Protein-based platform for purification, chelation, and study of medical radiometals: yttrium and actinium

Gauthier J.-P. Deblonde^{1,2*}, Joseph A. Mattocks³, Ziye Dong¹, Paul T. Wooddy¹, Joseph A. Cotruvo, Jr.^{3*}, Mavrik Zavarin^{1,2}

¹Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States

²Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States ³Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Abstract.

Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here we demonstrate how a recently discovered protein, lanmodulin, can be utilized to efficiently bind, recover, and purify medically-relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry. The stoichiometry, solution behavior, and formation constant of the ²²⁸Ac-lanmodulin complex (Ac₃LanM, K_d , 865 femtomolar) and its ⁹⁰Y/^{nat}Y/^{nat}La analogues were experimentally determined, representing both the first actinium-protein and most stable actinide(III)-protein species to be characterized. Lanmodulin's unparalleled properties enable the facile purification-recovery of radiometals, even in the presence of >10⁺¹⁰ equivalents of competing ions and at ultra-trace levels: down to 2 femtograms ⁹⁰Y and 40 attograms ²²⁸Ac. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potentially *in vivo* applications.

Introduction

The use of radionuclides in medicine has been continuously growing over the past decades, especially in the case of short-lived radiometals, as they are among the most efficient means for medical imaging (e.g., PET and SPECT scans) and treatment of a wide array of diseases (e.g., bone metastasis, prostate cancers, and non-Hodgkin's lymphoma).^{1–3} In particular, actinium (Ac³⁺) is largely seen as the most promising candidate for next-generation cancer treatments, *i.e.* targeted alpha therapy^{3–5}. The nuclear properties of ²²⁵Ac make it an ideal projectile against tumor cells (Figure S1): ²²⁵Ac is a rare case of an alpha emitter with only short-lived daughters, decaying without leaving radioactive materials in the patient's body; its 9.95-day half-life is suitable for medical applications; its decay chain delivers, on average, 4 high-energy alpha plus 2 beta particles – leading to treatment efficacy hundreds of times higher^{6–8} than current medical radiometals. Therefore, if successful, the combined large-scale production, purification, and assembly of ²²⁵Ac pharmaceuticals has the potential to revolutionize cancer medicine.

However, no ²²⁵Ac drug has reached the market because of significant scientific challenges, from isotope production to the design of specific chelators for radiolabeled drugs. In fact, Ac³⁺ chemistry remains largely unknown compared to cations currently used in medicine (Ga³⁺, Zr⁴⁺, Tc^{5+/7+}, Y³⁺, Gd³⁺, Lu³⁺, Sc³⁺, In³⁺...) or other heavy radioelements for oncology (²²³Ra²⁺, ²²⁷Th⁴⁺...)^{9,10}, or even synthetic actinides discovered decades after actinium (Np, Pu, Am...), which impairs the development of any application involving actinium. Another barrier is the low availability of all Ac materials, even at the research scale. All Ac isotopes are radioactive (Figure 1a). The longest-lived one, ²²⁷Ac (21.8 years), would be suitable for chemical studies but it is cost prohibitive (>1,000 USD/microgram) and difficult to produce and purify^{11,12}. ²²⁵Ac is the main focus of medical research and multiple production routes are being investigated worldwide as the current

isotope availability is much lower than the projected demand. Current production methods require particle accelerators, cyclotrons, or decades-old legacy nuclear materials, limiting ²²⁵Ac availability.^{11,13–16} The ²³⁵U/²³¹Pa and ²³³U/²²⁹Th decay chains include ²²⁷Ac and ²²⁵Ac, respectively, but these radionuclides have very long secular equilibrium periods (Figure S1, Table S1) and present nuclear proliferation issues, so they are tightly controlled and unlikely to make actinium more accessible. Consequently, there is no widely available generator from which Ac isotopes could be periodically extracted, forcing research laboratories willing to embark on actinium studies to purchase limited, expensive, and short-lived ²²⁵Ac sources.

By contrast, ²²⁸Ac (6.1 hours) occurs in the decay chain of ²³²Th, an inexpensive radioisotope that is abundant and already available at numerous industrial sites and research institutions. ²²⁸Ac has been largely overlooked due to the lack of practical extraction methods since the mass of actinium isotopes in aged radioactive sources is extremely low (Table S1). After 10 years, 1 gram of ²³²Th only contains $\sim 3.5 \times 10^{-14}$ g of ²²⁸Ac – enough for radiochemical studies but beyond the capabilities of current Ac chelators. ²²⁸Ac could become the most accessible Ac isotope and help to develop Ac chemistry as a whole, but only if an efficient and practical purification method can be implemented.

Figure 1. Actinium isotopes and protein-based radiometal recovery.

a, Half-lives of known actinium isotopes. ²²⁵Ac is the principal actinium isotope studied for targeted-alpha therapies. ²²⁷Ac is a research isotope and only produced at the microgram scale. Traces of ²²⁷Ac are also present in aged ²³⁵U or ²³¹Pa materials. ²²⁸Ac occurs in the decay chain of natural thorium (²³²Th) at very low concentrations, requiring a highly efficient extraction system. The other isotopes are short-lived and rarely studied. **b**, Principle of the lanmodulin (LanM)-based one-step radioisotope separation method via centrifugation using the so-called "spin filters" or "protein concentrators". In this configuration, the protein is retained with the target isotope (Y³⁺, Ac³⁺...) while the low molecular weight fraction is eluted. The filtrates contain the purified unbound metals (e.g., radium, strontium, thorium). **c**, LanM-based metal separation performed using a size exclusion column (also called "desalting column"). In this configuration, the radiolabeled lanmodulin elutes prior to the unbound metals. The separation can be performed by gravity elution, pumped elution, or centrifugation. In both **b** and **c** scenarios, no matrix change or acidity adjustment is needed to recover the elements in separate fractions. The radiometal can be desorbed from LanM by decreasing pH (<2) or adding a chelator in excess.

Here, we show that such a method can be realized using the protein lanmodulin (LanM), the first natural macrochelator selective for rare earths to be discovered, in 2018.¹⁷ Taking advantage of LanM's size, selectivity, and affinity, we purify ²²⁸Ac and ⁹⁰Y from their generators (²³²Th/²²⁸Ra and ⁹⁰Sr) with unprecedented ease of implementation (Figure 1B-C). Furthermore, our method allows us to study the chemistry of Ac^{3+} with LanM and relevant bio-ligands for the first time, revealing a higher affinity than for the protein's natural substrates (lanthanides) and the highest stability constant reported for any Ac^{3+} complex, small molecules included.¹⁸ Because many radiometals are trivalent rare earths or actinides that LanM selectively binds and that would otherwise require cumbersome purification processes, our work suggests a general strategy for rapid radioisotope purification, detection, study, and perhaps even theranostic applications.

Results and discussion

Macromolecular purification of radioisotopes. The use of biomacromolecules, such as proteins, has largely been absent from purification strategies targeting radiometals like yttrium and actinium, as most known metal-binding proteins are not selective for f-elements.^{19–21} Even previous studies investigating interactions of proteins with uranium or heavy actinides (plutonium, americium, curium...)^{22–24} have largely focused on bacterial and human iron or calcium transport machineries, which not only form relatively weak complexes with trivalent f-elements but also only operate under a very narrow set of conditions (typically pH >6 and requiring a synergistic ligand like a carbonate or a siderophore molecule). By contrast, LanM displays unprecedented selectivity for trivalent lanthanides against most other cations.^{17,25,26} Instead of using minor differences in extraction reaction constants (as with current extractants, resulting in arduous metal ion separations^{11,12}), a selective macromolecular extractant such as LanM (~12 kDa, hydrodynamic radius ~4 nm²⁶) would enable a new and more robust mechanism for recovery and purification of Page 5 of 46

radiometals based on size differences. We hypothesized that protein-bound versus unbound metal ions could easily be separated using inexpensive methods like spin filtration or size exclusion chromatography (Figure 1b-c).

