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Abstract

We present a new geodesic-based method for geometry optimization in a basis of

redundant internal coordinates. This method realizes displacements along internal co-

ordinates by following the geodesic generated by the displacement vector on the internal

coordinate manifold. Compared to the traditional Newton method approach to taking

displacements in internal coordinates, this geodesic approach substantially reduces the

number of steps required to reach convergence on a molecular structure minimization

benchmark. This new geodesic method can in principle be implemented in any existing

optimization code, and only requires the implementation of derivatives of the Wilson

B-matrix and the ability to solve a relatively inexpensive ordinary differential equation.

Graphical TOC Entry

A methane molecule with three bending
angles labeled and a 3D representation of
the internal coordinate manifold compris-
ing these angles. A displacement vector is
used to generate a geodesic curve on this
manifold, which is also superimposed on
the methane molecule.
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Geometry optimization is a crucial first step in the computational modeling of molecules,

solids, and other atomic systems. The most obvious and direct way to optimize molecular ge-

ometries involves direct optimization of the Cartesian positions of each atom in the molecule.

This approach can be very inefficient, as large amplitude molecular motions would require

many rectilinear steps in a Cartesian coordinate space in order to preserve local molecular

properties. An alternative approach commonly used for molecules is to take curvilinear steps

along internal coordinates such as bond distances, bending angles, and dihedral angles, as

this enables direct optimization of chemically relevant features.1–3

The Cartesian coordinate vector of an n-atom molecule x ∈ R3n encodes the geometry of

a molecule as the Cartesian positions of each atom in that molecule. The internal coordinate

vector q ∈ Rm encodes the geometry of a molecule in a set of m local coordinates, typically

consisting of bond distances, bending angles, and dihedral angles.4 These internal coordinates

cannot represent net translation or rotation of the molecule, so in general only 3n−6 internal

coordinates are required to fully specify the geometry of non-linear molecules. When m is

greater than its minimum possible value of 3n − 6, it is said that the internal coordinate

representation is redundant.2,3 Even in a redundant internal coordinate basis, the set of all

valid internal coordinate vectors q only spans a (3n−6)-dimensional space due to correlations

between redundant internal coordinates. As described by Zhu et. al.,5 the space of valid

internal coordinates can be considered a (3n−6)-dimensional manifold embedded in a larger

m-dimensional space. It is necessary to ensure that all geometry optimization steps in a

redundant internal coordinate basis stay on the (3n − 6)-dimensional manifold, i.e. the

steps correspond to valid internal coordinates. This means both that displacement vectors

∆q ∈ Rm must be tangent to the internal coordinate manifold and that new structures

obtained during optimization must be found in a way that accounts for curvature of the

manifold.

One way to ensure that the displacement vector ∆q lies tangent to the manifold is to

temporarily switch to a minimal local coordinate system in which only valid displacement
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vectors are possible. The delocalized internal coordinate approach defines a new structure

p ∈ R3n−6 as a linear transformation of the redundant internal coordinates p = UTq. The

matrix U is the (m × (3n − 6)) matrix of left singular vectors of Jacobian matrix B, also

known as the Wilson B-matrix,4,6

B =
∂q

∂x
=

[
U U′

]S 0

0 0


VT

V′T

 , (1)

where U are the aforementioned left singular vectors, S is the diagonal matrix of non-

zero singular values, V are the right singular vectors, and U′ and V′ are respectively the

left and right singular vectors spanning the null space of B. Projecting the coordinates,

gradient, and exact or approximate Hessian from the full redundant internal coordinate

basis into the delocalized internal coordinate basis enables the use of standard geometry

optimization algorithms such as rational function optimization (RFO)7 or quasi-Newton

BFGS.8–11 Regardless of which optimization algorithm is chosen, the result is a displacement

vector ∆p in the delocalized internal coordinate space which is tangent to the manifold by

construction. This displacement vector can be projected back into the full redundant internal

coordinate space through the relation ∆q = U∆p.

