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Abstract 

   The transmission coefficient and electronic conductance of a graphene monolayer in the presence 

of multi-electrostatic barriers are theoretically investigated using the transfer matrix method 

(TMM). The transmission coefficient, conductance, and Fano factor are evaluated as a function of 

the number and width of the barriers, angle/energy of incidence, as well as the applied potential at 

each barrier. We find that the transmission coefficient presents a series of resonances that depends 

on the number and widths of the barriers. Furthermore, we show that the resonant states can be 

suppressed for larger incidence angles and barrier widths and tuned towards lower energies. 

Consequently, the proposed structure can be used to fabricate new optoelectronic devices based on 

(ON/OFF) states as tunable field-effect transistors. 

1-Introduction 

  The electronic and optical properties of heterostructures based on single and multilayered 

graphene continue to garner immense interest [1-5,31-33] due to their usage in various 

optoelectronic devices such as photonic sensors, graphene-based memory, solar cells, and high-

speed electron transistors.  In a graphene monolayer, the motion of electrons is described by the 

massless Dirac equation, which exhibits a linear energy dispersion.  This linearity in the dispersion 

energy relation enables a low conductivity due to a vanishing bandgap near the Dirac point [6]. 

Unlike conventional materials, heterostructures based on monolayer graphene exhibit a Klein 

tunneling phenomenon which predicts that an electron can be transmitted across thick and high 

barriers with a transmission probability equal to 100% for normal incidence. Recently, the 

electronic transmission and conductance of Dirac electrons across single and double barriers have 

been investigated [7-9]. In addition, many studies have shown that an applied delta magnetic field 

can confine electrons in a graphene monolayer [10-14].  Additional theoretical and experimental 

studies have probed electron transmission through mono and bilayer graphene modulated by 

multiple electrostatic barriers, which have resulted in new devices based on wavevector filters and 

tunneling magnetoresistance effects [15-23]. Encouraged by these previous studies, this work 

investigates the transmission coefficient and electronic conductance produced by monolayer 
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graphene under the influence of multiple electrostatic barriers. These barriers are realized by 

depositing various gates on top of the graphene layer. The effects of the incidence angle, number, 

and widths of the barriers on the transmission coefficient, conductance, and Fano factor are 

investigated using the transfer matrix method (TMM). The paper is organized as follows: In Section 

2, we outline the model and theoretical equations that govern electron transport with the numerical 

methods used for their solution. Section 3 presents, discusses, and analyzes the results of our 

calculations. Finally, we give our conclusions in section 4.   

2- Theory 

The system under consideration is a graphene monolayer in the xy-plane. On top of this monolayer, 

we have applied 𝑁 electrostatic potentials (N = 1, …, 10), as shown in figures 1 (a-b). The widths 

of the barriers are 𝑏𝑖 (i = 1,..,N), and the distances separating the barriers are denoted by 

𝑎𝑖(i = 1,..,N). The individual potentials, 𝑉𝑖(i = 1,..,N), denote the barrier heights. The motion of 

electrons is described by the massless Dirac equation as follows [5, 24]: 

[−𝑖ℏ𝑣𝑓𝜎𝑥,𝑦𝛻 + 𝑉𝑗(𝑥)]𝛹(𝑥, 𝑦) = 𝐸𝛹(𝑥, 𝑦)      (1) 

In equation (1), 𝑣𝑓 represents the Fermi velocity, 𝜎𝑥,𝑦 denotes the Pauli matrices, and 𝐸 and 𝛹(𝑥, 𝑦) 

are the energy and its wavefunction, respectively.  The wavefunction in layer 𝑗 describing the 

motion of an incident electron with an angle of incidence 𝜃 is given by the following expression 

[25]: 