Short-lived radioisotopes require special handling but their actual concentration is very low (Table S1), necessitating extremely efficient and selective metal-binding molecules. To evaluate the protein-based radioisotopes purification strategy, we first attempted to recover ${}^{90}Y^{3+}$ from ${}^{90}Sr^{2+}$ sources using LanM. ${}^{90}Y$ is used for radioimmunotherapy and medical imaging (SPECT/CT, gamma, PET...). 27,28 ${}^{90}Sr$ has a long half-life (28.9 years) and β -decays to ${}^{90}Y$ (2.66 days). At secular equilibrium, the ratio ${}^{90}Sr/{}^{90}Y$ is ~4,000 mol/mol. The ${}^{90}Sr/{}^{90}Y$ pair can be used as a generator for the short-lived ${}^{90}Y$ but, despite a sufficient stockpile of ${}^{90}Sr$, its global deployment has been hindered by difficulties in separating these isotopes efficiently, rapidly, and inexpensively. 29

Figure 2a-d show the LanM-driven separation obtained after a single elution of an aqueous solution at pH 7 containing a mixture of 90 Sr/ 90 Y, initially at secular equilibrium. Efficient and quantitative separation of the two isotopes was observed after a single step and without requiring any eluant variation, loading/washing/elution cycles, or highly acidic extraction conditions. Such separation takes <5 min and could be even faster if automated. The presence of 90 Y in the high-molecularweight fraction and 90 Sr in the low-molecular-weight fraction was confirmed by monitoring the activity of the samples by liquid-scintillation counting (Figure 2b-d). The decay profiles of the protein fraction (Figure 2c) and small-molecule fraction (Figure S2) match exactly that of pure 90 Y and 90 Sr, respectively. The energy spectra of the protein and low-molecular-weight fractions also match the fingerprint of the high-energy β emitter 90 Y and low-energy β emitter 90 Sr, respectively (Figure 2d). After this one-step separation, the radiopurity of 90 Y increases from 50% to 99.9% (Figure S3). Similar attempts to separate 90 Y and 90 Sr using human apo-transferrin – a protein considered as the main f-element transporter in mammals 23,30,31 – failed due to the lower affinity and lack of selectivity of transferrin relative to LanM. Even under optimal conditions and at transferrin concentrations well above the level found in the bloodstream, less than 10% binding to 90 Y³⁺ was observed (Figure S4), highlighting that LanM is much more effective and selective than previously known lanthanide-binding proteins.

a, Typical elution profile of an ⁹⁰Sr/⁹⁰Y solution, initially at secular equilibrium, in the presence of LanM. [LanM] = 50 μ M. Activity = 37 kBq/mL. Buffer: 90 mM NaCl, 10 mM HEPES, pH = 7.0. **b**, **c**, Activity profile monitored at regular intervals, confirming the presence of high-purity ⁹⁰Y in the LanM fraction and quantitative separation ⁹⁰Sr/⁹⁰Y. **d**, Energy spectra, measured by liquid scintillation, for the starting ⁹⁰Sr/⁹⁰Y solution (top), the low-molecular weight fraction (middle), and LanM fraction (bottom). Spectra are normalized to the count maxima. **e**, Typical elution profile of a ²²⁸Ra/²²⁸Ac solution, initially at secular equilibrium, in the presence of LanM. [LanM] = 25 μ M. Buffer: 90 mM NaCl, 10 mM HEPES, pH = 7.0. Note that pure ²²⁸Ac inherently gives some counts in the low-energy window (green curve) due to the continuous nature of the beta emission. **f**, **g**, Activity profile monitored at regular intervals, confirming the presence of high-purity ²²⁸Ac in the LanM fraction (Error bars or marker size = 2σ). **h**, Typical energy spectra of a solution containing the ²³²Th decay chain (top), the solution after hydroxide precipitation (middle), and the purified ²²⁸Ac fraction using the LanM-based method (bottom).

The efficiency and selectivity of LanM for ⁹⁰Y³⁺ chelation suggests that it could be leveraged to complex actinium, even for its very short-lived isotope, ²²⁸Ac. Commercially available ²³²Th salts exhibit measurable activity of ²²⁸Ac after a few months (Figure S5), albeit at extremely low concentration (Table S1). Being able to selectively recover ²²⁸Ac³⁺ could make Ac chemistry readily available and independent from the cost-prohibitive and scarce ^{227/225}Ac sources. The ²³²Th decay chain comprises ²²⁸Ra (5.7 years) which decays to ²²⁸Ac, then ²²⁸Th (1.9 years) and ²²⁴Ra (3.6 days) (Figure S1). Starting from a ²³²Th⁴⁺ nitrate solution, neutralization to pH 6-8 precipitates ²³²Th and ²²⁸Th as hydroxide, and co-precipitates the initial ²²⁸Ac³⁺, leaving the two radium isotopes in solution. Without regeneration by ²²⁸Th, ²²⁴Ra and its daughters naturally decay within ~20 days (Figure S6). ²²⁸Ra regenerates ²²⁸Ac within ~30 hours, due to secular equilibrium, so it represents a potential ²²⁸Ra/²²⁸Ac generator (Figure S7). Little information has been published on the recovery of ²²⁸Ac from macroscopic amounts of ²³²Th, besides a recent liquid-liquid extraction method performed in concentrated HNO₃ media³², and an ion-exchange protocol including >30steps³³ (Figure S8), which we deemed impractical for such a short-lived radioisotope. Additionally, we experimentally observed that the activity of 228 Ra/ 228 Ac solutions increases after ~28 days due to reformation of ²²⁸Th from ²²⁸Ra – a phenomenon predicted by the Bateman equation but overlooked in the literature – rendering previously proposed ²²⁸Ra/²²⁸Ac generators rapidly inoperable (Figure S6). By contrast, our LanM-based size-exclusion method offers direct, rapid, and practical extraction and purification of ²²⁸Ac (Figure 2e-h). In none of the conditions tested did we observe interactions between Ra²⁺ and LanM, yielding high-purity ²²⁸Ac-lanmodulin fractions, as confirmed by radioactive decay monitoring and spectral identification (liquid scintillation and gamma spectroscopy – Figure 2h, Figure S3, Figure S9), even when starting from ~8,200 equivalents of 228 Ra or 224 Ra/ 228 Ra/ 228 Ac mixtures (Figure S10).

We were able to prepare ²²⁸Ac solutions with \geq 99.5% radiopurity (99.9% for ⁹⁰Y) on a daily basis, and at low cost, paving the way for investigating Ac³⁺ chemistry. Similar to ⁹⁰Y/⁹⁰Sr, attempts to recover actinium using transferrin were unsuccessful (Figure S4). These results establish that LanM uniquely enables practical purification of valuable radioisotopes from generators, making ⁹⁰Y and ²²⁸Ac more accessible for medical and chemical studies, and potentially extendable to other isotopes.

Lanmodulin enables facile detection of radiometals even at ultra-trace levels. To demonstrate the efficacy of the LanM-based extraction system and evaluate its limits, tests were performed with metal concentrations in the sub-nanomolar range, mimicking nuclear medicine conditions.⁶ Single-step separations of ²²⁸Ra/²²⁸Ac and ⁹⁰Sr/⁹⁰Y mixtures were performed using just 1 μ M LanM at pH 7 and without sample pre-concentration. Even under these unfavorable conditions for metal binding, LanM enables the efficient and selective scavenging of ²²⁸Ac and ⁹⁰Y. The ⁹⁰Y recovery yield in the protein fraction was maintained at >75% for concentrations as low as ~45 fM, or just ~2 femtogram of yttrium (Figure 3a). Below this level, uptake of ⁹⁰Y³⁺ by LanM was still observed, albeit with a lower yield (50-60%). Even more remarkably, LanM has higher affinity for actinium, and it allows its selective recovery to a concentration as low as 0.3 fM – just 40 attograms under the studied conditions (Figure 3b). Of note, this extremely low mass was only twice the instrumental quantification limit for ²²⁸Ac so that more diluted samples were not investigated, but it is likely that the proposed LanM-based system works at even lower Ac levels (Figure S11). Furthermore, the metal uptake reactions with LanM are fast. After only a 5-minute incubation at room temperature and neutral pH, the Ac³⁺-LanM binding reaction is almost complete (Figure 3ce). The results reinforce that the LanM-based approach could enable faster, more efficient, and low-cost purification of radioisotopes for medicine and research. It could also be adapted for the field-deployable analysis of radioisotopes, especially f-elements resulting from nuclear activities.

a, Activity and mass of ⁹⁰Y recovered in the protein fraction, compared to the total initial amount, following a single-step elution of ⁹⁰Sr/⁹⁰Y samples at various concentrations. [LanM] = 1 μ M. pH = 7.0. **b**, Similar experiments with ²²⁸Ra/²²⁸Ac samples. **c**, **d**, Activity recovered in the protein fraction and radiolabeling yield following a single-step elution of ²²⁸Ra/²²⁸Ac samples, as a function of the incubation period. [LanM] = 10 μ M. Room temperature. Buffer: 10 mM HEPES, 90 mM NaCl, pH 7. **e**, Radioactive decay curve of the protein fractions obtained following different incubation periods (5 to 120 min) and elution through a

size-exclusion column. The model radioactive decay for pure 228 Ac (crosses) is plotted for comparison with the experimental data (circles). The error bars correspond to $\pm 3\sigma$.