Even if ∆q is a locally valid displacement vector at point q0, this does not guarantee that

q0 + ∆q is a valid point, as the internal coordinate manifold may be curved. This problem

is traditionally solved by updating the geometry to be the point on the internal coordinate

manifold which is closest to q0 + ∆q. This can be accomplished with Newton’s root-finding

method, in which a series of rectilinear displacements are taken in the Cartesian coordinate

basis according to the equation

xi(k+1) = xi(k) +
(
B+

(k)

)i
λ

(
qλ0 + ∆qλ − qλ(k)

)
, i = 1, . . . , 3n, (2)

where we have used the Einstein summation convention, q(k) and x(k) are respectively the
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internal and Cartesian coordinates at iteration k, and B+
(k) is the Moore-Penrose pseudo-

inverse of the Jacobian matrix evaluated at x(k).1,2,12 In equation 2 and below, Latin indices

correspond to quantities represented in Cartesian coordinates while Greek indices correspond

to quantities represented in internal coordinates. The converged Cartesian coordinates x(k)

obtained from equation 2 are then used to calculate the new internal coordinates qNewton,

which correspond to the point on the internal coordinate manifold closest to q0+∆q. Though

each iteration of equation 2 consists of a rectilinear displacement in Cartesian coordinates,

the Newton method results in a curvilinear displacement, as the point qNewton necessarily

lies on the internal coordinate manifold.

This approach is computationally facile and generally converges in only a few iterations,

with the greatest cost being the evaluation and inversion of the Jacobian matrix. However,

when the manifold has a high degree of redundancy or coupling between coordinates, such

as in systems with rings, equation 2 may fail to converge. In this scenario, one potential

solution is to iterate equation 2 only a single time, which is equivalent to taking the rectilinear

Cartesian displacement x0+B+
0 ∆q.12 This fallback approach can have substantial deleterious

effects on optimization performance, as these rectilinear displacements tend to perturb bond

distances when modifying bending angles or dihedral angles. Even when equation 2 does

converge, it cannot fully account for the changing coupling between internal coordinates

during the displacement because it does not explicitly consider the curvature of the manifold

at any point.

As an alternative to the Newton approach, we suggest a new method for realizing a

displacement vector ∆q based on geodesics of the internal coordinate manifold. Geodesics

are curves which trace the shortest path between two points on a manifold. In our application,

the geodesic is determined from the starting geometry q0 and a vector which is tangent to

the geodesic, which we choose to be ∆q. The orientation of ∆q determines the trajectory

of the geodesic q(τ), where τ is the dimensionless geodesic parameter, while the magnitude

‖∆q‖ determines the distance along the trajectory to travel. The trajectory can be found
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by solving the geodesic equation,

q̈λ + Γλµν q̇
µq̇ν = 0, λ = 1, . . . ,m (3)

where Newton’s dot notation is used to refer to derivatives with respect to τ and Γλµν are the

Christoffel symbols of the second kind for the internal coordinates (see the supplementary

material for more details).13 Equation 3 is solved for the initial conditions q(0) = q0 and

q̇(0) = ∆q. We are interested in finding a point that is a distance ‖∆q‖ from q0, so we

integrate equation 3 until τ = 1 and choose our new geometry qgeodesic to be q(1), as this

equation generates trajectories of constant speed.

Equation 3 cannot be solved directly, as the internal coordinates q are calculated from

the Cartesian coordinates x and are therefore not independent variables. Instead, we solve

the geodesic equation in the Cartesian coordinate basis,

ẍi +
(
B+
)i
λ

∂2qλ

∂xk∂xl
ẋkẋl = 0, i = 1, . . . , 3n (4)

where x(0) = x0 are the Cartesian coordinates corresponding to q0 and ẋ(0) = B+∆q.

The point x(1) obtained from this differential equation is used to calculate the new internal

coordinates q(1). Though equation 4 depends on the second derivative of q with respect

to x, this quantity is not prohibitively onerous to implement for commonly-used internal

coordinate types, and it has sparse structure that can be exploited to accelerate the summa-

tion over indices k and l. These second derivatives can be evaluated numerically from the

Jacobian matrix,4 analytically,14,15 or through automatic differentiation.16 Equation 4 can

be solved using an off-the-shelf ODE solver such as LSODA17 or CVODE18 using a standard

order reduction strategy.

