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AutoDock Vina is arguably one of the fastest and most widely
used open-source docking engines. However, compared to other
docking engines in the AutoDock Suite, it lacks features that
support modeling of specific systems such as macrocycles or
modeling water explicitly. Here, we describe the implemen-
tation of these functionality in AutoDock Vina 1.2.0. Addi-
tionally, AutoDock Vina 1.2.0 supports the AutoDock4.2 scor-
ing function, simultaneous docking of multiple ligands, and a
batch mode for docking a large number of ligands. Further-
more, we implemented Python bindings to facilitate scripting
and the development of docking workflows. This work is an ef-
fort toward the unification of the features of the AutoDock4 and
AutoDock Vina docking engines. The source code is available at
https://github.com/ccsb-scripps/AutoDock-Vina
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Introduction

AutoDock Vina (Vina)1 is one of the docking en-
gines in the AutoDock Suite2, together with AutoDock4
(AD4)3, AutoDockGPU4, AutoDockFR5, and AutoDock-
CrankPep6. Vina is arguably among the most widely used
docking engines, probably because of its ease of use and
speed, when compared to the other docking engines in the
suite and elsewhere, as well as being open source.
Research groups around the world have modified and built
upon the Vina source code, improving the search algorithm
(QuickVina27), made the interface more user friendly and al-
low modification of scoring terms through the user interface
(Smina8), and improved the scoring function for carbohy-
drate docking (Vina-Carb9), halogen bonds (VinaXB10), as
well as ranking and scoring (Vinardo11).
Beside these valuable developments, there are still several
methods within the AutoDock Suite that are not available in
Vina because they have been implemented specifically for ei-
ther the scoring function or the docking engine in AD4. Ex-
amples of such methods include docking with macrocyclic
flexibility12, specialized metal coordination models13, mod-
eling of explicit waters14, coarse-grained ligand models15,
and ligand irreversible binding16. Despite being a less effi-
cient docking engine, AD4 allows the user to modify a large
number of docking parameters, providing direct access to
some of the engine internals, making it well-suited for the
development of new docking methods. Conversely, the Vina
interface is highly specialized and optimized, and one of its
hallmarks is the very limited amount of user input necessary
to perform a docking. In turn, this makes it impossible to im-

plement additional functionality without significant changes
in the source code.
The usefulness of such specialized methods is hindered by
the poor search efficiency of AD4. In fact, AD4 can be up
to 100x slower than Vina1, depending on the search com-
plexity. The large performance difference is due to the bet-
ter search algorithm used in Vina, a Monte-Carlo (MC) iter-
ated search combined with the BFGS17 gradient-based op-
timizer. In comparison with the Lamarckian Genetic Algo-
rithm (LGA) and Solis-Wets local search of AD43, the search
efficiency of Vina leads to better docking results with fewer
scoring function evaluations.
We implemented some of the specialized AD4 features in
the Vina source code, enabling their use of the powerful
MC/BFGS search algorithm. Then, we further extended the
Vina engine enabling simultaneous docking of multiple lig-
ands, and adding Python bindings to facilitate programmatic
access to the docking engine functionalities.

Scoring function extensions and improve-
ments
AutoDock4.2 scoring function. One major improvement
is the availability of the AD4 scoring function in Vina. This
allows users to access it using the Vina MC-based search al-
gorithm and explore with equal efficiency its energy land-
scape. This will likely facilitate large-scale consensus dock-
ing virtual screening campaigns18,19.
The AD4 and Vina scoring functions are quite different.
AD4 uses a physics-based3 model with van der Waals, elec-
trostatic, directional hydrogen-bond potentials derived from
an early version of the AMBER force field3,20, a pairwise-
additive desolvation term based on partial charges, and a
simple conformational entropy penalty. On the other hand,
Vina lacks electrostatics and solvation1, and consists of a van
der Waals-like potential (defined by a combination of a re-
pulsion term and two attractive gaussians), a non-directional
hydrogen-bond term, a hydrophobic term, and a conforma-
tional entropy penalty.
Performance-wise, the average time required to perform en-
ergy evaluations with the AD4 scoring function is nearly 3x
larger than with the Vina scoring function. This is due to the
presence of additional electrostatic and desolvation maps that
need to be interpolated for each movable atom.

