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Abstract:  Nanomaterials of various morphologies and chemistry have an extensive use as photonic 
devices, advanced catalysts, sorbents for water purification, agrochemicals, platforms for drug de-
livery as well as imaging systems to name a few. However, search for synthesis routes giving custom 
nanomaterials for particular needs with the desired structure, shape, and size remains a challenge 
and is often implemented by manual research articles screening. Here, we develop for the first time 
scanning and transmission electron microscopy (SEM/TEM) reverse image search and hand draw-
ing-based search via transfer learning (TL), namely, VGG16 convolutional neural network (CNN) 
repurposing for image features extraction and subsequent image similarity determination. Moreo-
ver, we demonstrate case use of this platform on calcium carbonate system, where sufficient 
amount of data was acquired by random high throughput multiparametric synthesis, as well as on 
Au nanoparticles (NPs) data extracted from the articles. This approach can be not only used for 
advanced nanomaterials search and synthesis procedure verification, but also can be further com-
bined with machine learning (ML) solutions to provide data-driven novel nanomaterials discovery.

 

Nanomaterials are widely used as photonic devices, advanced catalysts, sorbents for water purifi-
cation, agrochemicals, platforms for drug delivery etc. due to its ability to control the shape, size, 
morphology, surface chemistry, and composition, which strongly influence its physicochemical 
properties as well as its biological behavior. Calcium carbonate represents an inorganic material 
with a huge potential in the formation of complex micro- and macrostructures, 1,2 which is evident 
from its wide use by the living organisms in the process of biomineralization, 3–5 thereby it is widely 
used in drug delivery, 6–9 photonics 10,11 etc. At the same time, gold nanomaterials are widespread 
in drug delivery and photonics mainly due to surface plasmon resonance 12, photothermal activity, 
13–15 and surface chemistry tunability, 16 which, coupled with the ability of precise shape control, 
17,18 makes it a promising nanomaterial for nanomedicine and physics. 

The ever-growing amount of experimental data devoted to nanomaterials properties and its syn-
thesis procedures creates a need for fully systematized data collection, storage, and precise search. 
Several annotated materials synthesis-related databases exist, 19–21 where the content is usually 
processed via natural language processing (NLP)-based text mining 22 allowing for either direct or 
inverse materials search from synthesis procedures to the outcome and vice versa, respectively. In 
the field of materials science, there is a need in inverse materials search since scientists are often 
puzzled over how to synthesize a material with desired properties prior to what one would get 
given the set of experimental conditions. To date, there are several solutions toward nanomaterials 
synthesis search such as, for example, Nano (https://nano.nature.com/) based on machine learn-
ing-driven automated procedures extraction from research articles, although their search is limited 
to the keywords. 

Electron microscopy (EM) remains one of the most demanded instruments for materials character-
ization giving the information about material morphology, size, as well as the shape. Controlling 
these parameters is of great importance 23 to obtain drug delivery systems (DDSs) with desired 
biodistribution in the organism,  which were shown to depend strongly on DDS size and shape, 24 
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photonic crystals with low polydispersity, drastically affecting its optical properties 25,26 etc. More-
over, TEM images give insights into the material crystallinity as well as an internal structuring al-
lowing to study core-shell and hollow structures composed of different crystalline phases. There-
fore, EM images represent meaningful synthesis outcomes, which can be used for reverse material 
search.  