Following a geometry step, it is typical for optimization algorithms to update an approx-
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imate Hessian matrix H in order to satisfy the secant condition,

Hλµ (q1 − q0)
µ = (g1 − g0)λ , λ = 1, . . . ,m, (5)

where g is the gradient vector in the internal coordinate basis. In order for the approximate

curvature to lie in the tangent space of the manifold at the new point q1, this secant condition

must be modified to

Hλµ (q̇(1))µ = (g1 − g̃0)λ , λ = 1, . . . ,m, (6)

where q̇(1) is obtained from the solution to equation 3 and g̃0 is the gradient vector at

point q0 which has been parallel transported along the geodesic to the point q1.19 Parallel

transport is the process of translating vectors that are tangent to a manifold along a curvi-

linear trajectory on that manifold (such as a geodesic) in such a way that the vectors remain

both tangent to the manifold along the entire trajectory and self-parallel along infinitesimal

displacements. For more details on how g̃0 is determined, see the supplementary material.

In the Hessian update scheme of our geodesic approach, the raw displacement q1 − q0 is

replaced by q̇(1), and the initial gradient vector g0 is replaced by its parallel transported

equivalent g̃0.

An illustration comparing the geodesic and Newton stepping methods is presented in

figure 1. In this figure, the purple surface represents the manifold of valid internal coordinates

in a methane molecule with all internal coordinates fixed except for three bending angles,

as depicted in figure 1c. Though this system has three free bending angle coordinates,

only two degrees of freedom remain due to the coupling between the angular coordinates.

Figures 1a and 1b depict the entire manifold in a basis of the three free bending angles

from two different persepctives. In this basis, the internal coordinate manifold takes the

form of an octahedron with smoothed edges. The geodesic approach follows the curvature

of the manifold to find the new point qgeodesic. In contrast, the Newton method converges
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(a) (b)

(c) (d)

Figure 1: (a), (b) The internal coordinate manifold of a methane molecule with all internal
coordinates fixed except three bending angles, from two different perspectives. Labeled are
the initial structure q0 (black), the displacement vector ∆q (light blue), the final structure of
the Newton method qNewton (yellow), and the final structure of the geodesic method qgeodesic

(green). (c) A real-space representation of the same methane molecule with the three free
bending angles labeled α1 (orange), α2 (dark blue), and α3 (red). Additionally, the Cartesian
equivalents of the initial structure, displacement vector, final Newton structure, and final
geodesic structure are also labeled. (d) A zoomed-in perspective of the manifold in the region
around the displacement, which shows more clearly that the point qNewton does not lie on
the geodesic curve.
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to the point qNewton on the manifold which is closest to q0 + ∆q. Figure 1d shows the same

manifold, but rotated and zoomed to better illustrate the difference between the Newton

and geodesic stepping methods. From figure 1d, it is clear that qNewton does not lie on the

geodesic curve. This is to be expected, as the Newton stepping method is not aware of the

curvature of the manifold, unlike the geodesic method which follows the curvature of the

manifold by construction. Though it is clear from this figure that the Newton and geodesic

methods result in different structures, it is not obvious which of the two stepping methods

is better for geometry optimization.

In order to determine the difference in performance between the Newton and geodesic

methods, we use a geometry optimization benchmark originally developed by Birkholz and

Schlegel consisting of 20 molecules that have between 20 and 95 atoms.12 Potential energies

were evaluated using dftb+ with the DFTB3 parameterization.20–24 Structure optimization

was performed by Sella, an open source Python package primarily focused on saddle point

optimization which is also capable of performing geometry minimization.25,26 We note that

because Sella is primarily intended to be used for saddle point optimization, the performance

of its RFO minimization algorithm is likely lower than that of purpose-built minimization

codes. The focus is therefore only on the relative performance of the Newton and geodesic

stepping approaches, with all other aspects of the minimization algorithm held fixed. Of

the original 20 molecules in the benchmark, one molecule was excluded due to a missing

initial structure from the reference and another was excluded as DFTB3 lacks parameters

for Aluminum. Scripts to reproduce these calculations can be found in the supplementary

material.

