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Abstract

Hypertension is considered as the predominant risk factor for the onset of Cardiovascular

disease (CVD) in the elder population. The chronic activation of Renin Angiotensin System

(RAS) is  considered as the primary  causative  factor  for  the inception  of hypertension in

geriatric population. Angiotensin Converting Enzyme (ACE) is a highly explored druggable

target  in  the  context  of  hypertension  since  this  enzyme  catalyses  the  conversion  of

angiotensin I to angiotensin II, a potent vasoconstrictor. But clinical trials conducted on ACE

inhibitors  reported  their  incompetence  in  the  effective  treatment  of  hypertension.  Hence,

recent studies are focussing on renin, which is a central component of RAS in the regulation

of blood pressure. The present study focuses on the elucidation of physicochemical properties

of  chemical  compounds  essential  for  renin  inhibition  and  identification  of  novel  renin

inhibitors  possessing  enhanced  potency  as  well  as  bioavailability.  We  have  employed

Molecular  Field  Topology  Analysis  (MFTA)  as  well  as  Structure  Based  Drug  Design

(SBDD) approaches for the accomplishment of above-mentioned objectives. MFTA approach

were  piloted  on  45  indole-3-carboxamide  derivatives  by  elucidating  the  significance  of

charge distribution as well as molecular size of chemical species in eliciting renin inhibition.

Optimal model was obtained with Nf = 3, r2  = 0.81 , Q2 = 0.65. Molecular docking, atom-

based binding free energy contributions and bioavailability assessments were carried out to

identify  most  potent  lead  molecule  among  45  compounds  reported  for  renin  inhibition.

Further, new derivative molecules were predicted for the best lead molecule by employing

chemical space exploration. 

Keywords: Bioavailability assessment; chemical space exploration; docking ; hypertension

MFTA ;renin inhibitors.
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1. Introduction

Aging is an ineluctable biological phenomenon associated with the onset of chronic diseases

affecting  vital  organ systems of  the  human body.  Neurodegenerative,  cardiovascular  and

immunologic  diseases  are  highly  predominant  in  the  elder  population  [1].  The enhanced

prevalence of Cardiovascular disease (CVD) contribute towards higher extent of  mortality

rate  [2].  According  to  the  estimates  of  World  Health  Organization  (WHO),  CVDs  are

considered as a highly predominant  cause of enhanced global  death rates  [3].  Significant

CVDs prevalent in the aged population include Coronary Heart Disease (CHD), Myocardial

Infarction (MI), Heart Failure (HF), stroke, Peripheral Arterial Disease (PAD) and Valvular

Heart Disease (VHD) [2].

Tobacco use, consumption of unhealthy diet, obesity, physical inactivity and excessive usage

of alcohol are documented as the behavioural risk factors responsible for the onset of CVDs.

Hypertension, diabetes and hyperlipidaemia are considered as the major physiological risk

factors leading to the onset and progression of CVDs [4]. Statistical estimations reported a

direct  correlation  between  hypertension  and  aging  [5] .Hence,  hypertension  act  as  a

significant risk factor for initiating the pathogenesis of CVDs. 

The  pathogenesis  of  hypertension  is  associated  with  age-dependent  chronic  activation  of

Renin Angiotensin System (RAS), which plays a significant role in sodium homeostasis and

maintenance of body fluid volume [6]. RAS comprise of angiotensinogen, renin, angiotensin

I,  Angiotensin  Converting  Enzyme  (ACE),  angiotensin  II,  Angiotensin  Type  I  Receptor

(AT1R) and Angiotensin Type 2 Receptor (AT2R). In normal conditions, decreased body

fluid volume as well  as hypotension triggers the expression of renin.  Renin catalyses  the

conversion of angiotensinogen to angiotensin I (rate limiting step) and subsequent activation

of  angiotensin  II.  Angiotensin  II,  act  as  a  potent  vasoconstrictor  and  hence  aids  in
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reconstituting body fluid volume and to maintain blood pressure to normal level  [7].  But,

aging  is  characterized  by  the  abnormal  activation  of  RAS  which  results  in  upregulated

expression of angiotensin II, a potent vasoconstrictor [8].

Angiotensin II is also responsible for the production of superoxide ions via the activation of

intracellular NADPH oxidase. Superoxide ions belong to the category of Reactive Oxygen

Species  (ROS),  which  is  mainly  responsible  for  triggering  the  onset  of  age-associated

diseases.  Hence,  angiotensin II  is  an effector  molecule  of RAS pathway,  which causes a

detrimental effect in the aged population by promoting the upregulated production of ROS

and  the  onset  of  hypertension  [9].  Hence,  inhibition  of  angiotensin  II  expression  could

prevent the pathogenesis of hypertension and elevated production of superoxide ions. The

production  of  angiotensin  II  is  mediated  by ACE. Hence,  inhibition  of  ACE is  a  widely

accepted therapeutic approach for controlling angiotensin II expression. Clinically approved

drugs such as captopril, enalapril, lisinopril, and fosinopril act as ACE inhibitors. But clinical

trials conducted on ACE inhibitors have reported incomplete RAS blockade which further

leads to the rise in plasma renin activity and activation of angiotensin II  [10]. The reduced

feedback inhibition  of renin release by act  as  a  causative factor  for the incomplete  RAS

blockade by ACE inhibitors [11].