The main question is how to distinguish the difference between two or more synthesis outcomes 
represented by SEM images. Pixel-by-pixel comparison via image distance calculation 27,28 is able to 
find exactly the same images but fails on other images of the same objects since it does not consider 
the relationships between the pixels, not to mention its high computational cost. Instead of pixels, 
image features invariant to some geometric transformations can be used. 29 For instance, Scale In-
variant Feature Transform (SIFT) can extract rotation-insensitive located image features on various 
scales, which then can be used for image similarity calculation via nearest neighbors. However, SIFT 
and other similar algorithms 30,31 suffer from low computation speed and are sensitive to bright-
ness/contrast as well as blurring. CNNs usually outperform such algorithms in feature extraction 
and subsequent classification tasks while being more robust. 32 In their work, Modarres et al. have 
implemented TL approach on Inception-v3 model pre-trained on ImageNet 2012 dataset for SEM 
images supervised classification. 33 Therefore, CNNs can be used for feature extraction and subse-
quent image similarity determination for reverse image search. Due to the lack of large amounts of 
experimental data in materials science, it is rather difficult to achieve sufficient training accuracy 
on only materials science datasets, that is why TL approach, which refers to the use of pre-trained 
ML models for another task, gains the momentum. In this Article, we develop EM reverse image 
search based on VGG16 CNN repurposing for automated image features extraction and subsequent 
image similarity determination. Furthermore, we demonstrate case use of this approach on calcium 
carbonate system, where sufficient amount of data was acquired via random high throughput mul-
tiparametric solution chemistry synthesis. Presented approach can be not only used for custom na-
nomaterials search and synthesis procedure verification, but also can be further equipped with ML 
solutions to provide data-driven novel nanomaterials discovery. 

Results and discussion 

To generate meaningful experimental data to form a database of synthesis routes and its outcomes, 
namely, scanning electron microscope (SEM) images showing micro-/nanoparticle morphology, 
size, and shape, random high throughput screening, namely was introduced on inorganic calcium 
carbonate system as a case use including materials synthesis, evaluation using SEM, and database 
expansion (Fig. 1a, 1b, and 1c, respectively). In particular, randomization of reagents volumes with 
fixed stock concentrations, coupled with the association of samples in small arbitrary groups of 
random synthesis parameters e.g., temperature, synthesis time etc. was implemented. To cover the 
vast majority of possible materials shapes, sizes, polydispersity, and surface morphologies, such 
parameters as synthesis time, temperature, stirring rate, concentrations of precursors e.g. calcium, 
carbonate, and bicarbonate ions, mass fraction of miscible/immiscible solvents e.g. methanol, hex-
anol, isopropyl alcohol (IPA), dimethylformamide (DMFA), propylene glycol, ethylene glycol (EG), 
tert-butyl alcohol, charged and uncharged polymers of various molar weights e.g. polyethylene gly-
col (PEG), polystyrene sulfonate (PSS), polyvinylpyrrolidone (PVP), polyethyleneimine (PEI), poly-
acrylic acid (PAA), and concentrations of differently-charged surfactants e.g. sodium dodecyl sul-
fate, Triton X-15, myristyltrimethylammonium bromide, cetrimonium bromide (CTAB), were var-
ied in a wide range as it can be seen from distribution box plots for each of the variables on Fig. S1.         
Randomization of these variables allows to exclude human bias as well as to include ‘negative’ out-
comes, which are very important for any subsequent ML but still under-represented in the majority 



 

of research articles. Accordingly, the database of >200 individual nanomaterials was collected (Fig.           
S2) consisting >20 unique shapes (Fig. 1d), and SEM image was assigned to every single synthetic 
procedure in the database as an outcome.  