𝛹𝑗(𝑥, 𝑦) = {

𝐴𝑗𝑒𝑖𝑞𝑗𝑥 + 𝐵𝑗𝑒−𝑖𝑞𝑗𝑥

𝑞𝑗 + 𝑖𝑘𝑦

𝑘𝑗
𝐴𝑗𝑒𝑖𝑞𝑗𝑥 −

𝑞𝑗 − 𝑖𝑘𝑦

𝑘𝑗
𝐵𝑗𝑒−𝑖𝑞𝑗𝑥} 𝑒𝑖𝑘𝑦𝑦       (2) 

where 𝐴𝑗 and 𝐵𝑗 are the amplitudes of the wavefunction in layer 𝑗, 𝑘𝑦 = (𝐸/ℏ𝑣𝑓) sin(𝜃) denotes 

the y-component of the incident wavevector, 𝑘𝑗 = (𝐸 − 𝑉𝑗)/ℏ𝑣𝑓 represents the total wavevector in 

layer 𝑗, and 𝑞𝑗 = √𝑘𝑗
2 − 𝑘𝑦

2. Using the continuity of the wavefunction at each interface separating 

two consecutive layers, we can readily obtain the matrix relating the amplitudes of the 

wavefunctions in the first and last layers as follows [26-28]:  

            (
𝐴1

𝐵1
) = 𝑆 (

𝐴𝑁

𝐵𝑁
)     (3) 

Where S represents the transfer matrix given by: 

𝑆 = (
𝑆11 𝑆12

𝑆21 𝑆22
) = (

1 1
𝛼1 −𝛽1

)
−1

∏ 𝑆𝑗 (
1 1

𝛼𝑁 −𝛽𝑁
)

𝑁−1

𝑗=2

    (4) 

In the last equation, the coefficients 𝛼𝑗and 𝛽𝑗 are given by: 

                 
𝛼𝑗 = (𝑞𝑗 + 𝑖𝑘𝑦)/𝑘𝑗

𝛽𝑗 = (𝑞𝑗 − 𝑖𝑘𝑦)/𝑘𝑗

    (5) 
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The transfer matrix between two consecutive layers 𝑗 and 𝑗 + 1 is given by: 

                   𝑆𝑗 = (
1 𝑒𝑖𝑎𝑞𝑗

𝛼𝑗 −𝛽𝑗𝑒𝑖𝑎𝑞𝑗
) (

𝑒𝑖𝑎𝑞𝑗 1
𝛼𝑗𝑒𝑖𝑎𝑞𝑗 −𝛽𝑗

)

−1

          (6) 

Using these expressions, the transmission coefficient can be calculated from the expresssion  

𝑇(𝐸, 𝜃) = |𝐴𝑁|2. The conductance at zero temperature can then be calculated using the Landauer-

Buttiker expression [29]: 

𝐺 = 𝐺0 ∫ 𝑇(𝐸, sin 𝜃) cos(𝜃)
𝜋/2

−𝜋/2

𝑑𝜃      (7) 

where 𝐺0 = 2𝑒2𝐸𝐹𝐿𝑦/(𝜋ℎ), and 𝐿𝑦 denotes the graphene layer along the y-axis.  

The Fano factor is given by the following expression [30]: 

𝐹 =
∫ 𝑇[1 − 𝑇]

𝜋/2

−𝜋/2
cos(𝜃) 𝑑𝜃

∫ 𝑇 cos(𝜃)
𝜋/2

−𝜋/2
𝑑𝜃

       (8) 

 

 

Figure 1: Schematic diagram of a graphene monolayer under external electrostatic potentials. The barrier 

and channel widths are denoted by b and a, respectively. 

 

3. Results and discussion 

   We first discuss the effect of the number of electrostatic barriers on the transmission coefficient. 

Figs. 2 (a-f) depicts the transmission coefficient as a function of the incident energy for three angles 

of incidence (θ = 0, θ = π/6, and θ = π/3). The number of barriers varies from N = 1 – 10. In this 

case, the widths of the barriers and wells are b = 2 nm and a = 2 nm, respectively. The Fermi 

velocity is 𝑣𝑓= 106 m/s, and the barrier heights are fixed at 𝑉i=1,..,N = 0.1 eV. By examining these 
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figures, we observe that the transmission coefficient presents a series of oscillations indicating the 

existence of resonant states (a miniband of energies) in the quantum well regions sandwiched 

between the barriers. Once the energy of an incident electron coincides with a resonant state, the 

transmission coefficient reaches its maximum. The quantum tunneling phenomenon can be 

explained as follows: When the energy of the incident electron is equal to the resonant eigenenergy 

of the quantum wells sandwiched between the barriers, the electron wave is trapped in the quantum 

well regions, reflecting back and forth between the barriers in such a phase as to produce 

constructive interference. 