The results in table 1 indicate that the geodesic approach requires fewer steps to reach

convergence in all tested systems. For the molecules raffinose and sphingomyelin, the geodesic

approach converges to a lower energy structure than the Newton approach while also requir-

ing fewer steps to converge. The optimization trajectories of two of the molecules, cetirizine

and sphingomyelin, are illustrated in figure 2. The largest component of the gradient for the
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Table 1: Number of gradient evaluations required to converge for the standard
and geodesic stepping methods. An asterisk indicates convergence to a higher-
energy structure.

Species Newton Geodesic
Artemisinin 122 33
Avobenzone 292 90
Azadirachtin 255 243
Bisphenol A 270 89

Cetirizine 183 34
Codeine 389 108

Diisobutyl phthalate 175 59
Estradiol 151 47
Inosine 238 93
Maltose 208 104

Mg Porphyrin 86 15
Ochratoxin A 235 47
Penicillin V 168 55

Raffinose 325* 169
Sphingomyelin 221* 163

Tamoxifen 205 58
Vitamin C 160 60
Zn EDTA 136 50

Cl

N

N
O

O

OH

(a) Cetirizine

O

NH

O
O

O–
P

O
N+

(b) Sphingomyelin

Figure 2: Optimization trajectories for the Cetirizine (a) and Sphingomyelin (b) test systems
using the Newton (blue) and geodesic (orange) methods. A log scale is used for the step
number axis to better highlight early optimization steps.
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structures in this test set tends to lie in bond-stretching coordinates, and so early stages of

geometry optimization are dominated by bond stretch displacements. These bond stretch

displacements tend to be rectilinear or nearly rectilinear, meaning the manifold has very

low curvature in these directions, and so the two methods tend to take very similar steps

near the beginning of optimization. After the bond stretching modes are largely relaxed, the

larger amplitude angle bending and dihedral angle modes begin to dominate the optimiza-

tion, and it is at this point that the Newton and geodesic methods begin to exhibit different

performance characteristics. In this regime, the Newton method more frequently takes steps

that result in an increase in the potential energy as evidenced by the many spikes in the

optimization trajectories in figure 2. In contrast, the geodesic method is less likely to take

steps that increase the potential energy and generally reaches convergence in fewer steps

overall compared to the Newton method.

The improved performance of the geodesic approach as compared to the Newton approach

is a consequence of the consideration of coupling between internal coordinates along the

entire displacement trajectory. In Sella’s primary application of saddle point optimization,

preliminary results suggest a substantial increase in performance compared to other leading

algorithms, which we intend to show in a future publication. We expect that incorporating

the geodesic stepping approach into leading minimization codes should result in a noticeable

performance boost. In particular, minimization algorithms that use a line-search will be able

to interpolate the solution of the geodesic equation in order to find arbitrary intermediate

points along the geodesic.

Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy

Sciences, Chemical Sciences, Geosciences and Biosciences Division, as part of the Computa-

tional Chemistry Sciences Program (Award Number: 0000232253).

11



Sandia National Laboratories is a multimission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-NA0003525. The views expressed in the article

do not necessarily represent the views of the U.S. Department of Energy or the United States

Government.

We would like to thank Dr. Laura McCaslin for useful discussions leading to improved

readability and comprehensibility of this work.

Supporting Information Available

An extended derivation of equation 4 as well as scripts to reproduce the data presented in

table 1 and figure 2 can be found in the supporting information.

References

(1) Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. Systematic ab initio gradient calculation

of molecular geometries, force constants, and dipole moment derivatives. Journal of the

American Chemical Society 1979, 101, 2550–2560.

(2) Pulay, P.; Fogarasi, G. Geometry optimization in redundant internal coordinates. The

Journal of Chemical Physics 1992, 96, 2856–2860.

(3) Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using redundant internal coor-

dinates to optimize equilibrium geometries and transition states. Journal of Computa-

tional Chemistry 1996, 17, 49–56.

(4) Wilson, E.; Decius, J.; Cross, P. Molecular Vibrations: The Theory of Infrared and

Raman Vibrational Spectra; Dover Books on Chemistry; Dover Publications, 2012.