But, direct renin inhibitors bind to the catalytic site of renin and inhibits the conversion of

angiotensinogen to angiotensin I, which is the rate limiting step in RAS pathway leading to

the formation of angiotensin II [12]. Therapeutic strategies reported on direct renin inhibition

leads to the complete blockade of RAS pathway and decreased angiotensin I and angiotensin

II activity [13]. Hence, this study focus on elucidating physicochemical features of chemical

compounds  responsible  for  renin  inhibition  and  to  predict  novel  renin  inhibitors  with

improved potency and bioavailability by employing ligand and structure based approaches

respectively. 
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2. Materials and methods

2.1 Dataset

45 indole-3-carboxamide compounds reported for renin inhibitory activity were considered

for  this  study  [14].  The  potency  of  indole-3-carboxamide  derivatives  for  eliciting  renin

inhibition was expressed as IC50 (half maximal inhibitory concentration) values. Logarithmic

values of IC50 were used as response variables for activity modelling studies.

2.2 Molecular Field Topology Analysis (MFTA) for renin inhibitors

MFTA was employed on establishing Quantitative Structure Activity Relationships (QSAR)

of  structurally  related  chemical  compounds  [15].  In  MFTA,  molecular  structures  are

represented  as  molecular  graphs,  which  are  subsequently  superimposed  into  a  Molecular

Super Graph (MSG). MSG takes  accounts  for the common scaffolds shared by chemical

compounds and distribution of local descriptors along the molecular structure [15].

2.3 MFTA- Training Set Preparation

Two Dimensional  (2D) co-ordinates  of 45 compounds present in the dataset  were drawn

using Marvin Sketch (https://chemaxon.com/products/marvin) and saved as .sdf format. The

activity  file  depicting  potency  values  for  renin  inhibition  (LogIC50 values  –  dependent

variables) were prepared in Comma Separated Value (CSV) file format. SDF file of chemical

structures  were  merged  with  the  activity  file  using  StarDrop

(https://www.optibrium.com/stardrop/). The merged file consisting of chemical structures and

activity values which were loaded as input to generate MFTA dataset (MDS file).
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2.4 MFTA – Descriptor Calculation

MFTA is based on the distribution of local molecular descriptors on homogenous chemical

compounds.  The  local  molecular  descriptors  (independent  variables)  calculated  by

considering the properties of atoms and bonds in chemical structures include Charge.Q (Q),

VdW.Re (Re), HBond.Hd (Hd), HBond.Ha (Ha) and Lipo.Lg (Lg). Q depicts effective atomic

charge calculated by Electronegativity Equalization Method (EEM), which determines atomic

charges by considering electronegativity of atoms present in the molecule [16]. ‘Re’ depicts

effective van der Waals radius of atom by considering steric requirements of the central non-

hydrogen atom and other attached atoms. Hd and Ha represent the ability of atom to act as

hydrogen bond donor and hydrogen bond acceptor respectively. Lipo.Lg accounts for group

lipophilicity  considering the contributions  of central  non-hydrogen atom and the attached

hydrogen  atoms.  Hence  Q  accounts  for  electrostatic  interactions,  VdW.Re  for  steric

interactions, Lipo.Lg for hydrophobic interactions, Hd & Ha for hydrogen bond interactions

of chemical compounds  [17]. Execution of MFTA aided in elucidating the distribution of

above-mentioned  local  descriptors  on  chemical  compounds  and  its  influence  on  targeted

biological activity. Descriptor combinations recommended for running MFTA calculations

are provided in (Table 1).

2.5 Assessment of model quality and selection of optimal model

MFTA employs Partial Least Squares (PLS) method for generating predictive models. PLS

method is based on the linear transition from a large number of original descriptors to a new

variable space based on small number of orthogonal factors (latent variables). In the PLS

method, latent variables are chosen in such a way as to provide maximum correlation with the

dependent  variable  [18].  The  selection  of  optimal  model  was  performed  by  considering
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model  predictivity  and  interpretability.  Model  predictivity  was  analysed  by  considering

statistical  parameters  such  as  Q2 and  Root  Mean  Square  Error  (RMSE)  [19].  Models

possessing  higher  Q2 and  low  Root  Mean  Square  Error  (RMSE)  values  were  chosen.

Interpretability of MFTA models is associated with the distribution of local descriptors and

their influence on the biological activity.

2.6 Identification of active site residues and molecular docking studies

Computational tools such as DoGSiteScorer and ScanProsite were employed for the active

site prediction. DoGSiteScorer server aids in the prediction of binding sites by analysing the

geometric and physico-chemical properties of pockets by utilizing Support Vector Machine

(SVM) algorithm [20]. ScanProsite detects functional domains of proteins  [21]. Active site

residues identified  from these computational  tools were compared with existing literature

references on renin inhibitors. 

Molecular docking studies were executed by FlexX, which exploits incremental construction

algorithm (IC). IC algorithm samples the conformation space of flexible ligand and utilize

tree search technique for the accurate placement of ligand fragments incrementally into the

protein active site [22].