Solution thermodynamics of actinium-lanmodulin. The combined preparation of ²²⁸Ac solutions, efficient binding to LanM, and separation of the LanM complexes from small molecules afford a unique opportunity to probe the chemistry of actinium. While solution chemistry and crystallographic studies have been performed on f-element/protein species since the 1960's^{34,35}, including with heavy actinides^{36,37}, no actinium-protein complex has ever been characterized, even from a solution thermodynamic standpoint. This situation is due to the low availability of Ac isotopes, lack of Ac³⁺-specific spectroscopic features, and incompatibility of proteins with classic techniques used for radiotracers, like liquid-liquid extraction.^{38,39} Even for small Ac³⁺ complexes, no stability constant has been experimentally determined since the 1970's, with the strongest species reported being [AcEDTA]⁻ (log $\beta_{11} = 14.2$).^{18,40}

Here, we developed a combined radiochemical and size exclusion chromatography method relying on the natural dissociation of metal-chelator complexes at low concentration (Methods). To establish the method, the formation constant of ⁹⁰Y₃LanM (log β_{31}) was determined to be 33.9(±0.5) at pH 7, corresponding to an average dissociation constant (K_d) of 4.3(±1.5) pM per binding site (Figure 4a-b, Table S2). This value is in excellent agreement with results obtained using non-radioactive yttrium ($K_{d,app}$ (^{nat}Y₃LanM) = 4.1±0.3 pM. Figure S12) in ligand-protein titrations followed by circular dichroism (CD), confirming the applicability of the radiometry/dilution-based method. CD cannot be applied to actinium as each experiment would require milligram quantities of the element (>1,000× the current world's supply) and knowledge of the stability constants between Ac³⁺ and the competing ligand, which are currently unknown.¹⁸ By contrast, the radiometry/dilution-based experiments only require femtograms of the radioisotope, and do not require a competing ligand. This approach revealed that LanM has very strong affinity for Ac^{3+} , with a log β_{31} of 36.2±0.5 for ²²⁸Ac₃LanM at pH 7, equivalent to an average K_d of 865 fM per site (Figure 4c-f). We previously showed^{17,26,41} that lanthanide ions form polymetallic complexes with LanM, Ln₃LanM, at macroscopic concentrations (micromolar to millimolar range). However, LanM has four metal binding sites¹⁷ and it was unclear whether the fourth site could play a role in the binding of actinium. Combining the results obtained by the dilution-induced dissociation technique and speciation calculations confirms that the actinium-LanM complex is Ac₃LanM (Figure S13). Ac₃LanM is not only the first polynuclear actinium to be studied, but it also represents the most stable actinide(III)-protein complex.

CD experiments using La³⁺, a non-radioactive Ac³⁺ analogue, yielded a $K_{d,app}$ of 1.8(±0.1) pM for ^{nat}La₃LanM (Figure S12). The sub-picomolar stability of Ac₃LanM extends a trend previously noted for the early lanthanides^{17,26} where LanM displays higher affinity for cations with lower Lewis acidity (Figure 4f). This reversed preference is remarkable when compared to small chelators⁴² used in medicine since they typically exhibit decreasing affinity⁴³ as the metal gets larger (Figure S14), leading to weak La³⁺ or Ac³⁺ complexes. LanM's combination of high Ac³⁺ affinity, fast kinetics, and selectivity are unparalleled when compared to ligands currently used in clinical studies. For instance, DOTA, which is largely seen as the gold standard for medical radiometals, exhibits slow kinetics and requires elevated temperatures $(>70^{\circ}C)^{44,45}$ to trigger metal chelation, hindering procedures involving biomolecules. From a thermodynamic perspective, DOTA and other small chelators are also orders of magnitude less selective than LanM for Ac³⁺ against cations naturally present in the bloodstream (Figure S15). Hence, contrary to what has been observed for small f-element complexes used in medicine^{46–48}, Ac₃LanM is inherently less prone to in vivo dissociation via transmetallation reactions. Moreover, LanM's multiple binding sites enable multi-isotope radiolabeling (verified here with ⁹⁰Y/²²⁸Ac. Figure S16-17), which could

allow theranostic strategies using a single chelator. The thermodynamic stability of Ac₃LanM also makes it resistant against endogenous metal-binding proteins like transferrin, whose two binding sites can accommodate trivalent f-elements.^{23,30,49} While the stability of the Ac₂Transferrin complex has never been measured, a literature review allowed its estimation based on an empirical correlation: log β (Ac₂Transferrin) = 10.9±2, or K_d = 3.5 μ M (Figure S18). Despite the large uncertainty inherent to the latter estimation, LanM's affinity for actinium is clearly several orders of magnitude higher than that of Tf, and Tf is unable to bind to Ac³⁺ at low concentrations (Figure S11), which is in line with experimental observations. The results suggest that LanM could be the basis for new actinium pharmaceuticals, if sufficiently kinetically inert.

Figure 4. Stability of the actinium-lanmodulin complex.

a, Examples of elution profiles obtained with 90 Y/ 90 Sr at various concentrations of LanM. Buffer: 10 mM HEPES, 90 mM NaCl, pH 7.0, 22 °C. Size exclusion column: Sephadex PD-10 (5 kDa MWCO). **b**, Radioactivity detected in the low-molecular-weight fraction (90 Sr) and protein fraction (90 Y) as a function of LanM concentration. **c**, Examples of elution profiles obtained with 228 Ac/ 228 Ra at various concentrations of LanM. Conditions similar to the 90 Y/ 90 Sr experiments. **d**, Radioactivity detected in the low-molecular-weight fraction (228 Ra) and protein fraction (228 Ac) as a function of LanM concentration. **e**, Comparison of the experimental results and speciation models comprising 228 Ac₃LanM with various stability constants, covering 4 orders of magnitude. The best fit of the experimental results is for log β_{31} (228 Ac₃LanM) = 36.2. **f**, Correlation between the Lewis acidity of the cations and the stability of their complexes with LanM. The

average K_d per site is plotted against the first hydrolysis constant of the cation. The points for Ac³⁺ and Y³⁺ in magenta correspond to the radiochemical method; the points for La³⁺ and Y³⁺ in gold correspond to the CD method. Previous data (CD, pH 7.2)¹⁷ are in blue. A similar correlation is given for transferrin in Figure S18.

Probing actinium chemistry using lanmodulin. The solution behavior of ²²⁸Ac₃LanM and ⁹⁰Y₃LanM was also evaluated. Size-exclusion chromatography assays showed that both complexes are resistant to acidic conditions, with LanM releasing its radioisotopes only below pH ~2.8 (Figure 5a-b). Fitting of the binding curves as a function of pH using the Hill equation yields a high Hill coefficient (18.2 for Ac and 17.6 for Y). The sharp release of the metal upon acidification further supports the binding of Ac³⁺ (and Y³⁺) to the three binding sites of LanM. Following selective binding to LanM, both radiometals and protein can be recovered for further use by either lowering pH or adding a chelator in excess; we prepared HCl, HNO₃ as well as EDTA and DTPA solutions of ²²⁸Ac, with quantitative yield via one-step spin filtration from ²²⁸Ac₃LanM (Figure S18).

Extending our observation that neither ${}^{228}Ra^{2+}$ or ${}^{90}Sr^{2+}$ interact significantly with LanM, LanM's chelation of Ac³⁺ and Y³⁺ is also not impacted by the presence of cations that are ubiquitous *in vivo* and which interact with endogenous proteins and small chelators: Ca²⁺, Mg²⁺, Mn²⁺, Zn²⁺, and Cu²⁺. The use of short-lived ${}^{228}Ac$ and ${}^{90}Y$ allowed testing LanM's selectivity with mixtures containing up to 3×10^{11} mol equivalents of each competing cation (Figure 5c). Even under these extreme conditions, selective uptake of Ac³⁺ by LanM was still observed. For ${}^{90}Y_3LanM$, a slight decrease in radiolabeling yield occurs above a billion-fold excess of divalent cations, corroborating the higher stability determined for ${}^{228}Ac_3LanM$ versus ${}^{90}Y_3LanM$. Chelators currently used in nuclear medicine are unable to sustain such an excess of competing ions (Figure S15).

