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Abstract

A new quantitative method based on static headspace−gas chromatography−ion mobility spectrometry 

(SHS−GC−IMS) is proposed, which enables the simultaneous quantification of multiple aroma compounds in 

wine. The method was first evaluated for its stability and the necessity of using internal standards as a quality 

control measure. The two major hurdles in applying GC-IMS in quantification studies, namely, non-linearity and 

multiple ion species, were also investigated using the Boltzmann function and generalized additive model (GAM) 

as potential solutions. Metrics characterizing the model performance, including root mean squared error, bias, 

limit of detection, limit of quantification, repeatability, reproducibility, and recovery were investigated. Both 

non-linear fitting methods, Boltzmann function and GAM, were able to return desirable analytical outcomes with 

an acceptable range of error. A potential pitfall that would cause inaccurate quantification i.e., competitive 

ionization, is also discussed. These findings provide an initial validation of a GC-IMS-based quantification 

method, as well as a starting point for further enhancing the analytical scope of GC-IMS. 
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1 Introduction

Being a separation technology that has only been commercialized in recent years, gas chromatography coupled 

with ion mobility spectrometry (GC-IMS) has rapidly gathered attention of researchers, especially from the field 

of food and beverage science.1 Multiple studies have successfully applied GC-IMS for identifying food 

adulteration2-4, optimizing food processing and storage conditions5-7, assigning food origins8-9, differentiating 

food quality gradings10-11, and detecting food spoilage12-13. The majority of these findings have been summarized 

in a review article published in 2020.14 GC-IMS is greatly appreciated for its ability to perform true orthogonal 

two-dimensional analyses, which considerably enhances the analytical capacity. This feature also enables non-

targeted analyses that overcomes the need of prior peak identification and indifferently processes all peak 

information, which has been proven immensely helpful in establishing prediction models.10-11 

Nevertheless, it remains that the major focus of research still centers around the qualitative and semi-

quantitative use of the instrument, whereas quantitative studies using GC-IMS are still quite rare. Compared to 

gas chromatography-mass spectrometry (GC-MS), for which well-established protocols of quantitative method 

development are available, consensus is still to be reached even on some fundamental aspects in quantitative GC-

IMS, such as the choice of curve-fitting functions15-17, and the inclusion of internal standards during calibration16-

18. A brief summary of recently published research articles describing the quantitative use of GC-IMS in various 

matrices is presented in Table 1. It is apparent that considerable discrepancies exist regarding GC-IMS-based 

quantification. Indeed, only recently has a publication regarding the practical considerations when dedicating 

GC-IMS for routine analyses became available1, and protocols for GC-IMS method development are not well 

defined. 

Furthermore, the quantification procedures of GC-IMS differ greatly to those of GC coupled to conventional 

detectors, such as the flame ionization detector (FID) and mass spectrometer (MS). This can be exemplified by 

the more confined linear dynamic ranges in GC-IMS outputs, which render the use of non-linear functions 

necessary over a wider concentration range. Such phenomena could be explained by the ionization source in IMS

(radioactive atmospheric pressure chemical ionization, R-APCI), in addition to the formation of high-order 

oligomers and heterodimers with other compounds as the target compound concentration increases, thereby 

resulting in the plateauing of the current ion species.1, 19 In addition, the instrumental response of the monomeric

ion species does not conform to monotonic increase. Rather, it would begin to decrease as the compound 

concentration continues to increase and the dimer intensity becomes stronger, as illustrated in Figure 1. It 

hence presents an analytical hurdle in feasibly combining the information of multiple product ions pertaining to 

the same compound to approach more accurate quantification. Moreover, the non-linear nature of standard 

curves in GC-IMS further complicates the calculation of the figures of merit that are desired in method 

development, such as limit of detection (LOD) and limit of quantification (LOQ). 
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Figure 1. A schematic signal-concentration relationship curve of the monomer and dimer ions of a given compound 

in IMS detectors. Reprinted from Chemometrics and Intelligent Laboratory Systems, 205, Rebecca Brendel, 

Sebastian Schwolow, Sascha Rohn, Philipp Weller, Comparison of PLSR, MCR-ALS and Kernel-PLSR for the 

quantification of allergenic fragrance compounds in complex cosmetic products based on nonlinear 2D GC-IMS data,

104128, Copyright (2020), with permission from Elsevier.

To date, and to the best of our knowledge, no peer-reviewed article has been published in attempt to 

systematically discuss and provide a general solution to GC-IMS-based quantification methods. Therefore, the 

purpose of the current paper is to propose an initial approach to address the common hurdles during the 

development of quantitative methods using GC-IMS systems. Also, the possibility of utilizing multiple ion species 

(e.g., monomer and dimer) will be discussed for further improving the method accuracy and sensitivity. As a 

preliminary trial, the method was used to establish calibration models for several volatile compounds commonly 

found in wine, as have been previously identified in our earlier study11. The analytical performance of this 

method was assessed using conventional ideas and some new tools that specifically tackle issues linked to GC-

IMS.

Table 1. Summary of recent research publications on applying GC-IMS in quantitative analyses of volatile 

compounds.