To achieve reverse image search on SEM images and subsequent image label-based synthesis pro-
cedure retrieval from the database, image features extraction needs to be implemented, which is 
usually achieved by the utilization of encoder-decoder CNNs gradually compressing the image di-
mensions and trying to reconstruct it with unique features extracted from the images.  TL approach 
has been implemented in this work, namely, re-purposing of the widely used VGG16 CNN model 
(Fig. 2a) pre-trained on >14.000.000 images of macroscopic objects of as many as 20.000 catego-
ries for SEM image features extraction (Fig. 2b). VGG16 CNN consists of convolution, as well as 
pooling and fully connected dense layers. All these layers represent the mathematical transfor-
mation of the (1,224,224,3)-shaped input image pixel intensities, where convolution basically rep-
resents the application of filters to the groups of pixels thereby considering interrelations between 
the adjacent pixels, pooling compresses the image resulting in compressed image representation, 
and dense layers are usually used for further classification tasks. The last fully connected layer of 
shape (,4096) carries 4096 features generated for every single image, which are then compressed 
to 200 and used for cosine distance (eq. 1, cosine similarity of two n-dimensional vectors A and B) 
determination between the images represented as vectors in 200-dimensional feature space. To 
demonstrate that this model captures complex crystal morphologies on SEM images, several que-
ries were made resulting in top 3 the most similar images in the database (Fig. 2c). For instance, 
the model was able to find as simple shapes e.g., cubes, spheres, and spikes, as more complex e.g. 
urchins, flowers, and sphere aggregates even of comparable sizes, since the exact match is limited 
to the database size. Moreover, it can be seen that shape mixes are also recognized. To check the 
ability of this algorithm to reflect the shape abundancies as well as particle sizes, these parameters 
were calculated for query containing both spheres and cubes and cubes only as well as top 3 the 
closest SEM images in the database (Fig. 3a and 3b, respectively). The algorithm, indeed, reflects 
sphere abundancy in the query image equal to 71% trying to find the best match, where top 3 sim-
ilar images have this parameter equal to 87, 48, and 98% (Fig. 3c). Moreover, according to the 
sphere size distribution in query image of 1.66±0.19 µm as well as in top 3 most similar images, 
2.15±0.26, 1.88±0.40, and 2.55±0.39 µm (Fig. 3d), respectively, query results represent the com-
promise between particles shape and size. To minimize the impact of shape diversity, image query 
with cubes only has been examined, where the results of comparable sizes were suggested by the 
algorithm (Fig. 3e), namely, query results containing cubes with side lengths of 5.6 and 4.5, 5.2 and 
3.3, 8.35 and 5.2 µm for a query image with these parameters equal to 5.9 and 3.3 µm were obtained. 
It is important to note that the increased number of crystal defects going from the query image to 
the 3rd query result is observed (Fig. 3b, inset), which suggest this algorithm is sensitive to the 
surface morphology of the material. From the abovementioned, it can be concluded that this ap-
proach allows to search for the materials with the closest shape abundancies, size distributions, as 
well as material surface morphologies, where all the query results are ranked given the compromise 
between all of these parameters. 

To reveal further material insights captured by the algorithm, image data analysis was implemented 
following image augmentation through the generation of flipped copies of SEM images existing in 
the database. Principal component analysis (PCA) approach performed on the features     extracted  
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from the SEM images has shown the ability of the most representative shapes e.g. cubes, spheres, 
and spikes, to form distinguishable clusters (Fig. S3a). PCA is a dimension reduction technique, thus 
some valuable information in the form of feature variance may be lost when n-dimensional space 
is compressed to visualizable 2-dimensional one. Cumulative explained variance ratio (CEVR) of 2 
principal components equal to 28% suggests that the majority of data variance is preserved during 
the transformation (Fig. S4). K-nearest neighbors (kNN) algorithm implemented on full augmented 
SEM image dataset allowed to also identify 3 distinctive clusters, which does not correspond with 
the number of shapes presented in the dataset. These findings, together with the existence of cal-
cium carbonate in 3 main stable crystalline phases as well as literature data indicating spheres are 
usually consist of vaterite phase, 1,34 cubes – of calcite, 35,36 and spikes – of aragonite, 35,37 suggest 
that this algorithm probably not only detect the material shape, size, and surface morphology, but 
also the crystalline phase, where the latter dictates the listed parameters. Therefore, this 2-dimen-
sional scatter plot can be potentially interpreted as a material phase diagram, however, more thor-
ough investigations are needed, which is out of the article scope. 