Interestingly, differences were observed between Ac^{3+} and Y^{3+} relative to their interactions with small anions present in the bloodstream (Figure 5D-H). A high concentration of sulfate, acetate, or glycine does not destabilize ²²⁸Ac₃LanM or ⁹⁰Y₃LanM. However, at high concentration, carbonate and selenite ions compete with LanM and decrease its radiolabeling efficiency for ⁹⁰Y whereas Ac₃LanM is unaffected. In the case of phosphate ions, ²²⁸Ac₃LanM was found more sensitive than ⁹⁰Y₃LanM. The observed trends (PO₄³⁻ > CO₃²⁻ \approx SeO₃²⁻ for actinium versus CO₃²⁻ > SeO₃²⁻ > PO₄³⁻ for yttrium) shed light on subtle chemical differences between actinium and rare earth elements that could be leveraged for separation purposes.

Figure 5. Solution chemistry of actinium in the presence of LanM.

a, Activity detected in the low-molecular-weight fraction as a function of pH, after filtration (20 min, $12,000 \times g$, VivaSpin 3 kDa) of ²²⁸Ra/²²⁸Ac solutions, initially at secular equilibrium. 22 °C. I = 0.1M (NaCl). The dotted line corresponds to the fit using the Hill equation (n = Hill coefficient). **b**, Same experiments with ⁹⁰Y. **c**, ²²⁸Ac or ⁹⁰Y recovered in the LanM fraction in the presence of Ca²⁺, Mg²⁺, Mn²⁺, Zn²⁺, and Cu²⁺. The x-axis value is the concentration of each metal. PD-10 column, 20 µM LanM, 10 mM HEPES, 90 mM NaCl, pH 7.4. **d**, Percentage of ²²⁸Ac and ⁹⁰Y bound to LanM in the presence of carbonate ions. pH

7.4, 10 mM HEPES, 90 mM NaCl, 0 to 100 mM NaHCO₃. **e**, **f** Similar experiments in selenite and phosphate media. **g**, Activity partition in the presence of biorelevant anions. 20 μ M LanM, pH 7.4, 90 mM NaCl, 10 mM HEPES, 25 mM biorelevant anions. ²²⁸Ac and ⁹⁰Y experiments were done independently. Initial samples were at secular equilibrium. A perfect separation would yield 50% in each fraction. **h**, Stability of La³⁺-bound complex of LaMP1 FRET sensor in 50% human serum. 2 μ M LaMP1, 4 μ M La, 37°C. The raw FRET ratios are also given in Figure S19.

While the direct interactions between Ac^{3+} and carbonate, selenite, or phosphate ions have never been probed under biorelevant conditions, our results indicate that Ac^{3+} exhibits stronger interactions with softer oxygen donors. In line with our experimental results, recent density functional theory calculations⁵⁰ showed that replacing DOTA's carboxylate groups by phosphonate groups would impart enhanced stability for the Ac^{3+} complex. However, the design of new actinium complexants should also take into account the selectivity against natural cations, a challenge for most small molecules. Considering LanM's advantages relative to these chelators (e.g., fast kinetics, high selectivity and affinity, pH stability) we posit that the introduction of softer residues in LanM could lead to even more suitable Ac macrochelators. Finally, challenging 2 μ M La³⁺-LaMP1, a LanM-based fluorescent sensor ($K_{d,app}$ = 9.4 pM)²⁵, with 50% human serum at 37°C reveals ~5% loss of fluorescence response over 24 h, indicating only minimal metal dissociation (Figure 5H, Figure S19). Given that Ac₃LanM is ~10-fold tighter than La₃LaMP1, these results suggest that Ac³⁺-LanM may be sufficiently stable for *in vivo* applications.

Conclusion. This study represents the first characterization of an actinium-protein complex, ²²⁸Ac₃LanM. Our LanM-based separation strategy allows the efficient, practical, and concomitant chelation/purification of actinium (and ⁹⁰Y), down to the femtomolar level, and is certainly translatable to other radiometals (^{44/47}Sc, ¹⁷⁷Lu, ²⁴¹Am...). We envision that a similar biomacromolecular approach could be implemented to study other elusive elements, notably Es³⁺, Fm³⁺, and Md³⁺, for which several picograms can be produced but have remained inaccessible with current methodologies. Finally, the stability of LanM's complex with actinium is similar to those of its native substrates (lanthanides), and in the same range as siderophores considered to play a role in the mobilization of actinides and radiolanthanides in the environment.⁵¹ Therefore, our results raise questions about the influence of natural proteins such as LanM on the binding and transport of natural or anthropogenic radionuclides in the environment. Just as LanM has helped to incorporate the lanthanides into the bioinorganic periodic table, it promises to facilitate understanding of the interactions between actinides and biological systems, as well as the development of the chemistry of actinium and other rare isotopes for both research and medicine.

References

- Wadas, T. J., Wong, E. H., Weisman, G. R. & Anderson, C. J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. *Chem. Rev.* 110, 2858–2902 (2010).
- Álvarez, N. H., Bauer, D., Hernández-Gil, J. & Lewis, J. S. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. *ChemMedChem* n/a, (2021).
- Boros, E. & Packard, A. B. Radioactive Transition Metals for Imaging and Therapy. *Chem. Rev.* 119, 870–901 (2019).
- Thiele, N. A., Woods, J. J. & Wilson, J. J. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. *Inorg. Chem.* 58, 10483–10500 (2019).
- 5. Kratochwil, C. *et al.* 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. *J Nucl Med* **57**, 1941–1944 (2016).
- Graf, F. *et al.* DNA Double Strand Breaks as Predictor of Efficacy of the Alpha-Particle Emitter Ac-225 and the Electron Emitter Lu-177 for Somatostatin Receptor Targeted Radiotherapy. *PLOS ONE* 9, e88239 (2014).

- McDevitt, M. R. *et al.* Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. *Nat Commun* 9, 1–11 (2018).
- Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. *Advanced Drug Delivery Reviews* 60, 1371–1382 (2008).
- 9. Parker, C. *et al.* Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. *New England Journal of Medicine* **369**, 213–223 (2013).
- Wickstroem, K. *et al.* Synergistic Effect of a Mesothelin-Targeted 227Th Conjugate in Combination with DNA Damage Response Inhibitors in Ovarian Cancer Xenograft Models. *Journal of Nuclear Medicine* **60**, 1293–1300 (2019).
- Robertson, A. K. H. *et al.* 232Th-Spallation-Produced 225Ac with Reduced 227Ac Content. *Inorg. Chem.* 59, 12156–12165 (2020).
- 12. Abou, D. S., Pickett, J., Mattson, J. E. & Thorek, D. L. J. A Radium-223 microgenerator from cyclotron-produced trace Actinium-227. *Applied Radiation and Isotopes* **119**, 36–42 (2017).
- 13. Perron, R., Gendron, D. & Causey, P. W. Construction of a thorium/actinium generator at the Canadian Nuclear Laboratories. *Applied Radiation and Isotopes* **164**, 109262 (2020).
- 14. Apostolidis, C. *et al.* Cyclotron production of Ac-225 for targeted alpha therapy. *Applied Radiation and Isotopes* **62**, 383–387 (2005).
- 15. Yan, W. Mining Medical Isotopes from Nuclear Waste. ACS Cent. Sci. 6, 827–829 (2020).
- 16. Boll, R. A., Malkemus, D. & Mirzadeh, S. Production of actinium-225 for alpha particle mediated radioimmunotherapy. *Applied Radiation and Isotopes* **62**, 667–679 (2005).
- Cotruvo, J. A. Jr., Featherston, E. R., Mattocks, J. A., Ho, J. V. & Laremore, T. N. Lanmodulin: A Highly Selective Lanthanide-Binding Protein from a Lanthanide-Utilizing Bacterium. *J. Am. Chem. Soc.* 140, 15056–15061 (2018).

- Kirby, H. W. & Morss, L. R. Actinium. in *The Chemistry of the Actinide and Transactinide Elements* (eds. Morss, L. R., Edelstein, N. M. & Fuger, J.) 18–51 (Springer Netherlands, 2006). doi:10.1007/1-4020-3598-5_2.
- 19. Ye, Y., Lee, H.-W., Yang, W., Shealy, S. & Yang, J. J. Probing Site-Specific Calmodulin Calcium and Lanthanide Affinity by Grafting. *J. Am. Chem. Soc.* **127**, 3743–3750 (2005).
- Yang, J. J. *et al.* Rational Design of Protein-Based MRI Contrast Agents. *J. Am. Chem. Soc.* 130, 9260–9267 (2008).
- 21. Flo, T. H. *et al.* Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. *Nature* **432**, 917–921 (2004).
- Seeger, P. A. *et al.* Neutron Resonance Scattering Shows Specific Binding of Plutonium to the Calcium-Binding Sites of the Protein Calmodulin and Yields Precise Distance Information. *J. Am. Chem. Soc.* **119**, 5118–5125 (1997).
- Jensen, M. P. *et al.* An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium. *Nat Chem Biol* **7**, 560–565 (2011).
- 24. Allred, B. E. *et al.* Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. *PNAS* **112**, 10342–10347 (2015).
- 25. Mattocks, J. A., Ho, J. V. & Cotruvo, J. A. Jr. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements. *J. Am. Chem. Soc.* **141**, 2857–2861 (2019).
- 26. Deblonde, G. J.-P. *et al.* Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. *Inorg. Chem.* **59**, 11855–11867 (2020).
- 27. Tickner, B. J., Stasiuk, G. J., Duckett, S. B. & Angelovski, G. The use of yttrium in medical imaging and therapy: historical background and future perspectives. *Chem. Soc. Rev.* **49**, 6169–6185 (2020).
- 28. Wright, C. L., Zhang, J., Tweedle, M. F., Knopp, M. V. & Hall, N. C. Theranostic Imaging of Yttrium-90. *BioMed Research International* **2015**, e481279 (2015).