Grid map files support. Both AD4 and Vina calculate in-
termolecular interactions by performing trilinear interpola-
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tions of grid maps pre-calculated on the target structure. Vina
also uses the target structure to perform a post-processing
minimization of the docked poses. In AD4, maps are pre-
calculated using a separate program (AutoGrid2) prior to
docking and loaded at runtime, while Vina calculates them
on-the-fly prior to running the MC search. The availability
to accessible grid map files generated by AutoGrid provided
the foundations for a number of specialized methods, such
as the zinc-coordination potentials in the AutoDock4Zn force
field13, biasing docking using information from molecular
dynamics simulations in AutoDock-Bias21, and the integra-
tion of Grid Inhomogenous Solvation Theory (GIST)22–24 in
AutoDock-GIST25.
In AutoDock Vina 1.2.0 we added the support to optionally
load external grid map files, enabling all these methods in
both the AD4 and Vina scoring functions. These methods
can be applied by following the existing protocols to prepare
target structures and the corresponding grid maps, then re-
place the AutoDock4 binary with the new version of Vina.
The availability of reading and writing maps facilitates the
development of similar methods for the Vina scoring func-
tion.

New atom types. We extended both the Vina and AD4
scoring functions to support new atom types for atoms and
pseudo-atoms as required by the hydrated docking method
and the macrocycle sampling methods. These atom types are
implemented in the source code. Additionally, we also added
parameters for silicon to address user requests for better sup-
port to the chemical space covered in public repositories such
as the ZINC database26.

New docking methods
We increased the number of the docking methods available in
Vina leveraging the availability of new atom types, the possi-
bility of specifying grid map files to be used during docking,
and by extending the existing code.

Simultaneous multiple ligand docking. Vina is now able
to dock simultaneously multiple ligands. This functionality
may find application in fragment based drug design, where
small molecules that bind the same target can be grown or
combined into larger compounds with potentially better affin-
ity.
The protein PDEδ in complex with two inhibitors (PDB
5x72)27 was used as a proof of concept to test the ability of
Vina to successfully dock multiple ligands simultaneously.
The two inhibitors in this structure are stereoisomers, and
only the R-isomer is able to bind in a specific region of the
pocket, while both the R- and S-isomers can bind to the sec-
ond location. Using the Vina scoring function, the best set
of poses (top 1) shows an excellent overlap with the crys-
tallographic coordinates for one of the isomers, and reason-
able overlap with the electron density for the other isomer,
which shows some degree of ambiguity (Fig. 1 A). Using the
AutoDock4 scoring function, similar performance in over-
lapping the crystallographic poses is found, but only when

considering the first two sets of poses (top 2).

Hydrated docking. The hydrated docking protocol14 has
been developed to model waters directly involved in the
ligand-receptor interaction. The method is based on dock-
ing ligands explicitly hydrated with spherical waters, and can
be used to predict the position and the role (i.e., bridging or
displaced) of individual water molecules and generally im-
prove ligand pose predictions. Waters are represented by a
single atom of type W, and are added to the ligand molecule
at the end of each hydrogen bond vector. During docking,
W atoms move along with the ligand, do not contribute to
intramolecular interactions, and are allowed to overlap with
the protein. In fact, when that happens, a water is consid-
ered displaced (i.e., removed from the system), and an en-
ergy reward is added to the ligand score to reflect the en-
tropy gain resulting from releasing the water to bulk solvent.
Following the standard hydrated docking protocol14, the W
map, which represents water-receptor interactions is obtained
by combining the oxygen-acceptor (OA) and hydrogen donor
(HD) maps of the AD force field.

Pose rank
PDB ID 1 2 3 4 5

4ykq 0.45 0.43 2.37 6.16 4.01
4ykt 9.23 8.24 8.50 3.40 2.86
4yku 6.02 1.14 0.67 6.04 5.89
4ykx 0.98 0.95 6.24 1.79 1.75
4ykw 6.27 0.64 6.50 1.32 1.34
4ykz 5.30 1.68 0.77 5.30 6.00

Table 1. RMSD of 6 ligands redocked against HSP90 using the hydrated docking
protocol. Values under 2 Å in bold.

To validate the implementation of this docking protocol in
Vina v.1.2.0, we used six HSP90 protein-ligand complexes
from the D3R Grand Challenge 201528. This is an interest-
ing system for the hydrated docking because different ligands
bind with a different number of waters bridging hydrogen
bonds with the protein. The RMSD of the redocked ligands
in reported in Table 1, and a hand-picked system (PDB 4ykq)
is depicted in Figure 1B. When looking at the best pose, only
two ligands could be redocked with an RMSD below 2 Å but
this number increases to 5 if the top 2 poses are considered.

