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ABSTRACT: Herein, we report a versatile approach for the endocyclic ring-opening of bicyclic vinylcyclopropanes triggered by Heck aryla-
tions. Key step for this transformation is a [1,3]-migratory shift of Pd allowing the ring expansion of cyclopropanated pyrroles, piperidines, 
furans as well as cyclopentadienes to grant access to the corresponding 
1,2-dihydropyridines, 2H-pyrans, 2,3-dihydro-1H-azepines and 1,4-cy-
clohexadienes, respectively. Additionally, gem-disubstituted cyclopro-
panated furans showed unexpected behavior by giving diastereoselec-
tively asymmetrically substituted dienes. Mechanistic studies and theo-
retical calculations point towards a facile [1,3]-migratory shift of Pd 
along the cyclopropane moiety, which can successfully compete with the 
usual termination step of a Heck reaction via a syn-b-hydride elimina-
tion. 

INTRODUCTION 

The utility of vinylcyclopropanes has been proven in numerous syn-
thetic procedures.1 These compounds may undergo various types of re-
arrangements2, nucleophilic and electrophilic ring-opening reactions3 as 
well as participate as three-4 or five-carbon5 components in cycloaddi-
tions. The fragmentation of the three-membered ring is mostly achieved 
by the use of Lewis acids or transition metal catalysts. While the applica-
bility of the first approach is usually limited to donor-acceptor-substi-
tuted substrates, the second strategy is more general and may be also 
employed to cleave non-activated bonds.6  

Scheme 1. Heck-type Coupling of Bicyclic Cyclopropanes. 

One example for such transformation was presented by our group in 
2019 via the palladium catalyzed coupling of cyclopropanated furans 
and pyrroles with aryl halides,7 which provides the corresponding 1,2-
dihydropyridines and 2H-pyrans, respectively. The observed reaction 
outcome may be rationalized by the initial Heck-adduct A that can nei-
ther undergo a β‐dehydropalladation nor reductive elimination, thus the 
only possibility for the catalytic cycle to proceed further is by a [1,3]-
migration of Pd to provide six-membered species B (Scheme 1).7 These 

reactions proceed with complete chirality transfer, being rationalized by 
an attack of the organopalladium species from the convex face of the bi-
cycle. 

Based on this mechanistic hypothesis we report here the extension of 
this strategy to other types of fused cyclopropanes like piperidines or cy-
clopentadienes. Of our particular interest were gem-disubstituted sub-
strates (R2, R3 ≠ H) in the case of which elimination of HPdY from or-
ganopalladium intermediate of type B is not possible.7 Moreover, we 
were able to develop improved protocols, making aryldiazonium salts, 
vinyltriflates and arylboronic acids suitable coupling partners for the bi-
cyclic cyclopropanes, resulting not only in ring expanded products but 
also in geometrically pure, highly substituted 1,3-butadienes. Mechanis-
tic and theoretical studies to gain insight into the 1,3-migration of palla-
dium along the cyclopropylmethylene framework, representing the key 
step of the ring-enlargement, are presented as well.   

RESULTS AND DISCUSSION 

Our preliminary study had shown that, although feasible, arylhalides are 
sluggish coupling reagents for pyrroles 1.7 Turning to aryldiazonium 
salts being generally more reactive in Heck-type coupling,8 led to identi-
fication of Pd(dba)2, NaOAc, in MeCN, at 25 ℃	as the optimal reaction 
parameters (Scheme 2a; for detailed optimization studies, see Support-
ing Information). Under these conditions a variety of diazonium salts 
containing electron-donating groups (2a-2e, 2h) or an unsubstituted 
aromatic ring (2f, 2g) could be successfully coupled to pyrrolidine 3 giv-
ing the corresponding products 5 in good to excellent yields (65-99%). 
Moreover, the reaction tolerated halogen- and nitrile-substituted sub-
strates (2j-2q). For the latter better results were, however, obtained us-
ing a slightly modified procedure i.e. employing 2,6-di-tert-butyl-4-
methylpyridine (DTBMP) as a base in combination with tetrabu-
tylammonium hydrogen sulfate (TBAHS). Noteworthy, this protocol 



 

Scheme 2. Ring-Expansion of Monocyclopropanated Pyrroles, Piperidine and Furan. 

  
s.m. = starting material; n.d. = not detected. aReaction was performed using 0.5 mmol of salt 2c and 0.75 mmol (1.5 equiv) of cyclopropanated 
pyrrole 1. Yield based on tetrafluoroborate 2c. b reaction time 18 h. c NMR yield. d Reaction was stirred for 7 d. e 3.0 equiv of boronic acid was 
used.