  For the case of θ = 0, the transmission coefficient is equal to unity regardless of the incident 

energy and the number of electrostatic barriers. This behavior confirms the Klein-tunneling effect, 

which states that the system is fully transparent for normal incidence even for high and large barrier 

widths. In addition, when 𝜃 increases, the number of resonant states is reduced, and the peaks of 

the transmission coefficient become sharper.   

  Also, by examining figs 2 (b-f), we note that when the number of electrostatic barriers is increased, 

more resonant states are obtained. For instance, considering the case of 𝜃 = π/6, we observe that 

when the number of barriers is varied from 𝑁 = 2 to 10,  three series of resonances (red curves) 

emerge for the transmission coefficient. The first series of resonances contains 𝑁 resonant states; 

however, the second and the third series contain N-1 resonant states. Another important point that 

should be noted is that for all these figures, the energy gaps separating the first, second, and third 

series of resonance are not affected by increasing the number of barriers. However, when the angle 

is increased (𝜃 = π/3), the second and third series of resonances are suppressed, and only one 

series of resonances is obtained containing resonance states whose number is equal to the number 

of barriers. We can conclude that the number of series of resonances (also called minibands of 

transmission) can be reduced by selecting high angles of incidence. As such, 𝜃 = π/3 is a suitable 

incident angle for which incident energies with high energy are completely reflected, and only 

electrons of the first series of resonances are  transmitted. All these results confirm that the 

transmission coefficient can be modulated by adjusting the angle of incidence and energy of 

incident electrons. 

     To provide more mechanistic information about the transmission coefficient, figure 3 plots its 

variation as a function of the incident energy for three barrier widths (b = 10, 15, and 20 nm). In 

this case, the number of barriers is fixed at N = 5. For θ = π/3, the transmission coefficient 

presents two series of resonances. The number of resonant states in the first series of resonance 

increases with the barrier width and shifts towards higher energies. However, the number of energy 

levels of the second series of resonances are reduced the barrier widths are increased. For instance, 

concerning the second series of resonances, we observe four states for b = 10 nm, and these states 

are suppressed and become closer to each other for b = 15 nm and finally disappear completely for 

b = 20 nm. This phenomenon is notable since the transmission coefficient can also be modulated 

by enlarging the width of the barriers and selecting the appropriate angle of incidence. 

   In the same way, we have also evaluated the impact of the barrier width for 𝜃 = π/6. For this 

low incidence, the transmission coefficient presents three series of resonances; however, contrary 

to the previous case, these series of resonances remain when the barrier width is increased.  In 
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addition, we observe that the energy gaps separating two consecutive series of resonant levels 

increase with the barrier width. All of these results provide different alternatives to modulate the 

operation of a spin-field transistor. 

 

 

Figure 2. Variation of the transmission coefficients as a function of the incident energy for different barrier numbers. 

a) N = 1; b)  N = 2; c) N = 3, d) N = 4, e) N = 5, and f) N = 10. 
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Figure 3. Variation of the transmission coefficients as a function of the incident energy for different 

barrier widths. a) b = 10 nm, b)  b = 15 nm, and c) b = 20 nm. 

 

      To further evaluate the impact of the incidence angle 𝜃 on the tunneling of the electrons through 

our structure, we examine the transmission coefficient as a function of 𝜃 for different numbers and 
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widths of barriers. In figures 4 (a-e), we consider four cases (N = 1, 2, 5, and 10). From all these 

figures, we observe that the transmission curves are symmetric with respect to the normal 

axis (θ =0)regardless of the number and widths of barriers. When the number of the barriers 

increases (N > 1), the transmission coefficient presents three series of resonances separated by two 

gaps. The central series of resonances occur for angles between -0.5 ≤ 𝜃 ≤ 0.5. In addition, in this 

region of incidence, the transmission coefficients plateau close to θ = 0 and show secondary 

resonance peaks near unity. The number of these peaks increases with the number of barriers. The 

central series of resonances is surrounded by two gaps that are due to evanescent waves across the 

barriers. We note that these gaps increase with the thickness of the barriers, while their depths are 

independent of the number and widths of barriers. Furthermore, we observe that the two series of 

resonances located around θ = -1 and 𝜃= 1 are perfectly symmetric. In addition, by increasing the 

number of barriers, the resonant peaks become close to each other and form minibands of 

resonances separated by gaps. The size of these minibands increases with the thickness of the 

barriers. 
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Figure 4. Variation of the transmission coefficients as a function of the angle of incidence for different barrier widths. 

a) N = 1, b)  N = 2, c) N = 5, and d) N = 10 

 

   The electronic conductance 𝐺(𝐺0) as a function of the Fermi level is displayed in figures 5 (a-d). 