AutoDock4Zn. One of the most used methods developed for
AD4 is the AutoDock4Zn, a specialized force field to model
zinc-coordinating ligands13. It is based on the use of pseudo-
atoms to describe the optimal tetrahedral coordination geom-
etry of the zinc ion complexed in proteins, and the definition
of improved potentials to describe its interaction with coordi-
nating elements in the ligand (i.e., nitrogen, oxygen, and sul-
fur). The coordination geometry is encoded in the grid maps
for the standard AD4 atom types. The results of the imple-
mentation of this method in Vina are shown in Figure 1C.
The method is capable of reproducing the improved docking
performance reported for the original work with AD4, show-
ing an excellent overlap with the crystallographic pose of the
ligand and optimal zinc coordination geometry.
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Fig. 1. Example applications of AutoDockVina v.1.2.0 for docking (A) multiple ligands (PDB 5x72), (B) with water molecules using the hydrated docking protocol from
AutoDock4 (PDB 4ykq), (C) in presence of zinc using the AutoDock4Zn forcefield (PDB 1s63), or (D) flexible macrocycles (compound 19 from the BACE dataset of the D3R
Grand Challenge 4). Proteins are represented in white cartoon and crystal poses and protein residues in white thin sticks. The 2Fo-Fc electron-density map, contoured at
2.0σ, is colored grey. The docking poses are represented in sticks, and colored in green and orange when docked using the Vina or AutoDock4 scoring function, respectively.
Docking with zinc was done in presence of the farnsesyl disphosphate molecule, represented in sticks and colored in white.

Macrocycle conformational sampling. Docking of
macrocycles is a challenging task because of the difficulty
of sampling the ring flexibility by modeling the correlated
torsional changes resulting in different conformations.
AD4 has a specialized protocol to dock macrocycles while
modeling their flexibility on-the-fly12. One of the bonds in
the ring structure is broken, resulting in an open form of the
macrocycle that removes the need for correlated torsional
variations, enabling torsional degrees of freedom to be
explored independently. During the docking, an attractive

potential is applied to restore the bond resulting in the closed
ring form. Thus, macrocycle conformations are sampled
while adapting to the binding pocket, at the cost of increased
search complexity with the added extra rotatable bonds.
This method was successfully applied in the D3R Grand
Challenge 429, both by us30,31 and others32.
The current implementation of macrocycle sampling in
AutoDock Vina 1.2.0 is the same as in AutoDock-GPU4,
which differs from the original approach12 by the use of
dummy atoms. The dummy atom implementation was previ-
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ously described30, and is summarized herein. To each of the
atoms previously connected by the broken bond, a dummy
atom is added. The distance between each dummy atom and
its parent atom corresponds to the length of the broken bond,
and the 1-3 angle matches the original bond geometry. Dur-
ing docking, a linear potential attracts each dummy atom to
overlap with the opposite parent atom, restoring the broken
bond with the proper distance and 1-3 angles.
To validate our implementation in Vina we used 19 macro-
cycles from the BACE-1 set of the D3R Grand Challenge 4
(Figure 1D). We tested both the AD4 and Vina scoring func-
tions, an attractive potential of 5 or 50 kcal/mol/Å30, and
search exhaustiveness of 8 or 64 (Table 2). The lowest RMSD
with respect to the experimental coordinates was obtained us-
ing the Vina scoring function with an attractive potential of
50 kcal/mol/Å. Given the search complexity of fully flexi-
ble macrocycles, not suprisingly the search exhaustiveness is
the most important parameter driving the result quality. The
AD4 scoring function seemed to perform better at lower ex-
haustiveness, while the Vina scoring function required higher
exhaustiveness values to achieve good performance. Overall,
the best RMSD results were achieved with the Vina scoring
function, using exhaustiveness of 64 and an attractive poten-
tial of 50 kcal/mol/Å.

scoring
function exhaust.

attractive pot.
(kcal/mol/Å)

RMSD
average

RMSD
median

AD4 8 5 2.33 1.52
AD4 8 50 3.03 1.74
AD4 64 5 2.11 1.54
AD4 64 50 2.04 1.50
Vina 8 5 5.93 7.71
Vina 8 50 5.10 5.73
Vina 64 5 1.82 1.02
Vina 64 50 1.22 0.77