- 29. Therapeutic Radionuclide Generators: 90Sr/90Y and 188W/188Re Generators. (INTERNATIONAL ATOMIC ENERGY AGENCY, 2009).
- Shinoda, S. & Tsukube, H. Lanthanide Substitution of Iron-Containing Transferrin, Lactoferrin, and Ferritin, Development of Luminescent Reporter Proteins. in *Encyclopedia of Metalloproteins* (eds. Kretsinger, R. H., Uversky, V. N. & Permyakov, E. A.) 1087–1091 (Springer, 2013). doi:10.1007/978-1-4614-1533-6_220.
- 31. Deblonde, G. J.-P., Sturzbecher-Hoehne, M., Mason, A. B. & Abergel, R. J. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals. *Metallomics* **5**, 619–626 (2013).
- 32. Kazakov, A. G. *et al.* Generator of Actinium-228 and a Study of the Sorption of Actinium by Carbon Nanomaterials. *Radiochemistry* **62**, 592–598 (2020).
- Aldrich, K. E. *et al.* Preparation of an Actinium-228 Generator. *Inorg. Chem.* **59**, 3200–3206 (2020).
- Luk, C. K. Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes.
 Biochemistry 10, 2838–2843 (1971).
- 35. Sun, H., Li, H. & Sadler, P. J. Transferrin as a Metal Ion Mediator. *Chem. Rev.* **99**, 2817–2842 (1999).
- Chipperfield, A. R. & Taylor, D. M. Binding of Plutonium and Americium to Bone Glycoproteins.
 Nature 219, 609–610 (1968).
- 37. Deblonde, G. J.-P. *et al.* Chelation and stabilization of berkelium in oxidation state +IV. *Nature Chemistry* **9**, 843–849 (2017).
- Kelley, M. P. *et al.* Revisiting complexation thermodynamics of transplutonium elements up to einsteinium. *Chem. Commun.* 54, 10578–10581 (2018).

- Leguay, S. *et al.* New Insights into Formation of Trivalent Actinides Complexes with DTPA. *Inorg. Chem.* 51, 12638–12649 (2012).
- 40. Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Shestakova, I. A. & Shestakova, B. I. Complex formation of actinium. I. Determination of the stability constants of ethylenediaminetetraacetate complexes of actinium and its separation from lanthanum in solutions of EDTA by the method of electromigration. *Soviet Radiochemistry* **14**, 555–557 (1972).
- 41. Cook, E. C., Featherston, E. R., Showalter, S. A. & Cotruvo, J. A. Jr. Structural Basis for Rare Earth Element Recognition by *Methylobacterium extorquens* Lanmodulin. *Biochemistry* **58**, 120–125 (2019).
- 42. Thiele, N. A. & Wilson, J. J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. *Cancer Biotherapy and Radiopharmaceuticals* **33**, 336–348 (2018).
- 43. Hu, A., MacMillan, S. N. & Wilson, J. J. Macrocyclic Ligands with an Unprecedented Size-Selectivity Pattern for the Lanthanide Ions. *J. Am. Chem. Soc.* **142**, 13500–13506 (2020).
- 44. De León-Rodríguez, L. M. & Kovacs, Z. The Synthesis and Chelation Chemistry of DOTA–Peptide Conjugates. *Bioconjugate Chem.* **19**, 391–402 (2008).
- Pérez-Malo, M. *et al.* Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study. *Inorg. Chem.* 57, 6107–6117 (2018).
- Greenberg, S. A. Zinc Transmetallation and Gadolinium Retention after MR Imaging: Case Report. *Radiology* 257, 670–673 (2010).
- Telgmann, L. *et al.* Speciation of Gd-based MRI contrast agents and potential products of transmetalation with iron ions or parenteral iron supplements. *Anal Bioanal Chem* 404, 2133–2141 (2012).
- 48. Turyanskaya, A. *et al.* Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF. *Sci Rep* **10**, 1–9 (2020).

- 49. Bauer, N., Fröhlich, D. R. & Panak, P. J. Interaction of Cm(III) and Am(III) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy. *Dalton Trans.* **43**, 6689–6700 (2014).
- 50. Stein, B. W. *et al.* Advancing Chelation Chemistry for Actinium and Other +3 f-Elements, Am, Cm, and La. *J. Am. Chem. Soc.* **141**, 19404–19414 (2019).
- Christenson, E. A. & Schijf, J. Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. *Geochimica et Cosmochimica Acta* 75, 7047–7062 (2011).

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-822758) and was supported by the LLNL-LDRD Program under Project No. 20-LW-017. J.A.M. and J.A.C. were supported by DOE grant DE-SC0021007. The authors thank Dr. Keenan J. Thomas (LLNL) for help with the gamma analyses and helpful discussions. The authors also thank Dr. Yongqin Jiao and Dr. Dan Park (LLNL) for comments on the manuscript and fruitful discussions.

Author Information

*Corresponding Authors: Deblonde1@LLNL.gov (G.J.-P.D.) and juc96@psu.edu (J.A.C.)

Competing interests

The authors declare the following competing financial interests: G.J.-P.D., J.A.M., Z.D., and J.A.C. are listed as inventors on a patent application submitted by Lawrence Livermore National Laboratory and the Pennsylvania State University.

SUPPORTING

INFORMATION

Protein-based platform for purification, chelation, and study of medical radiometals: yttrium and actinium

Gauthier J.-P. Deblonde^{1,2*}, Joseph A. Mattocks³, Ziye Dong¹, Paul T. Wooddy¹, Joseph A. Cotruvo, Jr.^{3*}, Mavrik Zavarin^{1,2}

¹*Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California* 94550, *United States*

²Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States ³Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

*Corresponding Authors: Deblonde1@LLNL.gov (G.J.-P.D.) and juc96@psu.edu (J.A.C.)

Methods

Caution! ⁹⁰Sr and ²³²Th, and concentrates of their decay products (²²⁸Ra, ²²⁸Ac, ²²⁸Th...), constitute serious health hazards because of their radioactive and chemical properties. Radiochemical experiments were conducted at LLNL in laboratories designed for the safe handling of short-lived and long-lived radioactive materials and associated waste.

Materials. Starting ⁹⁰Sr/⁹⁰Y solutions were prepared by dilution of a primary standardized stock (Eckert & Ziegler, USA). Starting ²³²Th solutions were prepared by direct dissolution of Th(NO₃)₄·nH₂O salts purchased from Spex Industries (USA) and Strem Chemicals (USA). The age of the different ²³²Th salts varied from ~0.5 to 20 years. Liquid scintillation and gamma analysis confirmed the presence of decay products. All aqueous solutions were prepared using deionized water purified by reverse osmosis. Buffers (VWR), non-radioactive chemicals (MilliporeSigma), PD-10 size exclusion columns (GE Healthcare), and Vivaspin® protein concentrators (Cytiva) were purchased and used as received. Wild-type LanM and LaMP1 were expressed and purified as previously described.^{1–3}

Radioanalysis. Liquid scintillation counting (LSC) was performed with a Perkin Elmer TriCarb 5110TR instrument equipped with an alpha/beta discriminator. Calibration was performed on a daily basis. Samples were diluted in UltimaGoldTM and results are background-corrected. Error bars displayed on the decay profile correspond to $\pm 2\sigma$ unless otherwise indicated. Gamma analyses were performed using high-purity Ge (HPGe) coaxial p-type semiconductor detectors, each rated at (21% and 37% standard efficiency relative to 3x3 NaI). Energy and efficiency calibrations were performed with NIST-traceable standards. Samples were counted as ~10 mL solutions in plastic vials (10 cm²cross sectional area) at distances of 4-5 cm from the face of the detector endcaps for up to 6 hours. Spectra were processed using GAMANAL.⁴

Size exclusion separations. PD-10 columns prepacked with Sephadex G-25 media (8.3 mL, 5 kDa MWCO) and VivaSpin500 concentrators (membrane with 3 kDa MWCO) were preequilibrated with 5 bed volumes of buffer, as per the manufacturers' manuals. Sample volumes ranged from 0.4 to 3.0 mL. For thermodynamic measurements, samples were equilibrated at least 1 h before elution. For PD-10 columns, the sample was injected, followed by addition of buffer (~12 mL), and eluted by gravity. The elution lasts 5-10 min. The macromolecules elute at ~3mL and the small molecules at ~6-9 mL. Individual fractions of 0.3 to 0.8 mL were collected and weighed for mass balance (0.1 mg accuracy). For spin filters, samples were centrifuged at 12,000×g, 20 min. Each fraction was radioanalyzed immediately after separation and monitored over time as needed. See ESI for radiopurity calculations.