 

allowed to upscale the reaction to give 2.92 g (8.5 mmol, 81%) of prod-
uct 3b. Initial attempts on performing the analogous vinylation of cyclo-
propanated pyrroles using vinyl halides gave unsatisfactory results, the 
application of triflates9 4 enabled the preparation of dihydropyridines 5 
in good yields on a variety of different substrates including cyclohexenes 
and dihydronaphthalenes (Scheme 2b). The efficiency of the process 
could be further enhanced by replacing the methyl ester moiety in sub-
strate 1-Me with a tert-butyl group (cf. 5a and 5b). Remarkably, the vi-
nylations proceeded well by using only 1 mol% of catalyst.   
Furthermore, the application of the title reaction to piperidine derivative 
6 allowed the expansion from six to seven membered ring systems to 
give access to dihydro-1H-azepines 8 (Scheme 2c) using aryl iodides as 
coupling reagents. These products formed, however, among noticeable 
amounts of γ-arylated bicycles 9 which are the results of an initial carbo-
palladation with inverse regioselectivity.  
Lastly, we turned our attention to cyclopropanated furan 10. To im-
prove on the reductive Heck protocol initially developed for this sub-
strate,7 we evaluated an oxidative variant.6b,10 The optimized protocol 
was established using phenylboronic acid as a model substrate and en-
compassed the use of [Pd(MeCN)2Cl2], CuCl2 and Na2CO3, in THF 
(for details, see Supporting Information). These conditions were com-
patible with a variety of aryl boronic acids, whereby moderately donat-
ing substrates containing an alkyl or an aryl moiety exhibited the highest 
reactivity, while strongly electron deficient aryl boronic acids showed 

only poor efficiency. As demonstrated with the synthesis of compound 
12d, the process tolerated not only para and meta, but also ortho substi-
tution of the aromatic ring. 

Scheme 3. Synthetic Application of Vinyl Dihydropyridines 3b 
and 5a. 

 
Conditions: a) H2 (40 bar), Pd/C (7 mol%), MeOH, 25 ℃, 18 h, 69%; 
b) DDQ (2.0 equiv) toluene, 0 to 25 ℃, 18 h, 70% c) i) step 1: H2 (bal-
loon), Pd/C, THF, 25 ℃, 16 h, 75%; step 2: Et3SiH (3 equiv), TFA (1.8 
mL), 50 ℃, 3 h, 75%; ii) Boc2O (1.5 equiv), DMAP (0.1 equiv), 
CH2Cl2, 25 ℃, 16 h 81%; d) RuCl3 (0.12 equiv), NaIO4 (17 equiv), 
EtOAc:H2O:MeCN (1:2:1), 25 ℃, 4 h; iv) CH2N2, Et2O, 75%. 

Scheme 4. Ring expansion of gem-disubstituted cyclopropanes. 

 

Complementary to our previous report7 we exemplified the possible 
transformations of the alkenyl moiety introduced in the developed Heck 
reaction (Scheme 3). Therefore, we conducted hydrogenation of deriv-
ative 5a, which proceeded with concomitant reduction of the less sub-
stituted double bond of the heterocycle to furnish tetrahydropyridine 13 
being the product of a formal alkyl coupling. Furthermore, treatment of 

derivative 5a with DDQ resulted in selective oxidation of the piperidine 
ring to furnish 14. The synthesis of 16 being a hybrid of pipecolic and 
nipecotic acid being individually attractive building blocks in medicinal 
chemistry,11 was, in turn, achieved from compound 3b via oxidation of 
the aryl ring using RuCl3-NaIO4 system.12 