Table 2. Redocking of 19 macrocycles of the BACE-1 set from the D3R Grand
Challenge 4

Python bindings
Leveraging the popularity and utility of the Python lan-
guage33, we added bindings for the language in the version
1.2.0. In order to generate a Python interface as compliant
(i.e., pythonic) as possible with the language guidelines, the
Vina code was refactored as a library. A Python extension
module was created automatically from the C++ code us-
ing SWIG (Simplified Wrapper and Interface Generator)34.
Most of the features are provided either by binding directly
to the existing the C++ code, or via additional convenience
functions to simplify the access from the Python environ-
ment.
The availability of Python bindings facilitates the use and in-
tegration of the Vina docking engine in complex and articu-
lated pipelines, reducing the code burden necessary to inte-
grate the docking process with the numerous Python pack-
ages and other software suites that support the language.
Through these bindings, users can embed the docking en-
gine directly in any Python pipeline by importing directly

the Vina package instead of spawning and managing exter-
nal processes. We anticipate that this will allow users from
the community to more rapidly design, implement, and dis-
tribute multi-step docking protocols, as well as facilitating its
integration in web services.
The Python interface provides the following features:

• create an instance of the AutoDock Vina engine (scor-
ing function choice, CPU cores, random seed)

• read/write one or more PDBQT files

• compute Vina affinity maps

• read/write Vina affinity maps and read AutoDock affin-
ity maps

• randomize orientation and position of the input lig-
and(s) (randomize_only)

• evaluate the energy of the current pose or poses
(score_only)

• perform local optimization (local_only)

• set Monte-Carlo global search parameters (exhaustive-
ness, number of output poses, maximum evaluations,
etc,...)

Thus, a basic Vina calculation can be configured and per-
formed as follow:

1 #!/usr/bin/env python
2 # Simple example with Vina Python bindings
3 #
4

5 from vina import Vina
6

7 v = Vina()
8

9 v.set_receptor("protein.pdbqt")
10 v.set_ligand_from_file("ligand.pdbqt")
11

12 v.compute_vina_maps([0., 0., 0.], [30, 30, 30])
13 v.dock(exhaustiveness=32)
14

15 v.write_poses("docking_results.pdbqt")

The code is documented using Python docstrings, and the
documentation is automatically generated using Sphinx35.

Miscellaneous improvements
Batch ligand docking. AutoDock Vina 1.2.0 can dock an
arbitrary number of ligands with a single launch of the pro-
gram. Multiple ligand file names can be specified with the
new option -batch and each ligand is docked without re-
calculating or loading the maps every time for each ligand.
This improves computing efficiency when running very large
virtual screenings.
Setting the number of evaluations. Vina performs 8 inde-
pendent MC runs by default. For more complex searches
(i.e., more flexible ligands, larger binding sites), this num-
ber can be modified with the exhaustiveness parameter.
Conversely, the number of energy evaluations performed in
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each run is determined using heuristics that take into account
the number of atoms and rotatable bonds. In this new version,
we added an option -max_evals that allows users to spec-
ify the number of evaluations to be performed (analogous to
the ga_num_evals option in AD4), providing more con-
trol over the search algorithm.
Optionally disable pose refinement. By default Vina uses the
receptor structure prior to docking to pre-calculate grid maps,
and after dockings are completed to minimize poses using di-
rect pairwise interactions with the receptor (instead of using
the pre-calculated grid maps as during docking). However,
when map files are loaded instead of calculated internally, the
refinement with receptor atoms is disabled because there is
no way to guarantee consistency between the internal energy
potentials used for docking and those used for calculating the
grid maps. In fact, one of the purposes of loading maps from
external files is to explicitly allow the user to modify them.
To avoid any ambiguity, rigid receptor file and maps are not
allowed to be specified at the same time. When docking with
the AD4 scoring function, the post-processing minimization
is never available, and grid maps must be provided. Post-
docking refinement for the Vina scoring function can now be
to disable with the -no_refine option.