2.7 Assessment of torsional alerts and atom-based free energy contributions

SeeSAR  (SeeSAR  version  10.0;  BioSolveIT  GmbH,  Sankt  Augustin,  Germany,  2020,

www.biosolveit.de/SeeSAR) was employed for calculating the torsional alerts and binding

free energy contributions for all the compounds in dataset. SeeSAR is a computational tool

which aids in the visual compound prioritization as well as compound evolution. SeeSAR is

an interactive tool which helps in the visual inspection of binding free energy contributions of

each atoms of the ligand. The binding free energy was calculated by HYDE scoring function,
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which  accounts  for  the  hydrogen  bond  as  and  dehydration  energies  of  protein-ligand

complexes [23].

2.8 Bioavailability assessment

The  ranking  of  highly  potent  lead  like  molecules  was  carried  out  by  analysing

physicochemical features influencing bioavailability. Bioavailability assessment was carried

out  by  utilizing  StarDrop’s  ADME  module (https://www.optibrium.com/stardrop),  which

provides  outstanding predictive ADME models for diverse class of chemical  compounds.

StarDrop’s ADME module predicts key physicochemical properties including logP (Octanol/

Water),  Intrinsic  Aqueous  Solubility  (logS),  Human  Intestinal  Absorption  (HIA)

Classification, Cytochrome P450 Affinities and hERG pIC50 . The toxicity assessment was

predicted by utilizing vNN web server (https://vnnadmet.bhsai.org/) which employs k-nearest

neighbor (k-NN) method for the accurate prediction of toxicity alerts including cytotoxicity

and  mutagenicity  [24].  The  structural  features  of  chemical  compounds  responsible  for

enhancement  of  physicochemical  properties  encoding  bioavailability  was  predicted  by

StarDrop’s glowing molecule module.

2.9 Identification of derivatives

New derivative compounds were predicted from the most effective lead molecule among 45

compounds in the dataset.  Effective lead molecule was identified by considering multiple

parameters such as higher dock score, appropriate binding interactions with target protein

(renin)  and  good  bioavailability  profiles.  Identification  of  derivative  compounds  were

accomplished  by  exploiting  infiniSee  tool  (https://www.biosolveit.de/infiniSee/).  InfiniSee

explores chemical spaces by utilizing FTrees similarity search engine, which employs a fuzzy

pharmacophore descriptor for identifying structurally distinct molecules in pharmacophore
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space [25]. Identification of most promising derivative compounds was performed by hit to

lead optimization strategies  including molecular  docking,  binding affinity,  torsional  alerts

prediction and bioavailability assessment studies.

3. Results and Discussion

3.1 MFTA – Renin inhibitors

MFTA is an approach based on local atomic descriptors from homogenous dataset. MFTA

calculations  elucidated  molecular  supergraphs,  which  depicted  the  influence  of  local

descriptors on chemical structures. The training set comprising of 45 compounds reported for

renin inhibitory activity were compiled from the literature. Renin inhibitory activities of 45

compounds  were  expressed  in  IC50 (half  maximal  inhibitory  concentration)  values.

Logarithmic values of IC50 were employed for further analysis. MFTA QSAR models were

generated for all descriptor combinations listed in Table 1. QSAR models of all descriptor

combinations  resulted  in  similar  statistical  quality  as  well  as  coherent  picture  of  local

descriptor  influence  on the activity.  The prioritization of optimal  model  was prepared by

considering  the  biological  as  well  as  statistical  significance  of  generated  QSAR models.

Optimal  model  was  obtained  for  the  descriptor  combination  (Charge.Q,  VdW.Re).  The

parameters  illustrating  statistical  significance  of  QSAR model  is  provided  in  (Table  2).

Details regarding experimental and predicted values of compounds present in the dataset is

provided in Supplementary Table S1.

Scatter  plot  illustrating  the  correlation  between  experimental  and  predicted  endpoints  is

provided in (Figure 1). Other relevant plots obtained by performing modelling is provided in

Supplementary Figure S1-S4.
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Since, primary objective of the present work was to identify the influence of physicochemical

features  of  chemical  compounds  in  eliciting  renin  inhibition,  descriptor  combination

representing  the  significance  of  electrostatic  and  steric  interactions  (Charge.Q,  VdW.Re)

were chosen for performing MFTA calculations.  Electrostatic  and steric  interactions  play

significant  role  in  establishing  stable  protein-ligand  interactions  [26].  Electrostatic

interactions  belong  to  the  category  of  non-covalent  interactions  which  accounts  for  the

attractive or repulsive interactions between chemical species possessing electric charges [27].