To show the versatility of the developed approach as well as its indifference to the material used, 
its size, as well as the type of the image, this concept was verified on transmission electron micros-
copy (TEM) images of gold nanoparticles (Au NPs) of six shapes e.g., sphere, cube, rod, dumbbell, 
trigonal, and amorphous (Fig. 4a) widely used mainly due to their shape-dependent surface plas-
mon resonance and optical properties, manually extracted from the articles. Algorithm was able to 
find the most similar images in the collected set of 15 TEM images (Fig. 4b). For instance, all rod-
like shapes presented in the image set were found, while the 3rd query result is turned out to be the 
best of the worst having the value of cosine distance equal to 1.00, while this parameter of the 1st 
and 2nd query results is equal to 0.37 and 0.52, respectively. The big cosine distance between the 
query image and 1st result can be explained by the big difference in NPs lengths (74.3±6.2 and 
63.7±5.5 nm, respectively) and widths (19.8±1.4 and 11.9±1.2 nm, respectively). Moreover, size 
sorting of 2 query results containing trigonal and spherical Au NPs of different mean size 14.7±2.1 
and 9.5±1.4 nm was observed (Fig. 4c), where scale bars were included in the images, thereby being 
included in the image features, and considered during image similarity determination. 

To make step beyond the synthesis verification towards the customized inverse material queries, 
drawing-based inverse material search was demonstrated for the first time. First, Canny contour 
detection was implemented on the set of pre-processed with contrasting and Gaussian blurring cal-
cium carbonate-based nanomaterials SEM images to generate hand drawing-like images for further 
image similarity determination (Fig. 5a). To examine, whether this approach is feasible, two que-
ries comprising simple crystal shapes, namely, spheres and cubes, were made (Fig. 5b). It is im-
portant to note that the algorithm was able to find the closest SEM image in the dataset for a given 
query with spheres. Moreover, it can be seen that going from the 1st to the very last query result is 
accompanied by the change in sphere morphology as well as its size and shape (Fig. 5b, inset) be-
coming less and less similar to the hand drawn query. More complex query comprising cubes with 
surface defects has also resulted in a successful search for similar samples even of close sizes, where 
facet defects were changing from the 1st to the last query result. Therefore, hand drawing-based 
inverse material search is demonstrated. 

Hence, in this study, a novel approach towards the synthesis verification by inverse EM image 
search and customized drawing-based material query for custom inverse material search is intro-
duced for the first time. TL, namely, VGG16 CNN pre-trained on >14 million images re-purposing 
was implemented for SEM/TEM image feature extraction and subsequent image similarity deter-
mination. Case use of this approach on >200 manually synthesized by random high-throughput 



 

screening calcium carbonate-based nanomaterials of >20 various shapes, sizes, and surface mor-
phologies, as well as on Au NPs of >6 shapes extracted from the research articles was demonstrated, 
thereby proving approach versatility. It was shown that Canny contour detection enables one to 
implement hand drawing-based query introducing customized inverse material search with the de-
sired shapes, sizes, and surface morphologies. Developed approach can be not only utilized for ad-

vanced nanomaterials search and synthesis procedure verification, but also can be further equipped with 

machine learning (ML) solutions to provide data-driven novel nanomaterials discovery. 
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CEVR, cumulative explained variance ratio; CNN, convolutional neural network; CTAB, cetrimonium 
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idone; SEM, scanning electron microscope; SIFT, scale invariant feature transform; TEM, transmis-
sion electron microscopy; TL, transfer learning. 
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Figure 1. Random high throughput multiparametric synthesis of calcium carbonate-based nanomaterials 

and database development. 
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Figure 2. VGG16-based transfer learning for image features extraction and subsequent reverse SEM im-

age search based on image similarity. 
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Figure 3. Size distribution of the closest samples based on SEM image similarity. 
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Figure 4. Proof-of-concept demonstration of algorithm work on differently sized Au NPs of six shapes 

(a), namely, shape (b) and size (c) differentiation. 
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Figure 5. Hand drawing-based reverse image search. A) contour detection implementation (1 – con-

trasting and denoising; 2 – binarization; 3 – edge detection; 4 – contour detection) and B) reverse search 

on hand drawn spheres and cubes. 