Virtual screening performance comparison
With the possibility of using the same search method for both
AD4 and Vina scoring functions, it is now possible to homo-
geneously assess their screening performance (i.e., without
the uncertainty of the different search methods). Therefore,
we performed virtual screenings using 50 representative sys-
tems selected from the DUD-e dataset36, for a total of 4938
actives and 292778 decoys compounds. For each target, ac-
tive and decoy sets, and co-crystallized ligands, were docked.
Details about the screening library and receptor preparation
and analysis are discussed in Supplementary Information.
The results show that overall both Vina and AD4 scoring
function perform similarly in early recognition, but the Vina
scoring function reproduces crystal poses with higher accu-
racy. For Vina and AD4, respectively, the average AUC were
0.71 ± 0.15 and 0.60 ± 0.21, BEDROC 0.26 ± 0.19 and 0.27
± 0.20, and for EF 10.87 ± 11.72 and 9.92 ± 12.58. How-
ever, the two scoring functions show different performance
depending on the targets. Based on the BEDROC metric, the
AD4 scoring function outperforms the Vina scoring function
for the following targets: pur2, fpps, tryb1, xiap and nram
but under performs for thb, fak1, kif11, sahh and jak2. For
17 out of 50 targets, both scoring functions perform poorly,
with BEDROC metrics lower than 0.1 (see Tables S2 and
S3). In terms of success rate in reproducing experimental
coordinates within 2 Å RMSD, 74 and 58 % of them are cor-
rectly predicted when considering only the top pose (top 1)
for the Vina and AD4 scoring functions, respectively. When
considering the first two poses (top 2), the success rates in-
crease to 80 and 68 %, and using the first three poses (top
3) to 84 and 70 % for Vina and AD4, respectively. When
using a more stringent cutoff of 0.5 Å RMSD, only 28 and
14 % of the top poses (top 1) are correctly predicted for the

Vina and AD4 scoring functions, respectively. Those results
are aligned with recent studies showing that on average the
Vina scoring function outperforms the AD4 scoring function
for pose prediction37,38. However, a more accurate ranking
using the AD4 scoring function was not observed as results
from a previous study shown38. These results show that the
scoring functions performance is target-dependent, and the
availability of the two scoring functions in the same docking
engine simplifies the process of testing and selecting the most
effective one for a given target.

Discussion and conclusion

This work is an effort toward the unification of the dif-
ferent functionalities developed within the AutoDock Suite.
AutoDock Vina 1.2.0 allows users to access the powerful it-
erated local search of Vina with many of the features imple-
mented in AutoDock4, among which the AutoDock4.2 scor-
ing function itself, and the capability of reading and writing
grid maps with pre-calculated target interactions. This latter
feature unlocked the possibility of porting a number of exist-
ing methods and specialized scoring functions to Vina, such
as hydrated docking14, the AutoDock4Zn

13 force field, and
the AutoDock-Bias docking21.
For other methods, such as sampling of macrocycle confor-
mations during docking, that require the definition of ad-
hoc intramolecular terms, the modifications have been im-
plemented in the source code. This was necessary because
AutoDock Vina 1.2.0 does not allow the user to create new
atom types or modify pairwise interactions without changes
to the source code.
AutoDock Vina 1.2.0 facilitates the design and execution of
simple and complex docking simulations. The new version
provides Python bindings, enabling easier scripting for vir-
tual screening and other advanced applications. We also im-
plemented batch processing to streamline high-throughput
virtual screenings, as well as simultaneous multiple-ligand
docking against a single target structure. All new features
can be accessed both from the command line interface when
using a compiled Vina binary, or from Python.
Having both Vina and AD4 scoring functions available with
a common search algorithm allowed a direct comparison of
their screening power in a number of targets from the DUD-E
set. The scoring functions performed similarly overall across
all targets that we considered. However, when considering
individual targets, either scoring function can outperform the
other, highlighting the need for a better scoring function that
performs consistently well for every target.
Due to the added functionality and the array of scoring meth-
ods that are now available, we believe that AutoDock Vina
1.2.0 is a useful tool for molecular docking for both novice
and expert users.

Availability

AutoDock-Vina is released as open source under a Apache
license. The source code, the documentation, and up-
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Fig. 2. Early recognition of active compounds from the DUD-e dataset and crystal pose prediction. In total 50 targets from the DUD-e dataset were selected and used to
compare Vina and AutoDock4.2 scoring functions in AutoDock Vina. Violin plots of (A) AUC, (B) BEDROC using an α of 160.9 and (E) EF at 1%. (D) Docking success rate
for Vina and AutoDock4.2 scoring functions using crystal poses considering the top 1, top 2 and top 3 poses. The pose prediction was considered as successful if the RMSD
was inferior than 2, 1 or 0.5 Å from the crystal pose.

dates are available on GitHub: https://github.com/ccsb-
scripps/AutoDock-Vina.
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