N
Boc

R

CO2Me

N

CO2Me

N
Boc

CO2Me

(±)-13

14

3b or 5a

N
Boc

CO2Me

MeO2C

(±)-15

c

b

a

for 5a

for 3b N
Boc

CO2Me

R
d

(±)-16

R = (p-OMe)C6H4



 

Further studies concerned ring expansion of gem-disubstituted cyclo-
propane 17 (Scheme 4a). Since the organopalladium intermediate B’ is 
not able to undergo β‐dehydropalladation, it was necessary to employ a 
nucleophile in the reaction capable to displace palladium in this spe-
cies.13 Thus, performing the coupling reaction in water, initially tetrahy-
dropyridine derivatives 18 were obtained, which were without isolation 
subjected to reduction with Et3SiH/TFA. As a result of these studies, a 
range of tetrahydropyridines 19 became accessible in good yields. 
 
Switching to carbocycles, bicycle (+)-21 bearing an enone system, 
which was prepared from (+)-carene 20,14 appeared to be an attractive 
substrate for our ring-opening protocol (Scheme 4b). To our delight, 
arylations of this substrate proceeded cleanly and regioselectively to give 
desired 1,4-cyclohexadienes (-)-22 in very good to excellent yields. The 
process featured a broad substrate scope, which encompassed aryl io-
dides bearing electron-donating and/or electron-withdrawing substitu-
ents, sterically demanding moieties and the late stage functionalization 
of estrone to 22r. Importantly, scaling up the process to a 5.0 mmol scale 
did not influence the reaction yield or time affording 1.20 g of (-)-22a. 
(Scheme 5a) All reaction proceeded with excellent chirality transfer dic-
tated by the initial attack of ArPdX from the convex side of the bicyclic 
system. As an illustration of possible synthetic applications of the ob-
tained products we conducted additionally epoxidation, dihydroxyla-
tion and hydrogenation of derivative (-)-22a (Scheme 5b). 

Scheme 5. Scale-up experiment and transformations of product 
(-)-22a.  

 

a) m-CPBA (2.0 equiv), DCM, 25 ℃, 2 h, 77%, b) NH4CO2H 
(40.0 equiv), Pd/C (10 mol%), MeOH, 25 ℃, 18 h, 88% c) 
K2OsO4·2H2O (5 mol%), NMO (2.0 equiv), acetone:H2O  2:1, 48 h, 
68%. Stereochemistry of compounds 23 and 25 could not be deter-
mined. Trans-selectivity was tentatively assigned in analogy to litera-
ture.15 

Finally, we examined arylation of cyclopropanated furan 26. After pre-
liminary attempts similar to pyrrole 17 using reductive Heck conditions 
(Scheme 4a) remained to be unsuccessful, we returned to the oxidative 
approach. In principle, this procedure would allow us to generate doubly 
arylated pyrans 28 by undergoing a second transmetalation with aryl bo-
ronic acid during the organo-palladium intermediate of type B’ (cf. 
Scheme 4a). Surprisingly, subjecting 26 to reactions conditions resulted 
in the formation of highly substituted butadienes 27 instead(Scheme 
6a). All reactions proceeded with complete stereoselectivity, whereby 
the yield varied between 46% and 86%. The configuration of the diene 
system was confirmed by X-Ray crystallography after saponification of 
27a to dicarboxylic acid 29. 

The clean diastereoselectivity as well as the nature of the products indi-
cate that the reaction might involve a formal retro-Diels-Alder fragmen-
tation pathway via intermediate 30 (Scheme 6b). This species could re-
sult, in turn, from trapping of the generated six-membered 

organopalladium intermediate by water formed in stochiometric 
amounts during the course of the reaction (PdII-CuI-O2). The postu-
lated formation of intermediate 30 is supported by the isolation of lac-
tamol 31 from the reaction of pyrrole 17 in aqueous CH3CN (Scheme 
6c). A retro-Diels-Alder type fragmentation from 28 as a potential inter-
mediate can be ruled out as no benzaldehydes or their corresponding 
carboxylic acids were observed as byproducts. 