Matrix of 

interest
Quantification method

Figures of merit 

(e.g., LOD, LOQ, recovery)

Number of 

quantified 

compounds

Use of internal 

standard 
Ref.

yeast extract relative semi-quantification 

adjusted against internal 

standard concentration

none reported 52 yes 20

white bread dilution series of external 

standards without matrix and 

fitted to Boltzmann and linear 

functions 

goodness-of-fit; linear 

range

44 not reported 16

heat- and acid-

modified bovine 

dairy mix

dilution series of external 

standards in the original matrix

and fitted to linear function

LOD; LOQ; recovery; 

precision

11 not reported 17

red wine (made 

from Vitis 

amurensis)

relative semi-quantification 

adjusted against internal 

standard concentration

none reported 46 yes 21
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sunflower oil dilution series of external 

standards in the original matrix

data processed with spectrum 

unfolding coupled with 

multivariate regression 

methods: MCR-ALS and (k-) 

PLSR

standard error of 

prediction (SEP); relative 

percentage error of 

prediction (RE)

2 not reported 22

pathogenic fungi dilution series of nebulized mix

of external standards without 

matrix and fitted to linear 

function

LOD; LOQ; linear dynamic 

range; precision

14 not reported 23

olive oil dilution series of the external 

standard (ethanol) in 

simulated matrix and fitted to 

linear and logarithmic 

functions

LOD; LOQ; precision 1 not reported 15

Natural and 

artificial fabrics

dilution series of external 

standards in simulated matrix 

and fitted to linear and 

polynomial functions

LOD; LOQ; goodness-of-fit; 

linear dynamic range

30 24

electronic 

cigarette liquid

dilution series of external 

standards in methanol/water 

matrix and fitted to linear and 

polynomial functions

LOD; LOQ; calibration 

range; goodness-of-fit

8 not reported 18
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2 Materials and Methods

2.1 Chemicals, reference standards and wine samples

A total of 17 compounds were calibrated in the current study, including six acetate esters (methyl acetate, propyl

acetate, isobutyl acetate, isoamyl acetate, amyl acetate, hexyl acetate), seven ethyl esters (ethyl propionate, ethyl 

butyrate, ethyl 2-methylbutyrate, ethyl isovalerate, ethyl hexanoate, ethyl octanoate, ethyl decanoate) and four 

higher alcohols (isobutanol, 1-butanol, isoamyl alcohol, 1-hexanol). Analytical standards (≥98% purity) of these 

compounds were procured from Sigma-Aldrich (Taufkirchen, BY, Germany) and were stored in a 5 °C cool room 

prior to use.

A model solution that mimics wine matrix was first prepared by dissolving 12% v/v ethanol in Type 1 water with

pH adjusted to 3.2 by tartaric acid. The ethanol used was of HPLC grade purchased from Thermo Fisher Scientific

(Auckland, New Zealand). This solution was later used to build the calibration models of the volatile compounds. 

An internal standard (IS) working solution was prepared by diluting 3-octanol analytical standard in HPLC grade

ethanol. For each sample analyzed using the SHS-GC-IMS instrument, an aliquot of 50 L was spiked as a quality μ

control. The IS working solution was prepared so that the absolute amount of 3-octanol in the spiked sample was

10–15 ppm. 

For the precision trials, vintage 2018 commercial Sauvignon Blanc wine was used. For all other trials, vintage 

2020 commercial Sauvignon Blanc wine was used. All wines used in the current study were produced in 

Marlborough, New Zealand, and had been stored in their original packaging and away from direct sunlight at 

room temperature before analysis.

2.2 Construction and validation of calibration models for volatile compounds

2.2.1 Preparation of calibration dilution series using analytical standards

In order to establish the calibration models for the aforementioned volatile compounds, stock solutions of each 

compound were first made by dissolving one drop (approximately 0.01 g) of the analytical standard into 5 mL 

ethanol. Serial dilutions were then made by dispensing the corresponding volumes of stock solution into the 

model solution to make up for the final analysis-ready volume of 5 mL. The IS working solution was spiked into 

each sample, followed by nitrogen purge of the headspace prior to instrument analyses. Each volatile was 

analyzed in their common ranges as typically found in white wines. Given the non-linear nature of the 

instrumental response, particular attention was paid to increase the number of calibration points, such that the 

curvature can be more accurately depicted. In the current study, at least eight calibration points (excluding zero 

points where only pure model solution was analyzed) were tested for each volatile compound.

2.2.2 Fitting of standard curves

Since SHS-GC-IMS features a small dynamic range, a non-linear standard curve is often necessary to depict the 

relationship between the compound concentration and the instrument response. According to the instrument 

manufacturer recommendations, the Boltzmann function is useful when considering the concentration-response 

relationship for the dimer ion of a compound. The Boltzmann function features the following generic form:

y=b+
a−b

1+e
ln ( x )−c

d
(1)
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where a, b, c, d are constant coefficients, y = the signal intensity (volume-under-area-minimum, a.u.), x = analyte 

concentration ( g/L or mg/L). This function originated from the mathematical relationship of non-equilibrium μ

thermodynamics and can also be used to depict ions travelling along an electric gradient.

Another method named the generalized additive model (GAM) was also used to simultaneously consider the 

signals of both monomer and dimer ions for predicting the compound concentration. GAM is a nonparametric 

method that directly reads the data without predefining a fixed mathematical expression for the concentration-

response relationship. The main concept behind GAM can be expressed as:

g (E [ y|X ] )=A iθ+ f 1 (x1)+ f 2 (x2 )+ f 3 (x3 )+…+ f i ( xi )+ϵ (2)

where g (E [ y|X ] ) represents the expectation of the dependent variable y from a matrix of independent 

variables X as modelled by the link function (identity function in the case of regression); Aiθ is the parametric 

terms of the independent variable; f i (x i ) is the i-th term of the independent variable modelled using spline 

functions; ϵ  is the intercept term. According to Hastie, Tibshirani and Friedman, a spline function is a piecewise 

polynomial function that is smooth in connecting knots between polynomial pieces.25 Thus, this method utilizes a

combination of basis spline functions to map the non-linear trend of calibration data points.