Electrostatic  interactions  are  highly  predominant  in  proteins.  The  amino  acids,  building

blocks of proteins contribute for the electrostatic  interactions  in proteins.  The strength of

electrostatic interactions in and around proteins are explained by coulomb’s law, the Poisson

equation,  the  Boltzmann  distribution  and  Born  model  [28].  The  small  molecule  drugs

interacting with proteins also possess high charge density as well as they undergo frequent

protonation changes upon binding to their target protein. Hence, stabilization of electrostatic

interactions between protein and small molecule drugs (ligands) confers stability for protein-

ligand complexes  [29]. Steric effects are classified as nonbonding interactions, which play

vital  role in determining the conformation and reactivity of organic compounds  [30]. The

presence of bulkier  moieties  on organic compounds results  in slowing down of chemical

reactions due to the higher magnitude of repulsive forces between the overlapping electronic

clouds. Hence, electrostatic as well as steric effects play key role in determining the stability

and  reactivity  of  organic  compounds.  The  present  work  focused  on  identifying  the

contribution of electrostatic as well as steric interactions in establishing stable interactions

between renin and indole-3-carboxamide compounds. 

Charge Q descriptor, illustrating the significance of electrostatic interactions was calculated

by  Electronegativity  Equalization  Method  (EEM),  which  is  a  fast-empirical  method  for

atomic charge calculation. The calculation of atomic charges depends on electronegativity,
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charge  distribution  as  well  as  distance  between  pair  of  atoms  [31].  VdW.Re  descriptor

accounts for effective van der Waals radius of atom environment taking into account the

steric requirements of central non-hydrogen atom and other attached atoms. 

The  bioactivity  model  constructed  after  performing  MFTA  calculations  explained  the

contribution of local descriptors towards eliciting a specific biological activity. The positions

marked with blue coloured circles in activity maps illustrated that an increase in descriptor

tend to decrease the activity, while positions marked with red coloured circles indicated that

increase  in  descriptor  value  tend  to  increase  the  activity.  We  have  employed  molecular

docking studies to comprehend the biological significance of activity model obtained after

performing MFTA calculations, since docking studies provide details regarding significant

interactions made by chemical compounds with renin. The bioactivity model constructed for

renin  inhibitors  explained  the  significance  of  nitrogen  atoms  in  establishing  specific

interactions with aspartate residues present in the catalytic site of renin [32]. The presence of

blue coloured circles (for charge Q descriptor) in the regions of nitrogen atoms explained the

specificity of these groups in their respective positions. Blue coloured circles for charge Q

descriptor in the position of nitrogen atoms signified the fact that replacement of nitrogen

atoms with chemical species possessing higher electronegativity or charge distribution tend to

decrease renin inhibitory activity by failing to inhibit key aspartate residues present in renin

catalytic  site.  Molecular  docking  studies  revealed  the  prevalence  of  hydrogen  bond  and

hydrophobic  interactions  of  target  protein  (renin)  with  carboxamide  derivatives.  This

observation was correlated with the MFTA results  by analysing the contribution  of local

descriptors. Hydrogen bond interactions were found between electronegative oxygen atoms

and NH groups of carboxamide derivatives. The presence of blue coloured circles around

these  atoms  signified  that  the  replacement  of  chemical  species  having  higher  charge

distribution  than  these  atoms  tend  to  decrease  the  potential  to  form  hydrogen  bond
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interactions with the target protein. From the molecular docking studies, it was evident that

the  stability  of  protein-ligand  complex  is  attributed  to  the  hydrophobic  interactions  of

carboxamide  derivatives  with  renin  protein.  Hydrophobic  interactions  arise  due  to  the

presence of non-polar molecules, were the charge distribution has null role. So, the regions of

carboxamide derivatives making hydrophobic interactions with renin were also marked by

the presence of blue coloured circles. Hence, observations from molecular docking studies

and MFTA bioactivity  model  was found to be highly coherent.  The Descriptor,  VdW.Re

accounts for the molecular size and steric effects of organic compounds. The presence of red

coloured circles in the bioactivity model indicated that increase in the molecular size of rings

positively contribute for the renin inhibitory activity. The compound S8000024 was chosen

as reference for molecular supergraph and influence the local descriptor depiction, as this

compound  exhibited  good  binding  energy  as  well  as  significant  interactions  with  renin

(obtained after conducting molecular docking studies). 

The molecular supergraph and distribution of local descriptors of the compound S8000024 is

provided in the (Figure 2). 

3.2 Molecular docking studies

Molecular  docking  studies  were  executed  to  identify  significant  binding  interactions  of

chemical compounds with target protein (renin). Active site residues of renin identified from

computational tools such as DoGSiteScorer and ScanProsite were compared with the existing

literatures  on renin inhibitors.  Thr12, Gln13, Asp32,  Gly34,  Ser35,  Trp39,  Tyr75, Ser76,

Thr77, Pro111, Phe112, Phe117, Val120, Asp215, Ser219, Tyr220, His287 and Met289 were

identified as active site residues. Asp32 and Asp215 residues were required for the catalytic

activation of renin.

12



Molecular docking studies were performed by utilizing FlexX, which employs Incremental

Construction (IC) algorithm for the accurate placement of ligand fragments into the protein

active site. Active site definition was followed by execution of IC algorithm by providing

optimized  3D  coordinates  of  ligands.  Top  20%  docked  poses  of  indole-3-carboxamide

derivatives were generated by considering three different stereo modes (racemization) such as

E/Z, R/S and pseudo R/S. Binding of ligand to protein was driven by enthalpy-entropy hybrid

approach with 20,000 solutions  per  fragmentation.  Binding affinity  and ligand efficiency

were calculated by performing HYDE assessment. Molecular docking studies were executed

to  explicate  binding  affinity  and  significant  binding  interactions  between  target  protein

(renin) and ligands. Compounds S8000024, S8000022 and S8000005 were identified as best

binders of renin protein by considering binding affinity as well as interactions with key amino

acid residues. Compound S8000024 exhibited higher binding energy. The binding affinity of

this  compound  was  found  in  nanomolar  range.  But  all  the  three  compounds  showed

interactions with Asp32 and Asp215 catalytic residues.. 