Scheme 6. Synthesis of 1,3-Butadiens 27 from cyclopropanated 
furan 26 

a) LiOH (40 equiv), THF:H2O 1:1, reflux, 18 h, 97%. b Reaction per-
formed at 55 °C. 

Theoretical Part 
The key mechanistic step of the Pd-migration under simultaneous ring-
opening of the cyclopropyl ring was evaluated for the transformation of 
cyclopropyl substrates (1, 17) via DFT calculations (Scheme 7, details 
see SI). Based on these computational results the cyclopropyl ring open-
ing starting, after addition of ArPd+ to 1 or 17,  at compounds INT-1 is 
accompanied by the migration of the Pd from position c to position a. 
For cationic Pd-complexes INT-1 obtained after the carbopalladation 
this step exhibits a low energy barrier (ΔGǂ = 19.4 kcal/mol for 1, ΔGǂ = 
20.9 kcal/mol for 17, Scheme 7). The associated transition state struc-
ture is characterized by an elongation of the a-b bond by 10%, of the Pd-
Cc-bond by 1.5% and by a shortening of the Pd-Ca bond by 11%. The 
envelope conformation of the five membered ring system enables the 
approach of palladium to the Ca-Cb-σ-bond being cleaved. The dihedral 
angle defined by Ca-Cb-Cc-Pd is approximately 66o in contrast to the 
roughly planar transition states for the migratory insertion of aryl palla-
dium complexes in alkenes and typical ß-syn-hydride eliminations .16 In 
relation to the usual activation barriers within the Heck-cycle like the 
oxidative addition, carbo-palladation and the base-assisted asynchro-
nous E2-eliminations of the Pd leading to the final product, the barrier 
of the ring-enlargement/Pd-migration is clearly not turn-over-limit-
ing.17    



 

Scheme 7. Mechanistic key step featuring the ring-opening – 
Pd-migration. 

 

This low-lying energy barrier became also apparent subjecting pyrrole 
32 to Heck conditions (Scheme 8a). After initial addition of ArPdY to 
C, this intermediate can undergo β-H-elimination to D, thus competing 
with the [1,3]-Pd migration leading to endocyclic ring-opening. Indeed, 
both products 33a:33b could be isolated in a ratio of approximately  
1:2.5 illustrating that the β-H-elimination offers only a minor energetic 
advantage.  

Scheme 8. Mechanistic experiments – [1,3]-migration vs. b-H-
elimination 

 
Further mechanistic studies were performed subjecting carbocycle 34 to 
the title reaction (Scheme 8b). An interesting feature of this substrate is 
the fact that also “wrong” adduct F may, after palladium migration18 to 
G, undergo opening of the endocyclic cyclopropane bond. However, re-
gardless of the employed conditions, arylation of bicycle 34 provided 
compound 36 as the major product, while the formation of isomer 37 
was not observed. In contrast, formation of 35 was observed in moderate 
yields, which must have arisen from E, indicating that in this case the β-
H-elimination outcompetes the palladium migration. 

In summary, we have developed highly comprehensive protocols for the 
Heck-reaction-triggered endocyclic ring-opening of cyclopropanated 
hetero- and carbocycles including pyrroles, piperidines, furans as well as 
cyclopentadienes to grant access to the corresponding 1,2-dihydro-
pyridines, 2H-pyrans, 2,3-dihydro-1H-azepines, 1,4-cyclohexadienes 
and 1,3-butadienes. The robustness of this approach was demonstrated 
with an extensive substrate scope featuring variously substituted aryl and 
vinyl residues and the synthetic utility was showcased by gram scale ex-
periments as well as representative synthetic transformations of the ob-
tained products. Noteworthy protocols could be developed that allowed 
to activate gem-disubstituted cyclopropanated pyrroles and furans, be-
ing readily available starting materials using donor-acceptor diazo ace-
tates.19 Surprisingly, gem-disubstituted cyclopropanated furans resulted 
in the diastereoselective formation of highly, asymmetrically substituted 
dienes. Lastly, we demonstrated by DFT calculations as well as comple-
mentary mechanistic studies that the [1,3]-palladium migration with 
concomitant opening of the endocyclic bond as mechanic key step only 
bears a low energy barrier therefore driving the reaction.  
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