Alternatively, the investigated concentration range for some compounds still approximate a linear response 

range, in which case the linear fitting was also assessed for its characterization of the concentration-response 

relationship.

The goodness-of-fit of different fitting methods was evaluated using the root mean squared error (RMSE) and the

systematic error (bias) as calculated using Equations 3 and 4.22 Both metrics have the same unit as the 

concentration of the calibrated compound. 

RMSE=√∑i=1
n

(ci−c i
reg)

2

n

(3)

Systematicerror=
∑
i=1

n

(c i
reg

−c i )

n

(4)

2.2.3 Limit of detection (LOD) and limit of quantification (LOQ)

Given the non-linear feature of the Boltzmann function, the conventional method of estimating the LOD and LOQ 

using the slope of the linear standard curve is not applicable. Hence, the current study adopted the methods 

described by Hayashi et al. and González et al. that enable the calculation of LOD and LOQ from non-linear 

calibration functions 26-27. This method considers the relative standard deviation of the back-calculated analyte 

concentrations (denoted as ρ x) and the first-order derivative of the original function (denoted as D). It is 

mandated that ρx=|σ y / x ⋅D|=30% when LOD is reached and ρx=20% when LOQ is reached. σ y is the 

standard error of instrument response estimates. y i and y i
reg represents the actual instrument response and the 

predicted instrument response, respectively. In the case of Boltzmann functions:
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D|Boltzmann=
(b−a )⋅e

ln ( x )−c
d

d ⋅ x (e
ln ( x )−c

d +1)
2 (5)

σ y|Boltzmann=√∑i=1
n

( yi− y i
reg)

2

n−4

(6)

Hence, the LOD and LOQ can be calculated as follows:

Let :P=[ 0.3 (b−a )

d ⋅σ y

−2]∧Q=[ 0.2 (b−a )

d ⋅σ y

−2] (7)

LOD|Boltzmann=ec ⋅( P+√P2−4
2 )

d

(8)

LOQ|Boltzmann=ec ⋅(Q+√Q2
−4

2 )
d

(9)

Since the method applies universally to both linear and non-linear standard curves, it was used to calculate the 

LOD and LOQ for all Boltzmann and linear fittings. In the case of linear standard curves with the generic form of

y=kx+m, the LOD and LOQ calculations are as follows:

σ y|linear=√∑i=1
n

( y i− y i
reg)

2

n−2

(10)

LOD|linear=
σ y|linear
0.3k

(11)

LOQ|linear=
σ y|linear
0.2k

(12)

Another method suggested by the International Union of Pure and Applied Chemistry (IUPAC) was also 

considered.28-29 This method calculates the LOD and LOQ as follows:

LOD= y+K D×σ (13)

LOQ= y+3×K D×σ (14)

K D=t (v ,α )×√1+ 1nB (15)

In equations (13) to (15),nB is the number of blank samples for a particular calibration and t ( v ,α ) is the 

student-t distribution value of  degrees of freedom (calculated as nB−1,) and confidence interval of α  (set as 

0.05).28 Since this method does not involve the inspection of the original mathematical equation, it thus provides 

an approach to calculate LOD and LOQ in GAM applications, although in the current study it was also tested on 

Boltzmann- and linear-based models.

7 | Page



2.2.4 Repeatability and reproducibility

The repeatability and reproducibility of the SHS-GC-IMS method in terms of retention and drift times has been 

previously reported in our previous study. Hence, in the current study special focus was placed on the 

repeatability and reproducibility of the quantification results, while employing the same data reported in the 

previous study.11 A moderately aged (vintage 2018) Sauvignon Blanc wine was analyzed in quadruplicates per 

day for five days. The repeatability and reproducibility were calculated as intra- and inter-day variations, 

respectively.

2.2.5 Accuracy, recovery and measurement uncertainty

Trueness is defined as the measurement of the deviation of a measured value to the actual value of an analyte in 

a sample. Therefore, this parameter demonstrates the bias in an analytical method. The lack of trueness would 

indicate the presence of systematic error within the method, which renders the method impractical for its 

intended purpose. Given the absence of certified reference materials for volatile analyses, trueness in the current

validation study is expressed as the recovery rate in the spike-and-recovery trial. All spike-and-recovery tests 

were conducted using a vintage 2020 Marlborough Sauvignon Blanc wine, apart from those of amyl acetate, for 

which a vintage 2021 Marlborough Sauvignon Blanc wine was used. The total concentration of a volatile 

compound in its spiked sample was controlled such that it still falls within the calibration range. 

2.2.6 Examination of competitive ionization effects

As previously highlighted by Borsdorf and Eiceman, as multiple compounds of different ionization energies (IE) 

or proton affinities (Epa) enter the IMS ionization chamber simultaneously, competitive ionization could occur 

such that the compound with lower IE (or higher Epa) becomes preferentially ionized, whereas other compounds 

are deprived of ions and are thus not eventually detected.30 This effect was also investigated in the current study 

where co-elution occurred between 1-propanol and ethyl butyrate. A simulated matrix was prepared with the 

concentration of 1-propanol maintained at 12 ppm in a 5 mL model solution. Ethyl butyrate was incrementally 

spiked into the simulated matrix from 0 to 660 ppb to inspect the change of signal intensities in 1-propanol and 

ethyl butyrate peaks.