Dock score, binding energy, ligand efficiency and binding affinity range for best binders of

target protein are provided in (Table 3). 

Dock  score,  binding  energy,  ligand  efficiency  and  binding  affinity  range  for  all  the

compounds in the dataset is provided in Supplementary Table S2.

2D and 3D depictions of ligand-protein interactions of S8000024, S8000005 and S8000022

generated from PoseView are provided in (Figure 3), (Figure 4) and (Figure 5) respectively.

2D  depictions  of  binding  interactions  for  all  compounds  in  the  dataset  is  provided  in

Supplementary Figure S5. Prioritization of effective lead molecules were done by considering

few check points such as higher binding energy, good binding affinity (nanomolar range) and

interactions  with catalytic  residues Asp32 and Asp215. The binding affinity of co-crystal
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ligand was calculated in mM-M range with a dock score of –50.05. The binding interactions

of co-crystal ligand is depicted in the (Figure 6). Molecular docking studies were followed

by the assessment of torsion alerts and atom-based free energy contributions.

3.3 Assessment of torsions and atom-based free energy contributions

The  torsional  alerts  and  atom-based free  energy  calculations  were  performed  for  all  the

compounds in the dataset using SeeSAR software. In addition to torsional alerts and atom-

based free energy calculations, SeeSAR aided in the estimation of inter and intra clashes of

ligands. Inter-clashes occur within ligands while intra-clashes occur with the target protein,

with which ligand is interacting. The occurrence of intra-clashes results in the inappropriate

placement of ligands, the ligand cannot even be placed into the protein’s active site. The

presence of inter-clashes is related with the stability of ligands. Torsion is considered as one

of the significant structural parameters of ligands, which explicates the significance of ligand

flexibility.  Good/moderate  torsions  and clashes  are  favourable  for  making stable  protein-

ligand interactions.  The values of torsion angle are considered to be positive values if torsion

angle depicts a clockwise rotation is performed with the molecule and it will be negative

when  an  anti-clockwise  rotation  is  performed  with  the  molecule  in  its  plane.  SeeSAR

provides  visual  inspection  of  favourable/unfavourable  torsion  angles  by  the  means  of

colouring  scheme.  Torsion  angles  falling  within  the  first  tolerance  value  around  a  local

minimum are coloured green. Those between the first and second tolerance values are orange,

and those beyond the second tolerance are coloured red [33]. 

The atom-based free energies were calculated by considering the change in entropy, change

in enthalpy and split of the free energy. SeeSAR software aids in the visual inspection of
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atom-based free energy contributions by providing coloured corona representations around

atoms  of  ligand.  The  presence  of  green  coloured  corona  on  an  atom depicts  favourable

contribution  and  the  presence  of  red  coloured  corona  on  atom  represents  unfavourable

contribution.  The depiction  of  favourable  and unfavourable  contributions  is  based on the

desolvation terms and free energy of binding of each atom present in the ligand. Negative

values of free energy of binding represents favourable atom contributions (green coloured

corona)  while  positive  values  of  free  energy  of  binding  represents  unfavourable  atom

contributions (red coloured corona).

Since, free energy of binding is an additive thermodynamic property, we have calculated total

unfavourable contributions made by the atoms of S8000024, S8000005 and S8000022. The

sum of unfavourable contributions made by atoms of S8000024 is 9.6 kJ/mol (6.4 kJ/mol +

1.2 kJ/mol+2.00 kJ/mol),  17.7 kJ/mol for  S8000005 and 19.2 kJ/mol  for S8000022. The

comprehensive analysis of free energy contributions of atoms of the top ranked compounds

(S8000024, S8000005 and S8000022) revealed least unfavourable atom contributions for the

compound S8000024. The atom-based free energy contributions of co-crystal ligand present

in renin was also calculated. A total of 22.9 kJ/mol of unfavourable atom contribution was

estimated  for  the  crystal  ligand.  Hence,  unfavourable  atom  contributions  of  top  binders

(S8000024,  S8000005 and S8000022)  were found to  be  significantly  lesser  than  the  co-

crystal  ligand.  The  histogram  peaks  depicted  in  the  figures  represent  most  frequently

observed torsion values. Compounds S8000024 and S8000022 exhibited favourable torsion

angles  (green  colour).  But  S8000005  exhibited  unfavourable  torsion  angle  of  -560 (red

colour).  Hence,  all  the  top  ranked  compounds  obtained  from docking  studies  possessed

appreciable structural features for making protein-ligand interactions. Even though compound

S8000022 showed very good structural parameters, atoms present in this compound exhibited

unfavourable contributions with renin (19.2 kJ/mol free energy of binding).  The torsion,
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interclash and intraclash of co-crystal ligand were calculated as moderate,  good and good

respectively. 