Protein K_d determination by a radiometric- and dilution-based method. The solution thermodynamics stipulate that metal-ligand complexes dissociate at low concentrations:

$$Kd = \frac{[Metal]_{free} \times [Ligand]_{free}}{[Complex]}$$

In the presence of a large excess of ligand, $[Ligand]_{free} \approx [Ligand]_{total}$:

$$Kd = \frac{([Metal]_{total} - [Complex]) \times [Ligand]_{total}}{[Complex]}$$

$$[Complex] = \frac{[Ligand]_{total}}{Kd + [Ligand]_{total}} \times [Metal]_{total}$$

Size exclusion separations (pH 7.0, 10 mM HEPES + 90 mM NaCl, $22\pm0.5^{\circ}$ C, PD-10) were performed with varying LanM and metal concentrations. The initial solutions of 228 Ac/ 228 Ra were aged 28 days to avoid any contamination with 224 Ra and its daughters. At least 15 independent column separations were performed for both 90 Y/ 90 Sr and 228 Ac/ 228 Ra (12-15 fractions per column). Each fraction was measured over time by LSC to confirm the radionuclide identity. 90 Sr and ²²⁸Ra were used as internal tracers. Each column separation allows determination of the fraction of bound and unbound Y^{3+} (Table S2) or Ac^{3+} (Figure 4e). As the metal and/or protein concentrations decrease, lower radiolabeling yields are observed for Y^{3+} and Ac^{3+} , albeit at different levels. Knowing the metal partition and the total concentrations, each column experiment allows evaluating the formation of the metal-protein complex. Speciation calculations were performed with the computer program $HySS^5$ and taking into account the metal hydrolysis constants.⁶ Under the studied conditions the metal hydroxide species account for <1% for Ac^{3+} and <15% for Y^{3+} . The reported log $\beta(M_3LanM)$ are the average of at least 15 column experiments (±1 σ).

Protein K_d determination by CD. The conformational response of LanM in the presence of EGTA-buffered La(III) and EDDS-buffered Y(III) solutions was measured using circular dichroism as previously described.¹

Stability of La(III)-LaMP1 in serum. A solution of 10 mM LaCl₃ was added to 140 μ M LaMP1 to a final metal:protein ratio of 2:1 and incubated at room temperature for 10 min. Buffer A (20 mM MOPS-KOH, 140 mM NaCl, pH 7.4, sterile filtered) and sterile-filtered human serum were individually incubated at 37° C. La(III)-LaMP1 or apo-LaMP1 was added to pre-warmed buffer A to 4 μ M, mixed 1:1 with serum, and incubated at 37° C. At each time point, 100 μ L of each reaction mixture was placed in a Greiner 96-well μ CLEAR half-area plate and assayed on a BioTek Synergy H1 plate reader with 433 nm excitation and 460-550 nm emission (1 nm steps). FRET ratios were calculated by taking the ratio of an average of three wavelengths at the peak of each fluorophore emission (474-476 nm for ECFP and 528-530 nm for EYFP).

Radiopurity calculations. The purity of the ²²⁸Ac and ⁹⁰Y fractions was evaluated based on the decay profile determined by liquid scintillation counting (LSC), using the total counts (0-2000 keV Page **27** of **46**

for β , 0-1000 keV for α), to take into account all the isotopes eventually present. Decay curves contained 25-65 points, each corresponding to an LSC measurement and individual background. Decay curves were fitted with the following function.

$$A_{total} = A_{initial} \times e^{-\lambda \times t} + A_{Residual}$$

Since ⁹⁰Sr and ²²⁸Ra have far longer half-lives than ⁹⁰Y and ²²⁸Ac, their activity remains constant and can be determined from the residual activity after the decay of initial ⁹⁰Y and ²²⁸Ac, respectively. Due to the secular equilibria ⁹⁰Sr/⁹⁰Y and ²²⁸Ra/²²⁸Ac, the residual activity corresponds to twice that of ⁹⁰Sr or ²²⁸Ra, if present. For example:

$$A_{total} = {}^{228}Ac_{initial} + {}^{228}Ra + {}^{228}Ac_{regenerated}$$

$$A_{Residual} = {}^{228}Ac_{regenerated} + {}^{228}Ra = 2 \times {}^{228}Ra$$

The fitted values of A_{initial} and A_{residual} are directly linked to the purity of initial sample.

Radiopurity
$$(t = 0) = \frac{A_{initial} - A_{Residual}/2}{A_{initial}}$$

212**PO**

299 ns

Figure S1. Decay chains comprising the main actinium isotopes. Top: U-233 series leading to Ac-225. Middle: U-235 series leading to Ac-227. Bottom: Th-232 series leading to Ac-228. Important isotopes controlling the activity of the actinium isotopes have been highlighted (Color code: green ≥ 1 hour; yellow ≥ 1 day; blue ≥ 1 year; pink ≥ 100 years; grey = stable).

Figure S2. ⁹⁰**Y**/⁹⁰**Sr purification using LanM.** Radioactivity of the low-molecular-weight fraction measured by liquid scintillation after elution of an ⁹⁰Sr/⁹⁰**Y** solution, initially at secular equilibrium, in the presence of LanM (See Figure 2 for corresponding protein fraction). [LanM] = 50 μ M. Buffer: 90 mM NaCl, 10 mM HEPES, pH = 7.0. Left: Full energy window (0-2000 keV). Right: High-energy window (500-2000 keV). ⁹⁰Sr is a low-energy β emitter while ⁹⁰Y is a high-energy β emitter. The absence of activity in the high-energy window just after separation (right) confirm the quantitative removal of ⁹⁰Y by LanM from the initial pair ⁹⁰Sr/⁹⁰Y. As predicted by the Bateman equation, pure ⁹⁰Sr regenerates ⁹⁰Y, due to a new secular equilibrium. The doubling of the activity after ~600 hours in the full energy window (left) further confirms the quantitative separation of ⁹⁰Sr and ⁹⁰Y using the one-step LanM-based method.

Figure S3. Radiopurity of ⁹⁰**Y and** ²²⁸**Ac fractions.** Radioactive decay profiles for the LanM fractions obtained after size exclusion separation (PD-10) of ⁹⁰Sr/⁹⁰Y (left) and ²²⁸Ra/²²⁸Ac solutions (right). See main text and Figure 2 for details. The dotted lines correspond to the model decay curves for ⁹⁰Y and ²²⁸Ac at different radiopurity levels. The error bars correspond to at least $\pm 2\sigma$.

Figure S4. Binding assays between human apo-transferrin (Tf) and 90 Y(III) or 228 Ac(III). Samples were prepared in a buffer suitable for transferrin binding to trivalent f-elements: pH = 7.4, 10 mM synergistic sodium carbonate, 10 mM HEPES, 90 mM NaCl. Samples were incubated at room temperature for at least 2 hours before being eluted through a PD-10 size exclusion column and analyzed by liquid scintillation counting. Activities are corrected to the time of separation between the protein and low-molecular weight components. Less than 8% of the targeted isotope was observed in the transferrin fraction in all cases. Some activity could be due to non-specific binding to transferrin.

Figure S5. Aging of natural thorium sources (232 Th) and in-growth of its radioactive daughters. Left: Total activity (232 Th + daughters) over time. **Right:** Individual contribution of the daughters over time, starting from a pure 232 Th source. The initial activity was arbitrarily set at 1 mCi (or 37 MBq) of 232 Th. The activity of each isotope was calculated using the Bateman equation and the half-lives values compiled by National Nuclear Data Center (https://www.nndc.bnl.gov/ensdf/).