12



(5) Zhu, X.; Thompson, K. C.; Martínez, T. J. Geodesic interpolation for reaction path-

ways. The Journal of Chemical Physics 2019, 150, 164103.

(6) Baker, J.; Kessi, A.; Delley, B. The generation and use of delocalized internal coordi-

nates in geometry optimization. The Journal of Chemical Physics 1996, 105, 192–212.

(7) Banerjee, A.; Adams, N.; Simons, J.; Shepard, R. Search for stationary points on

surfaces. The Journal of Physical Chemistry 1985, 89, 52–57.

(8) Broyden, C. G. The Convergence of a Class of Double-rank Minimization Algorithms

1. General Considerations. IMA J. Appl. Math. 1970, 6, 76–90.

(9) Fletcher, R. A new approach to variable metric algorithms. Comput. J. 1970, 13, 317–

322.

(10) Goldfarb, D. A family of variable-metric methods derived by variational means. Math.

Comput. 1970, 24, 23–26.

(11) Shanno, D. F. Conditioning of quasi-Newton methods for function minimization. Math.

Comput. 1970, 24, 647–656.

(12) Birkholz, A. B.; Schlegel, H. B. Exploration of some refinements to geometry optimiza-

tion methods. Theoretical Chemistry Accounts 2016, 135, 84.

(13) Spivak, M. A Comprehensive Introduction to Differential Geometry ; A Comprehensive

Introduction to Differential Geometry v. 3; Brandeis University, 1970.

(14) Hollman, D. S.; Schaefer, H. F. Arbitrary order El’yashevich–Wilson B tensor formulas

for the most frequently used internal coordinates in molecular vibrational analyses. The

Journal of Chemical Physics 2012, 137, 164103.

(15) McCaslin, L. M. From Basis Sets to Force Fields: Improving Methods for High-Accuracy

Quantum Chemical Calculations of Small Molecules. Ph.D. thesis, The University of

Texas at Austin, 2016.

13



(16) Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin, D.; Nec-

ula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S. et al. JAX: composable trans-

formations of Python+NumPy programs. 2018; http://github.com/google/jax.

(17) Petzold, L. Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of

Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing

1983, 4, 136–148.

(18) Cohen, S. D.; Hindmarsh, A. C.; Dubois, P. F. CVODE, A Stiff/Nonstiff ODE Solver

in C. Computers in Physics 1996, 10, 138–143.

(19) Gabay, D. Minimizing a differentiable function over a differential manifold. Journal of

Optimization Theory and Applications 1982, 37, 177–219.

(20) Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Ceval-

los, C.; Deshaye, M. Y.; Dumitrică, T.; Dominguez, A. et al. DFTB+, a software pack-

age for efficient approximate density functional theory based atomistic simulations. The

Journal of Chemical Physics 2020, 152, 124101.

(21) Gaus, M.; Goez, A.; Elstner, M. Parametrization and Benchmark of DFTB3 for Organic

Molecules. Journal of Chemical Theory and Computation 2013, 9, 338–354.

(22) Gaus, M.; Lu, X.; Elstner, M.; Cui, Q. Parameterization of DFTB3/3OB for Sulfur and

Phosphorus for Chemical and Biological Applications. Journal of Chemical Theory and

Computation 2014, 10, 1518–1537.

(23) Lu, X.; Gaus, M.; Elstner, M.; Cui, Q. Parametrization of DFTB3/3OB for Magnesium

and Zinc for Chemical and Biological Applications. The Journal of Physical Chemistry

B 2015, 119, 1062–1082.

(24) Kubillus, M.; Kubař, T.; Gaus, M.; Řezáč, J.; Elstner, M. Parameterization of the

14



DFTB3 Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems.

Journal of Chemical Theory and Computation 2015, 11, 332–342.

(25) Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J. Accelerated Saddle Point Refine-

ment through Full Exploitation of Partial Hessian Diagonalization. Journal of Chemical

Theory and Computation 2019, 15, 6536–6549.

(26) Hermes, E. D. Sella. 2021; https://doi.org/10.5281/zenodo.4747052.

15