(Figure 7), (Figure 8) and (Figure 9) represent atom-based free energy contributions and

torsion  angles  for  top  ranked  compounds  obtained  after  conducting  molecular  docking

studies. 

The torsions, interclash and intraclash for S8000024, S8000005 and S8000022 are provided

in (Table 4). The torsion alerts and clashes for all the compounds present in the dataset is

provided in Supplementary Table S3.

3.4 Bioavailability assessment 

Bioavailability  assessment  was  carried  out  by  StarDrop’s  (Absorption,  Distribution,

Metabolism, Elimination)  ADME module software. The physicochemical features such as

aqueous solubility,  hERG (human Ether-a-go-go-Related Gene) liability,  Human Intestinal

Absorption (HIA) and affinity towards cytochrome p450 enzyme isoform were predicted. In

addition,  the toxicity alerts associated with the chemical compounds were predicted using

vNN server. 

Solubility is an essential physicochemical feature responsible for proper distribution of lead

molecules  in  the  biological  compartments.  LogP  descriptor  accounts  for  lipophilicity  of

chemical compounds. Lipophilicity is accountable for crossing lipoproteinaceous biological

membranes.  Hence  logS  and  logP  descriptors  accounts  for  the  penetration  of  lead  like

molecules into biological compartment [34]. 2C9 pKi descriptor accounts for the affinity of

organic compounds towards cytochrome isoform. The metabolic stability of lead molecules

was assessed by analysing affinity towards cytochromep450 isoforms [35]. Lead molecules

should  possess  low/medium  affinity  towards  cytochromep450  isoforms.  Higher  affinity
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towards  cytochromep450  leads  to  faster  rate  of  metabolic  degradation  of  lead  molecules

before eliciting its therapeutic action. hERG (human Ether-a-go-go-Related Gene) liability

assessment  associated  with  the  cardiotoxicity  alert  of  compounds  were  analysed.  hERG

encodes alpha subunit of potassium ion channel, which contributes to the electrical activity of

heart.  Drugs  inhibiting  the  biological  functioning  of  this  gene  contribute  to  the  clinical

condition called ventricular tachyarrhythmia [36]. 

The bioavailability assessment was carried out using StarDrop’s ADME module. Among the

top 3 lead compounds, aqueous solubility was found to be higher for S8000024. The HIA

profile,  logP  and  affinity  towards  cytochrome  isoform  2C9  were  highly  acceptable  for

S8000024. But, hERG liability was found to be higher for all the 3 lead molecules. All the 3

lead compounds were free from the toxicity endpoints such as cytotoxicity and mutagenicity.

Bioavailability assessment results for top 3 compounds identified as best binders with renin

are provided in (Table 5). Bioavailability assessment results for all compounds present in the

dataset is provided in Supplementary Table S4.

By  considering  multiple  parameters  such  as  free  energy  of  binding,  torsional  alerts,

significant interaction with target protein (renin) and bioavailability, S8000024 was identified

as potential  lead molecule for exhibiting renin inhibitory activity.  Even though S8000024

possessed good binding energy, atom-based free energy contributions, significant interactions

with catalytic residues (Asp32 and Asp215) and good bioavailability, compound was prone to

exhibit  hERG  liability.  Hence,  derivative  compounds  were  identified  for  the  compound

S8000024  to  identify  highly  potent  lead  molecules  possessing  better  bioavailability  than

parent compound (S8000024). 

The structural features of compound S8000024 depicting the physicochemical feature, hERG

pIC50 (predicted by StarDrop’s glowing molecule module) is provided in (Figure 10). The
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hERG liability of the compound S8000024 is attributed to the presence of the presence of

nitrogen and oxygen atoms attached to the ring and alkyl chain.

The structural features of compound S8000024 contributing for all  other physicochemical

parameters encoding bioavailability is provided in the Supplementary Figure S6.

3.5 Identification of derivatives

New derivatives were identified for S8000024 and focusing on the unfavourable atoms in the

binding affinity studies. Identification of derivatives was accomplished by utilizing infiniSee

tool, which aids in the prediction of synthetically feasible compounds by navigating chemical

spaces like Enamine,  GalaXi,  etc.  The parent compound S8000024 was provided in SDF

format and pharmacophore features required for making specific interactions with catalytic

aspartate residues were defined. GalaXi, (chemical space created in collaboration with WuXi

LabNetwork) comprising of 2 billion synthetically feasible chemical compounds was utilized

for navigating derivative molecules.

3.6 Molecular docking studies for derivative compounds

The binding affinity as well as significant binding interactions of derivative molecules with

target  protein  (renin)  was  analysed  by  executing  molecular  docking  studies.  Active  site

definition was followed by molecular docking as well as HYDE assessment studies. (Table 6

) depicts top 6 compounds which showed excellent binding potential with renin. 

The binding interactions  of D1 is  provided in  (Figure 11).  D1 exhibited  hydrogen bond

interactions with the catalytic aspartate (Asp215) residue. Out of top 6 derivative molecules
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identified, compound D1 showed exceptional binding affinity of -35 kJ/mol and its binding

affinity was identified in Nanomolar range. Compound D1 exhibited higher binding energy

compared  to  parent  compound  (S8000024).  But  binding  energy  of  all  other  derivative

molecules  were significantly  lower and their  binding affinity  was predicted in millimolar

range. The binding interactions of D1 with renin is represented in the (Figure 11).