Figure S6. Ageing of radium sources. A) Theoretical evolution of the radioactivity of a ²²⁸Ra sample over time. Initial activity arbitrary set to 100 MBq of pure ²²⁸Ra. B) Theoretical evolution of the radioactivity of a pure ²²⁴Ra sample over time. C) Theoretical evolution of the radioactivity of a mixture of ²²⁴Ra and ²²⁸Ra, initially pure. **D**) Calculated evolution of the radioactivity for a ²³²Th sample initially at secular equilibrium but from which the thorium and actinium isotopes (²³²Th + ²²⁸Th + ²²⁸Ac) have been selectively removed, leaving ²²⁸Ra, ²²⁴Ra and its six short-lived daughters (²²⁰Rn, ²¹⁶Po, ²¹²Pb, ²¹²Bi, ²¹²Po, ²⁰⁸Tl). From its minimum value at ~28 days, the activity will continuously increase (by about +250%) for the next 4 years and then decay. E) Typical activity profile experimentally measured by liquid scintillation counting for Ra/Ac solutions prepared by precipitation of aged ²³²Th at pH 7. A minimum activity at 28

Days

days was systematically observed followed by the in-growth of ²²⁸Th and its daughters. **F**) Distribution of the alpha and beta emitters over time for a ²²⁸Ra/²²⁸Ac solution obtained following precipitation of aged ²³²Th at pH 7.

Figure S7. Process scheme for the periodic production of ²²⁸Ac solutions form ²³²Th using LanM. Typically, 3 g of Th(NO₃)₄·nH₂O was dissolved in 15 mL of water and stirred to obtain a clear solution (pH ≈ 2.5). Approximately 3 mL of 6 M NaOH was added dropwise under vigorous stirring while monitoring the pH. A thick white precipitate appears starting at pH ~4. The pH of the solution was carefully adjusted to 7.0±0.5 and maintained for at least 30 min. The slurry was then centrifuged at 9,000×g for 30 min. The filtrates are recovered. For additional ²²⁸Ra recovery, the precipitate can be washed with 10 mL of H₂O. Additional washes do not significantly improve the recovery yield. S = solid. L = liquid.

Figure S8. Process scheme of a hydrometallurgical method previously proposed to extract ²²⁸Ac **from bulk** ²³²**Th.** The details of this method have been published elsewhere.⁷

Figure S9. Gamma analysis of ²²⁸Ac obtained by LanM-based purification method. Green trace: Gamma spectra of an aged ²³²Th solution showing the presence of short-lived decay products. Ac = ²²⁸Ac, Ra = ²²⁴Ra, Pb = ²¹²Pb, Bi = ²¹²Bi, Tl = ²⁰⁸Tl. Pink trace: Gamma spectra of the LanM fraction analyzed after elution of a ²²⁸Ra/²²⁸Ac solution (obtained by precipitation of the initial ²³²Th solution at pH 7), initially at secular equilibrium, in the presence of LanM. [LanM] = 25 μ M. Buffer: 90 mM NaCl, 10 mM HEPES, pH = 7.0. Separation device: size exclusion column PD-10. The sample was analyzed about 3 hours after elution. Blue trace: Same sample reanalyzed after ~66 hours. The quantitative decay is what is expected for ²²⁸Ac (Half-life = 6.1 hours).

Figure S10. **Separation** ²²⁸**Ac**/²²⁸**Ra**/²²⁴**Ra using LanM. A**) Elution profile of a ²²⁸Ra/²²⁴Ra/²²⁸Ac solution in the presence of LanM. [LanM]_{initial} = 40 μ M. [²²⁸Ac]_{initial} = 25 fM. Buffer: 90 mM KCl, 10 mM HEPES, pH = 7.2. ²²⁸Ra is a low-energy beta emitter. ²²⁴Ra is an alpha emitter. ²²⁸Ac is a high-energy beta emitter. The curves showed in panel A are indicative of the total separation between Ra and Ac isotopes. Note that pure Ac-228 inherently gives some counts in the low-energy window (green curve) due to the continuous nature of the beta emission. B) Activity profile monitored at regular intervals for ~60 hours (About ten ²²⁸Ac periods). C) Radioactive decay profile confirming the presence of ²²⁸Ac and absence of other isotopes in the protein fraction. Dotted lines are modelled decay curves for ²²⁸Ac (t_{1/2} = 6.14 hours) at different radiopurity levels.

Figure S11. Calculated concentration at which lanmodulin (solid curve) or transferrin (dotted curve) would release actinium, at pH 7.4. Left: [Protein]_{total} = 1 mM. Right: [Protein]_{total} = 1 μ M. The calculations are based on the experimentally determined stability constant of Ac₃LanM (log β_{31} = 36.2) and that of Ac₂Transferrin estimated (log β_{21} = 10.9 – See Figure S18) in the present study. Transferrin starts releasing actinium at concentrations about 9 orders of magnitude before lanmodulin. Calculations were performed with the computer program *Hyperquad Simulation and Speciation*.⁵

Figure S12. Determination of the stability of ^{nat}**Y**₃**LanM and** ^{nat}**La**₃**LanM by CD.** LanM exhibits a nearpicomolar affinity for both La^{III} and Y^{III} at pH 7.0. [θ_{222nm}] was monitored at various chelator-buffered free metal concentrations using CD spectroscopy, and data were fitted using the Hill equation to determine $K_{d.app}$ and Hill coefficient (*n*). (left) LanM-Y^{III}, EDDS (right) LanM-La^{III}, EGTA. Buffer: 10 mM HEPES, 90 mM NaCl, pH 7.0. T = 22 °C.

Figure S13. Comparison of the experimental results with speciation models for ²²⁸Ac/LanM complexes of different stoichiometry with the same average affinity per binding site.

Figure S14. Stability constant, log β_{11} , for medically relevant small chelators with early lanthanides and actinium. The variation of log β_{11} as a function of the ionic radius of the metal indicates a decrease in complex stability as the cation gets larger. DOTA = 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid. DTPA = Diethylenetriaminepentaacetic acid. EDTA = Ethylenediaminetetraacetic acid. HOPO = 3,4,3-LI(1,2-Hydroxypyridinonate). The stability constant for [Ac^{III}EDTA]⁻ (log β_{11} = 14.2) was taken from Makarova et al.⁸ No other stability constant for a complex of actinium with an organic chelator has been experimental determined. The ionic radius values were taken from the review published by Shannon⁹ and are given for a coordination number of 6. Values for Ln(III)-HOPO have been previously summarized and the log β_{110} for Ac(III)-HOPO was estimated to be weak, in the range of 10 to 14.¹⁰

Figure S15. Metal selectivity of small chelators and LanM. Comparison of the thermodynamic selectivity of lanmodulin and medically relevant chelators (transferrin, EDTA, DTPA, DOTA, citrate, acetate) for lanthanum (La³⁺) and yttrium (Y³⁺) against endogenous cations (Ca²⁺, Cu²⁺, Zn²⁺). In this context, lanthanum is taken as analogue for actinium (Ac³⁺) as the stability constants for Ac³⁺ with the chelators are unknown (except EDTA⁸ and LanM, this work). Note that the Y-axis is a log scale ($\Delta \log K$). K is the formation constant of the 1:1 metal-chelator complexes. A value of zero for $\Delta \log K$ corresponds to no selectivity. A $\Delta \log K$ value of 1 indicates a 10-fold higher affinity for La³⁺ over the other cation, a $\Delta \log K$ of 2 indicates a 100-fold higher affinity for La³⁺, etc. Negative values indicate a preference for the other cation over La³⁺. Stability constants, other than for LanM, were taken from the NIST Critical database.¹¹ The stability constant for LanM were taken from Cotruvo et al. and Deblonde et al.^{1,12}

Figure S16. Dual radiolabeling of LanM with ²²⁸Ac and ⁹⁰Y obtained, after 1 elution, from a mixture of ²²⁸Ac/²²⁸Ra/⁹⁰Sr/⁹⁰Y. **A**) Elution profile. **B**) Radioactive decay curve of the protein fraction. The results indicate that only ²²⁸Ac and ⁹⁰Y were bound to LanM. The other isotopes (⁹⁰Sr, ²²⁸Ra) were carried into the low molecular weight fraction. Size exclusion column: Sephadex PD-10. T = 22°C. Buffer: pH 7.0, 90 mM NaCl, 10 mM HEPES. Blue circles: experimental data. Solid curve: Calculated total activity for a mixture of pure ²²⁸Ac and ⁹⁰Y. Dotted lines: calculated individual contributions of ²²⁸Ac and ⁹⁰Y.

Figure S17. Calculated evolution of the activity delivered by a mixture of radioisotopes, ²²⁸Ac and ⁹⁰Y, as a function of time. Variation of the initial ratio allows modulating the duration of the dose as well as the dose profile.