2.3 Instrumentation and method parameters

Instrumentation and method details were the same as reported in a previous publication.11 The G.A.S. 

FlavourSpec SHS-GC-IMS system was used in the current study (Gesellschaft für Analytische Sensorsysteme 

mBH, Dortmund, Germany). The instrument was fitted with a MXT-WAX polar column (30 m length × 0.53 mm 

internal diameter × 0.5 µm film thickness, 100% crossbond Carbowax polyethylene glycol stationary phase) 

purchased from RESTEK (Bellefonte, PA, USA). An autosampler (CTC Analytics AG, Zwingen, Switzerland) was 

also connected for the automated static headspace sample introduction on the GC column. 

For sample preparation, five milliliters of each prepared sample were transferred into a 20 mL headspace vial 

using a micropipette, which was then purged with nitrogen and tightly crimped. Each sample vial was incubated 

at 40 °C for 10 minutes for equilibration, before 500 µL of the headspace gas was extracted with a heated (80 °C) 

syringe and injected through a heated injection port on the GC column. The GC column was set in isothermal 

mode at 40 °C. In GC, the carrier gas flow was first held steady at 2 mL/min for one minute, and then gradually 

increased to 40 mL/min at a rate of 2 mL/min2 until 20 min. The flow was then immediately increased to 150 

mL/min and held at this rate until 50 min. From 50 to 52 min, the flow rate was dropped to 2 mL/min again, 

before the program finished. 
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Following GC separation, the compounds were first ionized in the IMS ionization chamber using a tritium (3H) 

source. The ionization was conducted under positive ion mode. Ionized volatile compounds then entered the IMS

drift tube (98 mm), where an electric field (strength: 500 V/cm) was applied. The IMS device was programmed 

at 75 °C with a constant drift gas flow rate of 150 mL/min counter-current of the analyte ion swarm. Each IMS 

spectrum was acquired as the average of six scans.

Also, as a critical component of regular instrument upkeep, an intermittent 4-hour thermal cleaning was 

performed at the conclusion of each sample sequence and a 24-hour thermal cleaning was performed each week 

over the weekend, which has been shown to reduce memory effects of the GC column and ensure the consistent 

and desirable analytical results.

2.4 Data processing and statistical analyses

The software suite distributed with the SHS-GC-IMS instrument, LAV (Laboratory Analytical Viewer, version 

2.2.1, Dortmund, Germany), was used to process the raw data acquired from each run. The LAV-quantitation 

module was used to obtain the signal intensities of each volatile compound as peak volume-under-the-shape. 

Microsoft Excel 2019 (Redmond, WA, USA) was used to collate raw data and perform basic calculations such as 

limits of detection and quantification. The programming language R (version 4.0.2, Vienna, Austria) and Python 

(version 3.8.3, Fredericksburg, VA, USA) was used to run ANOVA analyses, generate plots, compute the standard 

curves of Boltzmann function and GAM. For all post-hoc Tukey’s HSD tests for ANOVA, the significance level was 

set at 5%.
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3 Results and Discussion

3.1 Overall quality control of the method

As shown above in Table 1, most quantification studies did not report specifically the involvement of internal 

standards during method calibration or in quantitative analyses. However, ensuring the quality of semi-

quantitative information obtained from SHS-GC-IMS is a crucial first step in checking for intrinsic sources of 

error that might lower the creditability of the final quantitative results. Hence, a method for monitoring the 

instrument performance was established using an internal standard spiking solution. Variations in internal 

standard signals could reveal the perturbations caused by a series of sources of errors, such as operator’s 

pipetting error, autosampler injection, and GC column conditions. The internal standard was selected such that it

did not interfere or react with any compounds that inherently exist in the target matrix, while also belonging to 

one of the same chemical categories as the target compounds of analysis.31

Based on these criteria, 3-octanol was selected in the current study as the internal standard and was mixed with 

samples in 1:100 ratio to achieve a final concentration in the sample of 10-15 ppm. The peak for 3-octanol was 

well separated from those of the intrinsic volatile compounds (Supplementary Figure 1). Also, being a member 

of the higher alcohols group and thus sharing similar ionization behaviors, excessive fluctuations in the 3-octanol

peak signal, if any, could reflect potential inaccuracy in analyzing wine volatile compounds. Two batches of 

internal standard solution were prepared during the current study, with concentrations of 12.6 ppm and 14.0 

ppm, which were used to spike 240 and 139 samples in the timespan of 6 months, respectively. A control chart 

was plotted for each of the two batches as shown in Figure 2 (A) and (B). The average signal intensity values of 

the first and the second internal standard batches were 18889±2070 and 21082±2886, with relative standard 

deviations (RSD) being 11.0% and 13.7%. Hence, the stability of the method was demonstrated by possessing % 

RSD lower than 15%. Also, it can be seen from the control chart that in both batches, only eight points (2.1% of 

all samples) fell within the warning range (shown as red shaded region) and no point fell beyond the control 

limits, which further consolidates the suitability of the current method in volatile analyses.
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Figure 2.(A) & (B): Control charts of the first and the second batches of internal standard. Upper/lower control limit 

= mean value ± 3×standard deviation. Upper/lower warning limit = mean value ± 2×standard deviation. (C) & (D): 

Changes in the signal intensity of peaks of eight representative compounds after incubation for 2- 20 minutes. 