The MFTA studies  concluded  the  significance  of  charge  distribution  associated  with  the

electronegative groups such as NH, and O (oxygen atom) in establishing stable hydrogen

bond interactions  with  the  target  protein  (renin).  In  coherent  with  the  observations  from

MFTA studies, the electronegative groups (NH and O) present in the derivative compound

D1 also exhibited hydrogen bond interactions with the active site residues of renin. Hence,

the  presence  of  these  electronegative  groups  possessing  specific  charge  distributions  are

significant for making stable interactions with the active site residues of renin.

3.7 Evaluation of torsional alerts and atom-based free energy contributions

The  torsional  alerts  and  atom-based  free  energy  contributions  were  evaluated  for  the

identified derivative compounds. The atom-based free energy contributions of compound D1,

which  demonstrated  significantly  higher  binding  energy  values  compared  to  all  other

derivative compounds, is provided in the (Figure 12).

Derivative  compound  D1  displayed  a  total  of  9.9  kJ/mol  atom-based  unfavourable

contribution,  which  is  comparable  with  the  parent  compound  S8000024,  which  revealed

atom-based unfavourable contributions of 9.6 kJ/mol. D1 exhibited favourable torsion alerts

(green colour) similar to the parent compound, S8000024.
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3.8 Bioavailability assessment – derivative compounds

Bioavailability  assessment  were  done  for  all  the  6  derivative  compounds  identified  by

chemical  space  exploration.  Physicochemical  properties  such  as  aqueous  solubility,

lipophilicity,  hERG  (human  Ether-a-go-go-Related  Gene)  liability,  Human  Intestinal

Absorption (HIA), and affinity towards cytochrome p450 enzyme isoform were predicted for

derivative molecules.  (Table 7).  Depicts  details  on physicochemical  properties  associated

with bioavailability assessment of derivative compounds.

Among 6 derivative compounds identified, D1 showed good bioavailability scores compared

to  all  other  derivatives.  D1  exhibited  improved  scores  for  solubility  (logS),  partition

coefficient  (logP),  lower  affinity  towards  cytochromep450  isoform,  inactive  for  toxicity

profiles and lower values for hERG liability compared to its parent compound S8000024. The

improved  bioavailability  profile  of  compound  D1  compared  to  its  parent  compound

S8000024 makes it as an efficient drug candidate for eliciting renin inhibition. The structural

features of derivative compound D1 contributing for reduced  hERG pIC50 is provided in

(Figure 13).

The  structural  features  of  compound  D1  contributing  for  all  other  physicochemical

parameters encoding bioavailability is provided in the Supplementary figure S7.

This compound demonstrated excellent  binding energy, significant  interactions  as well  as

favourable  torsion  alerts  compared  to  parent  compound  S8000024.   Hence,  we  propose

compound D1 as a potential renin inhibitor with improved potency and bioavailability.

4. Conclusion
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45 indole-3-carboxamide compounds reported for renin inhibitory activity were considered

for  this  study.  MFTA  study  revealed  the  significance  of  charge  distribution  as  well  as

molecular size of chemical species in eliciting renin inhibition.  Molecular docking, atom-

based free  energy contributions,  torsion  alerts  and bioavailability  assessment  studies  was

performed to identify the most potent lead molecule among 45 compounds. Even though,

S8000024 displayed higher binding energy, favourable torsion alerts, significant interactions

with renin as well as good bioavailability, compound was prone to exhibit hERG liability.

Hence, derivatives were identified for S8000024 by employing chemical space exploration.

Among 6 derivatives identified, compound D1 showed good binding energy, atom-based free

energy contributions, favourable torsion alerts as well as bioavailability scores compared to

parent compound (S8000024).

5. Acknowledgements

GGP  thank  Alexander  Oliferenko  and  N.S  Zefirov  for  providing  access  to  MFTA  tool.

Authors  thank  Zastra  Innovations  for  providing  facilities,  access  to  BioSolveIT  GmbH,

Germany,  Optibrium  Ltd,  UK  software  licenses  and  mentoring.  AUP  also  thank  Zastra

Innovations for the financial support for the completion of this research study.

6. Funding

Authors thank Vellore Institute of Technology for providing financial support for carrying

out this research work.

7. Declaration of competing interest

Authors report no potential conflict of interest.

8. Ethics Statement

The present study does not involve human/animal participants.

21



9. CRediT author statement

GGP aided in the conceptualization of the study, provided resources and ensured accuracy of

the study. AUP carried-out experiments, formal analysis and wrote manuscript. SLS, GGP

analysed and validated data together.

Supplementary Data

All  datasets,  descriptor  values,  QSAR  models  for  predictions  usage  and  plots  will  be

available in https://github.com/giribio/agingdata 

References

[1] S.S. Khan, B.D. Singer, D.E. Vaughan, Molecular and physiological manifestations 

and measurement of aging in humans, Aging Cell. 16 (2017) 624–633. https://doi.org/

10.1111/acel.12601.

