = 7.8 

Hz, 2H), 6.64 (t, J = 7.6 Hz, 2H), 6.42 (t, J = 7.6 Hz, 2H), 5.52 (d, J = 8.1 Hz, 2H). 
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Synthesis of I5.  N-phenylanthranilic acid (6.00 g, 27.8 mmol) was suspended in polyphosphoric acid 

(60 g) and heated to 120 ◦C in a round-bottom flask. which was equipped with a strong magnetic 

stirring bar. The dark green viscous mixture was also occasionally mixed thoroughly with a glass rod. 

After about 3.5 h, the N-phenylanthranilic acid was completely dissolved and the reaction mixture was 

held at this temperature for additional 0.5 h and then carefully poured into a beaker of ice/water (100 

mL). The greenish yellow suspension was brought to pH 7 by slow addition of NaOH solution. The 

solid material was filtered off by suction filtration and washed with hot water (3×100 mL). The 
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greenish yellow solid was dried in air overnight at 120 ◦C to give crude I5 (5.4 g 27.8 mmol, 95 % 

yield), which was further used without purification. 

O

O

NO

 

Synthesis of 3. A mixture of I5 (256 mg, 2.6 mmol), 2-bromoanthracene-9,10-dione (700 mg, 2.4 

mmol), palladium acetate (90 mg, 0.4 mmol), [(t‐Bu)3P]HBF4 (348 mg, 1.2 mmol), and sodium tert‐

butoxide (0.92 g, 9.6 mmol) in 25 mL anhydrous toluene was stirred and reflux at 110 °C under argon 

atmosphere for 72 h. After cooling down to room temperature, the reaction mixture was poured into 

saturated brine and extracted with dichloromethane. Then, the organic phase was dried over anhydrous 

Na2SO4. After solvent removal, the crude product was purified by column chromatography (silica, 

hexane/dichloromethane (v/v) = 5:1) to give I5 (480 mg, 50% yield) as a purple power 1H NMR (400 

MHz, CDCl3) δ 8.70 (dd, J = 29.4, 7.5 Hz, 3H), 8.44 (q, J = 7.2, 6.4 Hz, 3H), 7.92 (d, J = 13.0 Hz, 

3H), 7.56 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H). 13C NMR (101 MHz, 

CDCl3) δ 182.15, 181.95, 178.06, 144.44, 142.53, 136.75, 136.17, 134.80, 134.10, 133.68, 133.37, 

130.72, 129.44, 127.76, 122.78, 116.24. 
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Synthesis of I6. A suspension of 3,6-dibromophenanthrene-9,10-dione (1.10 g, 3 mmol) and 

diaminomaleonitrile (0.32 g, 3 mmol) in acetic acid (10 mL) was heated to reflux for 8 hours. After 

cooling to room temperature, the resulting mixture was poured into ice water (100 mL) and then 

filtered. The solid was washed with water several times. The crude product was purified by column 

chromatography on silica gel (eluent: dichloromethane) and dried under vacuum to give I6 (1.05 g, 

80% yield) as a light yellow solid. 
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Synthesis of 4. (4-(Diphenylamino)phenyl)boronic acid (180 mg, 0.62 mmol), compound I6 (87 mg, 

0.20 mmol), potassium carbonate (552 mg, 4.0 mmol), THF (12 mL)/water (4 mL), and Pd(PPh3)4 

(15 %) were carefully degassed and charged with nitrogen. The reaction mixture was then stirred at 60 

oC for 12 h. After cooling the reaction mixture to ambient temperature, it was extracted with DCM and 
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washed with water. The DCM layer was separated and dried over MgSO4. After evaporation of the 

solvent, the crude product was purified by column chromatography on silica gel by using n-

hexane/dichloromethane (1/5, v/v) as the eluent to afford 4 (38 mg, 51.8% yield) as a dark blue solid. 

1H NMR (400 MHz, CDCl3) δ 8.99 – 8.70 (m, 1H), 8.56 – 8.30 (m, 1H), 7.90 – 7.75 (m, 1H), 7.68 – 

7.50 (m, 2H), 7.35 (t, J = 7.9 Hz, 4H), 7.23 (d, J = 7.8 Hz, 6H), 7.13 (t, J = 7.3 Hz, 2H). 13C NMR 

(101 MHz, CDCl3) δ 148.83, 146.61, 144.47, 141.69, 133.03, 132.18, 129.45, 128.18, 127.37, 127.05, 

125.42, 125.16, 123.74, 122.90, 119.92, 113.84. 
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