Points with the different letters on each line indicate statistically significant difference in signal intensities (Tukey’s 

HSD, α=0.05).

By contrast, the HS-SPME-GC-MS method that was developed at the University of Auckland indicated much 

higher level of RSD in the 3-octanol internal standard signals during method calibration (21.8-37.5%, 

unpublished results). Such a difference could be explained, at least partially, by the fact the static headspace 

extraction in the SHS-GC-IMS instrument is a bi-phase system, where only one partition occurs between the 

liquid fraction of the sample and the gaseous headspace. On the other hand, when pre-concentration devices 

such as SPME fibers are being used, a tri-phase system is established, where partition can occur between liquid 

sample and the headspace, as well as between the headspace and the SPME fiber. Therefore, increased instability

is introduced into the HS-SPME-GC-MS method as samples are incubated for a fixed amount of time regardless of 

equilibria between the three phases. Rather, in SHS-GC-IMS, it has been experimentally shown that equilibrium 

between liquid sample and headspace is reached after 10 minutes of incubation and agitation (see Figure 2 (C) 

and (D).). This phenomenon in turn indicates that stable results can be expected after headspace equilibrium is 

established. 

In addition to analytical output monitoring, the internal standard was also used for manually adjusting the 

chromatograms should deviations on the retention time axis occur. The LAV software that accompanies the GC-

IMS instrument allows the user to configure “area sets”, i.e., pre-defined boxes to accommodate peaks on the 

contour plot. It is quite commonly observed that misaligned chromatograms have peaks of both intrinsic 

compounds, and the internal standard is partially or entirely located outside of their corresponding boxes. In 

manual alignments, correction to relocate the misaligned IS peak back to its box could also move all other peaks 
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back to their correction positions, which is critical for the software to correctly extract the peak signal 

intensities. This approach was also recommended by Jurado-Campos, Martín-Gómez, Saavedra and Arce, who 

reported that using internal standard as a base for plot alignment could apparently improve the homogeneity of 

peak positions.1

3.2 Selection of standard curve fitting methods

3.2.1 Hurdles in curve-fitting: non-linearity and multiple ion species

One of the most distinct features that immediately differentiate IMS from other commonly used GC detectors is 

its narrow linear dynamic range and the non-linear response commonly observed when a series of 

concentrations is used to construct a standard curve. For example, a concentration-response scatter plot of ethyl 

hexanoate, a common volatile found in wine, for which clear non-linear relationship was identified, is provided 

in Figure 3 (A). Around the lower concentrations, the concentration-signal relationship was more linear, 

whereas the signal became more plateaued as the concentration increased, leading to curvature across the 

normal concentration range of this compound in the target matrix. This effect has been widely reported for many

other compounds as well.15, 22, 24 One potential solution to circumvent this issue is dilution of the original sample 

so that the concentration of the target compound is lowered to reach its linear dynamic range.32 

However, as wine is a highly complicated system consisting of multiple volatile compounds of interest, each with 

its own linear range and non-linear curvature, it would be exceedingly arduous to analyze even one sample with 

multiple dilution factors so that all volatiles would fall within their desired linear range. As a result, previous 

efforts have been made to use various mathematical relationships, including polynomial, logarithmic, and 

Boltzmann functions, to circumvent this problem using dilutions and to directly account for the non-linear 

relationship.15-16, 18 Currently, no consensus has been achieved regarding the mathematical function that best 

describes this  curvature. In this study, the recommended mathematical model by the manufacturer: Boltzmann 

function, was first trialed (Figure 3 (B)), followed by the non-parametric fitting method of generalized additive 

model (GAM) (Figure 3 (C)), as exemplified using ethyl hexanoate. 

As the complexity of fitting model increased, the fitting error decreased accordingly. The linear fitting was 

consistently problematic at both lower and higher concentrations. The Boltzmann fitting exhibited improvement 

at the lower concentration end whereas for the higher concentrations, there was still a drift away from the ideal 

model. The GAM fitting performed the most desirably, as no severe deviation from the ideal model was observed.

This downward trend in the lack-of-fit was measured by the decreasing root mean squared error of calibration 

(RMSE) values (Figure 3 (D)). 

Furthermore, an additional benefit of GAM compared to other fitting methods is its ability to accept multiple 

input variables when constructing the fitting, which becomes particularly useful when multiple ion species exist 

for one compound. Hence, for these compounds, the GAM method was tested both on the monomer/dimer pair 

and on the dimer only. These proposed methods could thus solve the problem of non-linear response behavior 

and multiple ion species in GC-IMS detection. 
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Figure 3.(A): Scatter plot of the calibration data points obtained for ethyl hexanoate using SHS-GC-IMS. The insert 

shows the region where linearity is still maintained. (B): Fitting of Boltzmann function to the ethyl hexanoate 

calibration points with the fitted equation. In this equation, y represents the signal intensity (a.u.) and x represents 

the actual concentration (ppb). (C): Fitting of GAM using b-spline functions to the ethyl hexanoate calibration 

points. (D): Fitting accuracy of three different methods: Boltzmann function, generalized additive model (GAM), and

linear function (GAM_D indicates dimer only used for GAM). The grey line represents the ideal model, from which 

increased departure intuitively indicates less reliable fitting. The goodness-of-fit is compared across different 

methods using root mean squared error of calibration (RMSE) as a unified metric.