Figure S18. Stability of the actinium complex with transferrin. Empirical correlation between the stability constant of transferrin complexes (M₂Transferrin) and the Lewis acidity of the cation. The blue dots correspond to published log β_{21} values for various complexes of transferrin¹³, plotted as function of the first hydrolysis constant of the metal ion.⁶ Based on the periodic trend, the log β_{21} for Ac₂Transferrin is estimated to be 10.9.

Figure S19. Recovery of actinium bound to lanmodulin. Recovery yield for ²²⁸Ac(III) bound to LanM using HCl pH 1, HNO₃ pH 1, EDTA 10 mM at pH 7, or DTPA 10 mM at pH 7. A solution containing ²²⁸Ac(III) bound to LanM was split into four identical aliquots, diluted into solutions containing HCl, HNO₃, EDTA, or DTPA, and incubated for 15 min. [LanM] = 10 μ M. The samples were then centrifuged using a size exclusion filter (12,000xg, 20 min, VivaSpin500, MWCO = 3 kDa) and the low-molecular weight fraction was analyzed by liquid scintillation counting. The results indicate that ²²⁸Ac(III) was quantitively recovered from LanM in the four conditions tested, yielding protein-free solutions of actinium. Control tests without competing chelator and pH>3 showed that when the radioisotope is bound to LanM no significant activity passes through the size exclusion filter owing to the large size of LanM (M \approx 12 kDa).

Figure S20. The La(III)-LaMP1 complex exhibits good stability in serum. LaMP1 (2 μ M), either apo or in the presence of 4 μ M La(III), was incubated at 37 °C in 50% human serum for 24 h. The ECFP/EYFP FRET ratio was calculated at each time point. As we have shown previously,² the FRET ratio of the lanthanum-bound sensor is higher than the apo sensor. The La(III)-LaMP1 FRET ratios shown here were converted to fraction of the initial ratio in Figure 5H, revealing only a slight decrease (~5%) over 24 h. The stable apo-LaMP1 FRET signal indicates negligible proteolysis under these conditions. Error bars correspond to 1 σ from triplicate measurements. Note that the thermodynamic stability of the La₃LanM complex is about 5× higher than that of its corresponding LaMP1 complex.

Table S1. Amounts of actinium isotopes present in long-lived radionuclides. For comparison purposes, the masses and equivalent radioactive quantities are given for 1 gram of initially pure parent isotope, after 10 years, and at secular equilibrium.

Parent isotope	1 gram of pure parent isotope equals to this amount of radioactivity (μCi)	Actinium daughter	After 10 years, secular equilibrium with actinium is completed at:	In-growth of actinium daughter after 10 years (μCi)	Mass of actinium isotope after 10 years (g)	Time to reach 90% of secular equilibrium with actinium daughter	Mass of actinium isotope at secular equilibrium (g)
Th-232	0.110	Ac-228	70%	0.077	3.5E-14	~19 years	4.9E-14
U-235 ^a	2.2	Ac-227	<0.00003 %	7E-7	9.2E-15	~110,000 years	3.0E-8
Pa-231 ^b	47,000	Ac-227	27%	12,800	1.8E-04	~73 years	6.5E-04
U-233 ^c	9,600	Ac-225	0.093%	9.0	1.5E-10	~22,000 years	1.6E-07
Th-229 ^d	196,000	Ac-225	100%	196,000	3.4E-06	~70 days	3.4E-06

a: Note that natural uranium only contains ~0.72% of U-235; along with 99.27% of U-238 and <0.01% of U-234.

b: Pa-231 is naturally present in natural uranium deposits, but only at trace levels as it is a decay product of U-235. Only a handful of institutions in the world currently possess concentrates of Pa-231.

c: U-233 does not occur naturally. U-233 materials, as well as enriched U-235 materials, are highly regulated due to potential nuclear weapons proliferation issues.

d: Th-229 does not occur naturally. It can be harvested from decades-old U-233 sources.

Table S2. Size exclusion column separations performed with ${}^{90}Y/{}^{90}Sr$ in the presence of LanM. Samples were eluted through a PD-10 size exclusion column (8.3 mL, MWCO = 5 kDa) at various metal and protein concentrations. Series of 10 to 15 fractions were collected for each column experiment. Each fraction was analyzed by liquid scintillation counting in order to determine the partition of ${}^{90}Y$ and ${}^{90}Sr$ between the protein fractions and the low molecular weight fractions. For each column, speciation calculations of the system Y(III)-H₂O-LanM allows the determination of the stability constant of Y₃LanM. Calculations were performed with the computer program *Hyperquad Simulation and Speciation*⁵ taking into account the hydrolysis constant of Y(III). The contribution of the hydroxide species was lower than 5% under these conditions. Buffer: 10 mM HEPES, 90 mM NaCl, pH = 7.0.

[⁹⁰ Y] (mol/L)	[LanM] (mol/L)	%LanM bound	%Unbound	Obtained log β(Y ₃ LanM)	Corresponding K _d (in pM)
1.22E-11	5.00E-05	>95.8%	4.2%	>30	<100
6.11E-14	1.00E-06	78.0%	22.0%	34.0	4.6
6.11E-15	1.00E-06	51.6%	48.4%	34.8	2.5
1.22E-14	1.00E-09	4.7%	95.3%	<36	>1
3.05E-14	1.00E-06	72.0%	28.0%	34.3	3.7
3.05E-14	1.00E-07	62.6%	37.4%	34.8	2.5
3.05E-14	1.00E-08	11.1%	88.9%	34.0	4.6
3.05E-14	1.00E-05	79.7%	20.3%	33.7	5.8
6.11E-14	1.00E-05	84.6%	15.4%	33.6	6.3
6.11E-14	2.00E-05	83.1%	16.9%	33.2	8.6
6.11E-14	2.00E-05	86.7%	13.3%	33.5	6.8
6.11E-14	2.00E-05	91.7%	8.3%	34.0	4.6
6.11E-14	2.00E-05	84.5%	15.5%	33.3	7.9
6.11E-14	2.00E-05	91.8%	8.2%	34.0	4.6
2.04E-12	2.00E-05	98.7%	1.3%	>33	<10
			Average	33.9	4.31
			StDev	0.5	1.5

References

- Cotruvo, J. A. Jr., Featherston, E. R., Mattocks, J. A., Ho, J. V. & Laremore, T. N. Lanmodulin: A Highly Selective Lanthanide-Binding Protein from a Lanthanide-Utilizing Bacterium. *J. Am. Chem. Soc.* 140, 15056–15061 (2018).
- 2. Mattocks, J. A., Ho, J. V. & Cotruvo, J. A. Jr. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements. *J. Am. Chem. Soc.* **141**, 2857–2861 (2019).
- Featherston, E. R., Mattocks, J. A., Tirsch, J. L. & Cotruvo, J. A. Chapter Six Heterologous expression, purification, and characterization of proteins in the lanthanome. in *Methods in Enzymology* (ed. Cotruvo, J. A.) vol. 650 119–157 (Academic Press, 2021).
- Gunnink, R., Ruhter, W. D. & Niday, J. B. Operations guide for GRPANL (GRouP ANaLysis): A suite of computer programs for analyzing complex Ge and alpha-particle detector spectra: Volume 2. https://www.osti.gov/biblio/6775430 (1988).
- Alderighi, L. *et al.* Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. *Coordination Chemistry Reviews* 184, 311–318 (1999).
- Brown, P. L. & Ekberg, C. Actinide Metals. in *Hydrolysis of Metal Ions* 325–432 (John Wiley & Sons, Ltd, 2016). doi:10.1002/9783527656189.ch9.
- 7. Aldrich, K. E. et al. Preparation of an Actinium-228 Generator. Inorg. Chem. 59, 3200-3206 (2020).
- Makarova, T. P., Sinitsyna, G. S., Stepanov, A. V., Shestakova, I. A. & Shestakova, B. I. Complex formation of actinium. I. Determination of the stability constants of ethylenediaminetetraacetate complexes of actinium and its separation from lanthanum in solutions of EDTA by the method of electromigration. *Soviet Radiochemistry* 14, 555–557 (1972).
- Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. *Acta crystallographica* A32, 751–767 (1976).

- Deblonde, G. J.-P., Ricano, A. & Abergel, R. J. Ultra-selective ligand-driven separation of strategic actinides. *Nat Commun* 10, 2438 (2019).
- 11. Johnson, S. G. NIST46 NIST Critically Selected Stability Constants of Metal Complexes: (2013).
- 12. Deblonde, G. J.-P. *et al.* Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. *Inorg. Chem.* **59**, 11855–11867 (2020).
- Sun, H., Li, H. & Sadler, P. J. Transferrin as a Metal Ion Mediator. *Chem. Rev.* 99, 2817–2842 (1999).