In these figures, we evaluate the conductance for N = 1, 2, 4, and 5. In this case, we consider a 

symmetric structure (𝑎 = 𝑏 = 20 nm) with the barrier height fixed to 𝑉 = 0.05 eV. The 

conductance strongly changes when the number of barriers at low Fermi energies is increased. For 

instance, when we consider one barrier (𝑁 = 1), the conductance has only one peak in the Fermi 

energy region below the height barrier (𝐸𝐹 < 0.05 eV). However, additional peaks appear for 𝑁 =

2, 4, and 5 as shown in figures 5 (b-d). For Fermi energies above the barrier height 𝐸𝐹 > 0.05 eV, 

the conductance is strongly decreased as the Fermi energy increases, and the resonant feature 

disappears. In addition, the conductance presents the same variation regardless of the number of 

barriers in the higher Fermi level regions (EF > 0.1 eV). 
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Figure 5. Variation of the electronic conductance as a function of the Fermi energy for different number of barriers. a) 

N = 1, b)  N = 2, c) N = 4, and d) N = 5. 

 

The dependence of the conductance on the widths of barriers is given in figure 6 (a-c), 

where three barrier widths are examined (b = 10, 15, and 20 nm). Here, we considered 5 barriers 

separated by an inter-barrier distance of a = 20 nm. For Fermi energies lower than the barrier height 

(EF < V = 0.05 eV), the transmission of electrons is governed by a Klein tunneling phenomenon 

which predicts that the electrons are resonantly transmitted across the barrier via confined hole 

states. This phenomenon produces resonant peaks in the conductance whose number increases with 

the barrier width. Furthermore, we note that by increasing the barriers widths, the conductance 

minima move towards the right for lower Fermi energies (EF < 0.05 eV) and towards the left for 

higher Fermi energies (EF > 0.05 eV).  
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Figure 6. Variation of the electronic conductance as a function of the Fermi energy for different widths of barriers. a) 

N = 1, b)  N = 2, c) N = 4, and d) N = 5. 

    To conclude our analysis, figure 7 (a-c) calculates the Fano factor as a function of the Fermi 

energy. The physical parameters are the same as those used in figure 6. The Fano factor shows 

oscillatory regions separated by inverse-parabolic shapes that correspond to the minima observed 

in the conductance (figure 6). In other words, the Fano resonance factor reaches its maximum when 

the conductance is at its minimum and vice versa. This behavior arises since the Fano factor is the 

inverse of the conductance. Furthermore, the energy separations between the peaks of the Fano 

factor match the widths of the energy gap regions observed in the variation of the conductance. In 

addition, we observe that the maxima of the Fano factor are not affected by increasing the widths 

of the barriers. The only effect of enlarging barrier width is that the energy gaps in the Fano factor 

become wider. 
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Figure 7. Variation of the Fano Factor as a function of the Fermi energy for different widths of barriers. a) b = 10 nm, 

b)  b = 15 nm, and c) b = 20 nm 

Conclusion 

In summary, we have studied the electronic transmission and conductance of Dirac electrons across 

an electrostatic multibarrier deposited on monolayer graphene. The transfer matrix method (TMM) 

was employed to compute the transmission coefficient for different numbers and widths of barriers 

as well as various angles of incidence. From these results, we calculated the electronic conductance 

and Fano factors. We have shown that the number of resonant states is proportional to the number 

of barriers. For a large number of barriers (N = 10), the transmission coefficient presents well-

defined miniband regions separated by energy gaps. In addition, by increasing the barrier width, 

the conductance shifts to the right at lower incident energies and shifts to the left at higher ones. 

These interesting findings assist in interpreting experimental phenomena in graphene-based 

structures as well as constructing various optoelectronic devices such as the field-effect transistors 

based on (ON/OFF) states. 
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