3.2.2 Comparison of the goodness-of-fit

In order to more comprehensively compare the accuracy of the different fitting methods, a compendium of the 

RMSE and systematic bias values of the three fitting methods for all studied compounds is presented in Table 2. 

The GAM fitting results were invariably better than Boltzmann and linear fittings, as demonstrated by lower 

RMSE values, apart from that of ethyl decanoate where GAM performed slightly less favorably. Extremely small 

systematic bias figures also indicate that no severe under- or over-estimation was expected. Additional 

involvement of the monomer in the GAM, however, did not necessarily produce significantly improved fitting 

performance compared to the GAM fitting using only the dimer. This was also shown by the p-value of the 

monomer term coefficients, as only that of 1-hexanol was below 0.1. The Boltzmann function fitting also provides

a desirable alternative to GAM, despite its higher general over-estimation in the quantitative results than the 

GAM model. Nevertheless, such systematic bias is still acceptable considering the wide calibration range used.
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However, the GAM method is not without its problems. One of the most prominent difficulties in applying the 

GAM method lies in the fact that it directly reads the trend from the data per se, thereby rendering the final 

output greatly prone to any experimental errors from collecting the calibration data. This could result in unusual 

local maxima/minima in the fitted curve and thus break the monotonicity principle in the concentration-signal 

relationship, as exemplified by 1-butanol (see Supplementary Figure 2). Hence, visual inspection of the fitted 

curve needs to be exercised when GAM is being used to establish the standard curve. In this case, either the 

corresponding calibration concentrations may be re-conducted where experimental errors can be clearly 

identified, or parametric models, i.e., the Boltzmann function may be used instead.

In light of the aforementioned results, it was decided that for this study, both GAM and Boltzmann function 

fitting would be evaluated in the subsequent figures of merit calculations. In the case of GAM being unable to 

produce reliable fitting curves, the Boltzmann function should be used instead as a fallback alternative. 

14 | Page



Table 2. RMSE and systematic bias figures of GAM, Boltzmann function fitting and linear fitting on the calibration points of the studied volatile compounds in wine. Units for 

the reported figures are ppb unless otherwise specified.

Compound
Calibration 
range

GAM_M,D a GAM_D b Boltzmann function Linear function

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

Methyl acetate 0 – 687.77 — — 10.81 -5.14×10-13 12.24 0.52 62.35 1.1×10-13

Propyl acetate 0 – 694.39 10.27 -4.37×10-10 10.62 2.20×10-13 11.74 0.25 169.66 154.04

Isobutyl acetate 0 – 712.80 5.05 7.70×10-10 5.32 6.40×10-13 7.45 0.28 101.06 -7.37×10-14

Isoamyl acetate 0 – 6732.0 — — 59.65 -4.13×10-11 167.78 12.87 1062.09 -3.77×10-13

Amyl acetate 0 – 807.84 — — 16.88 3.5×10-12 30.28 1.68 93.09 0

Hexyl acetate 0 – 1544.4 — — 17.47 -2.72×10-14 43.85 4.64 183.95 -1.33×10-13

Ethyl isovalerate 0 – 618.14 — — 3.20 7.00×10-14 9.63 0.94 79.54 -5.26×10-14

Ethyl 2-methylbutyrate 0 – 620.40 — — 3.34 -1.63×10-12 11.17 1.40 90.75 0

Ethyl propionate 0 – 495.00 15.33 1.80×10-13 15.04 1.60×10-13 19.47 0.61 64.72 1.50×10-14

Ethyl butyrate 0 – 1029.6 — — 14.55 6.50×10-12 19.74 0.25 159.63 -1.26×10-13

Ethyl hexanoate 0 – 2398.0 — — 31.60 3.30×10-12 182.96 23.87 385.07 7.60×10-14

Ethyl octanoate 0 – 3009.6 45.05 1.10×10-9 44.45 2.80×10-14 51.13 1.33 140.11 1.50×10-14

Ethyl decanoate 0 – 1039.5 — — 19.30 1.40×10-8 18.94 0.39 19.33 -9.58×10-15

Isobutanol c 0 – 167.81 0.84 9.59×10-13 0.86 9.22×10-13 3.70 0.60 25.38 -2.10×10-15

1-Butanol c 0 – 62.04 GAM broke monotonicity 4.96 0.26 12.86 6.00×10-15

Isoamyl alcohol c 0 – 329.65 1.17 6.40×10-13 2.55 -4.80×10-13 26.54 4.63 64.56 0

1-Hexanol 0 – 3626.75 16.15 9.00×10-10 30.98 -6.57×10-13 80.70 0.98 79.99 1.20×10-13

a) The GAM method using both monomer and dimer signals;

b) The GAM method using the dimer signal only;

c) Units for the metrics related to these compounds are ppm.
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3.3 General figures of merit (FOM) of the method

3.3.1 Limit of detection (LOD) and limit of quantification (LOQ)

Using the methods described in the Materials and Methods section, the limit of detection (LOD) and limit of 

quantification (LOQ) were calculated for the 17 compounds studied in the simulated wine matrix. 

It should be noted that the IUPAC-recommended method was not suitable for the Boltzmann-based standard 

curves, since sometimes the signal intensities acquired from blank samples are unable to return a valid 

concentration using this type of model. This is attributed to the fact that the Boltzmann features a sigmoidal 

curve with upper and lower asymptotes of y=a and y=b, respectively (a and b being coefficients of the fitted 

Boltzmann function). Hence, any signal that falls outside the (b , a ) range is not able to return a valid calculated 

concentration. It is not uncommon that in blank samples, the signal intensity of a given compound is lower than 

the coefficient b. Therefore, all LOD and LOQ values were calculated using the method proposed by Hayashi et al.

and González et al. for Boltzmann function models. 

The LOD and LOQ values of the different non-linear fitting methods are collated in Table 3. Due to the different 

methods used to calculate the LOD and LOQ, these values tend to be higher for Boltzmann function models, 

which also renders them not directly comparable with those of GAM methods. Nevertheless, it could still be seen 

that both GAM and Boltzmann function are able to show desirable detection and quantification limits for all 

compounds studied, considering the calibration ranges applied in this study and their regular presence in 

wines.33-35 The use of GAM on the monomer/dimer pair did improve those limits compared to GAM being applied 

on dimer alone for some compounds, including propyl acetate, ethyl octanoate, and 1-hexanol. This trend, 

however, did not hold true for all compounds. Also, it could be shown from the both LOD/LOQ value and the 

RMSE values that the models with better fits (smaller RMSE) are likely to have higher detection/quantification 

limits, which indicates compromises were made to enhance the general fitting precision in exchange for the 

model performance at the lower end.

Table 3. LOD and LOQ figures of GAM and Boltzmann function fitting on the calibration points of the studied volatile

compounds in wine. Units for the reported figures are ppb unless otherwise specified.

Compound
Calibration 
range

GAM_M,D a GAM_D b Boltzmann function

LOD LOQ LOD LOQ LOD LOQ

Methyl acetate 0 – 687.77 — — 13.32 37.87 13.93 22.77

Propyl acetate 0 – 694.39 3.42 8.26 3.34 10.92 6.39 10.56

Isobutyl acetate 0 – 712.80 3.33 10.01 0.04 0.30 4.70 9.55

Isoamyl acetate 0 – 6732.0 — — 1.58 2.35 26.14 70.16

Amyl acetate 0 – 807.84 — — 2.06 3.64 12.02 17.32

Hexyl acetate 0 – 1544.4 — — 6.93 18.81 40.23 64.56

Ethyl isovalerate 0 – 618.14 — — 0.27 1.11 5.66 10.10

Ethyl 2-methylbutyrate 0 – 620.40 — — 0.07 0.35 4.68 8.47

Ethyl propionate 0 – 495.00 4.05 13.28 0.71 0.58 22.44 62.68

Ethyl butyrate 0 – 1029.6 — — 0.41 1.29 2.49 5.36

Ethyl hexanoate 0 – 2398.0 — — 5.60 14.85 36.18 65.52

Ethyl octanoate 0 – 3009.6 29.77 82.56 58.67 148.79 188.00 276.36



Ethyl decanoate 0 – 1039.5 — — 33.96 74.99 82.60 119.11

Isobutanol c 0 – 167.81 0.14 0.46 0.10 0.28 1.07 2.53

1-Butanol c 0 – 62.04 — — — — 0.26 0.38

Isoamyl alcohol c 0 – 329.65 1.46 4.27 0.20 0.59 1.19 2.85

1-Hexanol 0 – 3626.75 40.10 119.95 118.41 300.34 173.69 229.64

a) The GAM method using both monomer and dimer signals;

b) The GAM method using the dimer signal only;

c) Units for the metrics related to these compounds are ppm.

3.3.2 Method precision and accuracy

The precision of quantification models was demonstrated in terms of repeatability (intra-day variation) and 

reproducibility (inter-day variation). As can be seen from Figure 4 (A), the precision values of most compounds 

were below 10% using either of the three quantification models, which indicated desirable robustness of both 

the analytical and the quantitative calculation methods. 

It was also immediately recognizable, however, that the precision of ethyl decanoate was notably worse than 

that of other compounds. It was revealed by further investigation that for each day, the ethyl decanoate signal in 

the first analyzed sample was consistently lower than that in subsequent samples. Such a phenomenon could be 

due to the fact that the instrument was always thermally cleaned at 80 °C at the end of each day, which was 

essential to minimize retention time and drift time variations as the instrument operates under isothermal GC 

mode.11 The cleaning process also clears the column from residual apolar compounds that were unable to detach 

from the column before the end of each run, which, conversely, was not executed between samples and could 

thus increases the stationary phase hydrophobicity. A close inspection of the physiochemical properties of ethyl 

decanoate highlighted that its log P value is in the range 3.61-4.43, which infers a stronger tendency to interact 

with the hydrophobic phase.36 Therefore, ethyl decanoate signals were less pronounced in the first sample of 

each day. This finding also showed the need to treat the quantification results of ethyl decanoate with care 

should the compound be detected in the first analyzed sample after the instrument undergoes thermal cleaning.

The accuracy of quantification was expressed in terms of the recovery of compounds in spiked samples, as 

collated in Figure 4 (B). Most compounds were able to receive a recovery value in the range of 60-120% with an 

average of 74.7%, which indicated an acceptable level of method accuracy. Ethyl propionate and isoamyl alcohol, 

on the other hand, returned unsatisfactory recovery rates below 60%. Hence, these two compounds were shown 

unsuitable to be quantified based on the current method. 

Additionally, it must also be pointed out that real wine samples contain non-volatile components that have been 

reported to retain volatile compounds and lower their presence into the headspace, such as polyphenols and 

polysaccharides.37-38 Since a simulated matrix was used in the current study, the volatiles in the calibration 

samples were more likely to be released from the liquid fraction compared to those in real wine samples, which 

could explain the relatively low recoveries. 

For the majority of studied compounds, the three fitting methods achieved similar results. However, a 

considerable discrepancy in the recovery rates was observed for isobutyl acetate and isoamyl acetate, ethyl 

isovalerate, and ethyl 2-methylbutyrate. Hence, quantification results from all of Boltzmann, GAM_D and 

GAM_M,D (if available) should be reported simultaneously, as no single method manifested distinctive 

superiority over others. Also, future endeavors need to be devoted to identifying the long-term applicability of 
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these fitting methods by testing them on further matrices and conducting additional calibrations for the 

compounds of interest. 

Figure 4. (A): Precision study results of the SHS-GC-IMS method using three different quantification models. (B): 

Accuracy study results of the SHS-GC-IMS method using three different quantification models. GAM_M,D 

represents the use of both monomer and dimer ions. GAM_D represents the use of dimer ions only.

3.4 Competitive ionization effects in co-eluting compounds

One of the characteristics that profoundly interferes with the analytical results of IMS-based methods is the 

competitive ionization between compounds of different ionization energies and proton affinities.30 This issue has

resulted in the tandem use of GC pre-fractionation before the IMS detector to improve the analytical output.39 

One issue with competitive ionization was observed in the current study between 1-propanol and ethyl butyrate.

This effect is seen in the co-evolution curves between a fixed concentration of 1-propanol and varying 

concentrations of ethyl butyrate (see Figure 5 (A)). As the addition concentration of ethyl butyrate increased 

from 0 to 679.8 ppb, the signal intensities of both ion species of 1-propanol dropped significantly by 38.9% and 

60.6%, respectively, although this concentration of 1-propanol was maintained at 16.3 ppm throughout the 

experiment. A closer inspection of the raw chromatogram revealed that the peaks for the two compounds 

overlap at a retention time of ~300 s, which indicates their simultaneous presence in the IMS ionization chamber

(see Figure 5 (B)). Visual examination of signal peak chromatograms has also showed clear decline in 1-

propanol monomer and dimer signal intensities as the ethyl butyrate peak increased (see Figure 5 (C)). 

Such behavior could be explained by different proton affinities (Epa) of the two compounds. The Epa of 1-propanol

was reported as 786.5 kJ mol-1.40 Although no experimental data is available for the Epa of ethyl butyrate, it could 

be reasonably inferred as being > 833.7–835.7 kJ mol-1, i.e., higher than the Epa of ethyl acetate.40-41 Hence, the 

higher proton affinity of ethyl butyrate would result in its preferential ionization while suppressing that of 1-

propanol, when the two compounds are simultaneously subject to chemical ionization. However, as the 

quantitative calibration process was conducted individually for each compound, the calibration model would fail 

to correctly account for such interaction between ion and lead to the general underestimation of 1-propanol. As a

result, 1-propanol quantification was not achieved using the current experimental setup. The competitive 

ionization phenomenon needs to be considered carefully in the scenario of GC co-elution for future calibration 

work using GC-IMS, to ascertain the validity of calibration models. 
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Figure 5. (A): The co-evolution curve between 1-propanol with fixed concentration of 16.3 ppm and ethyl butyrate 

at 0 to 679.8 ppb. (B): The relative positions of 1-propanol peaks (both monomer M and dimer D) and ethyl butyrate

peak. (C): Selected chromatogram snippets of 1-propanol monomer (A1, A2, A3), 1-propanol dimer (B1, B2, B3) and 

ethyl butyrate (C1, C2, C3). At level 1 (A1, B1, C1), ethyl butyrate concentration = 0 ppb. At level 2 (A2, B2, C2), ethyl

butyrate concentration = 51.0 ppb. At level 3 (A3, B3, C3), ethyl butyrate concentration = 407.9 ppb. For all 

chromatograms in (B) and (C), the X axis represents the drift time (RIP relative) and the Y axis represents the 

retention time (s).

3.5 Implications between current progress and future improvements

The current study presented an initial approach to establish the great potential of using GC-IMS-based systems 

for the quantitative analysis of volatile compounds, using wine as an exemplary matrix. Advantages of this 

method include superior stability and the ease of sample preparation and instrument maintenance. A few 
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hurdles such as the inevitable non-linearity and occurrence of multiple ion species were tackled using non-linear

the Boltzmann fitting function and non-parametric generalized additive model (GAM). Metrics including the 

goodness-of-fit, limit of detection, limit of quantification, repeatability, reproducibility, and recovery were 

carefully evaluated. All of the fitting methods were able to return desirable outcomes, while no single method 

demonstrated apparent superiority over others. Additionally, problems such as competitive ionization need to 

be promptly identified and mitigated during method optimization to ensure accurate analytical results. 

The quantitative capability of GC-IMS shows that it can be employed in addition to its most common use as a 

simple screening method. This approach offers an alternative to expensive counterparts such as GC-MS, should 

the absolute concentration of compounds be needed. In commercial winery laboratories, for instance, the 

instrument with the developed quantitative method could be integrated into the existing routine quality control 

workflow to provide valuable extra information. Future improvement of GC-IMS quantification could involve 

validation of the optimal fitting method and the optimization of the elution program to avoid co-elution of 

compounds to further expand the efficacy of GC-IMS-based quantification.
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