[2] A. Yazdanyar, A.B. Newman, The Burden of Cardiovascular Disease in the Elderly: 

Morbidity, Mortality, and Costs, Clin. Geriatr. Med. 25 (2009) 563–577. 

https://doi.org/10.1016/j.cger.2009.07.007.

[3] G.A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S.F. Abera, G. Abyu, M. Ahmed, 

B. Aksut, T. Alam, K. Alam, F. Alla, N. Alvis-Guzman, S. Amrock, H. Ansari, J. 

Ärnlöv, H. Asayesh, T.M. Atey, L. Avila-Burgos, A. Awasthi, A. Banerjee, A. Barac, 

T. Bärnighausen, L. Barregard, N. Bedi, E. Belay Ketema, D. Bennett, G. Berhe, Z. 

Bhutta, S. Bitew, J. Carapetis, J.J. Carrero, D.C. Malta, C.A. Castañeda-Orjuela, J. 

Castillo-Rivas, F. Catalá-López, J.Y. Choi, H. Christensen, M. Cirillo, L. Cooper, M. 

Criqui, D. Cundiff, A. Damasceno, L. Dandona, R. Dandona, K. Davletov, S. 

Dharmaratne, P. Dorairaj, M. Dubey, R. Ehrenkranz, M. El Sayed Zaki, E.J.A. Faraon,

A. Esteghamati, T. Farid, M. Farvid, V. Feigin, E.L. Ding, G. Fowkes, T. Gebrehiwot, 

R. Gillum, A. Gold, P. Gona, R. Gupta, T.D. Habtewold, N. Hafezi-Nejad, T. Hailu, 

22

https://github.com/giribio/agingdata


G.B. Hailu, G. Hankey, H.Y. Hassen, K.H. Abate, R. Havmoeller, S.I. Hay, M. 

Horino, P.J. Hotez, K. Jacobsen, S. James, M. Javanbakht, P. Jeemon, D. John, J. 

Jonas, Y. Kalkonde, C. Karimkhani, A. Kasaeian, Y. Khader, A. Khan, Y.H. Khang, S.

Khera, A.T. Khoja, J. Khubchandani, D. Kim, D. Kolte, S. Kosen, K.J. Krohn, G.A. 

Kumar, G.F. Kwan, D.K. Lal, A. Larsson, S. Linn, A. Lopez, P.A. Lotufo, H.M.A. El 

Razek, R. Malekzadeh, M. Mazidi, T. Meier, K.G. Meles, G. Mensah, A. Meretoja, H. 

Mezgebe, T. Miller, E. Mirrakhimov, S. Mohammed, A.E. Moran, K.I. Musa, J. 

Narula, B. Neal, F. Ngalesoni, G. Nguyen, C.M. Obermeyer, M. Owolabi, G. Patton, J.

Pedro, D. Qato, M. Qorbani, K. Rahimi, R.K. Rai, S. Rawaf, A. Ribeiro, S. Safiri, J.A. 

Salomon, I. Santos, M. Santric Milicevic, B. Sartorius, A. Schutte, S. Sepanlou, M.A. 

Shaikh, M.J. Shin, M. Shishehbor, H. Shore, D.A.S. Silva, E. Sobngwi, S. Stranges, S. 

Swaminathan, R. Tabarés-Seisdedos, N. Tadele Atnafu, F. Tesfay, J.S. Thakur, A. 

Thrift, R. Topor-Madry, T. Truelsen, S. Tyrovolas, K.N. Ukwaja, O. Uthman, T. 

Vasankari, V. Vlassov, S.E. Vollset, T. Wakayo, D. Watkins, R. Weintraub, A. 

Werdecker, R. Westerman, C.S. Wiysonge, C. Wolfe, A. Workicho, G. Xu, Y. Yano, 

P. Yip, N. Yonemoto, M. Younis, C. Yu, T. Vos, M. Naghavi, C. Murray, Global, 

Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 

2015, J. Am. Coll. Cardiol. 70 (2017) 1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

[4] H.S. Buttar, T. Li, N. Ravi, Prevention of cardiovascular diseases: Role of exercise, 

dietary interventions, obesity and smoking cessation, Exp. Clin. Cardiol. 10 (2005) 

229–249.

[5] T.W. Buford, Hypertension and Aging HHS Public Access, Ageing Res Rev. 26 

(2016) 96–111. https://doi.org/10.1016/j.arr.2016.01.007.

[6] H.E. Yim, K.H. Yoo, Renin-angiotensin system - Considerations for hypertension and 

23



kidney, Electrolyte Blood Press. 6 (2008) 42–50. 

https://doi.org/10.5049/EBP.2008.6.1.42.

[7] M.A. Sparks, S.D. Crowley, S.B. Gurley, M. Mirotsou, T.M. Coffman, Classical renin-

angiotensin system in kidney physiology, Compr. Physiol. 4 (2014) 1201–1228. 

https://doi.org/10.1002/cphy.c130040.

[8] H.E. Yoon, E.N. Kim, M.Y. Kim, J.H. Lim, I.-A. Jang, T.H. Ban, S.J. Shin, C.W. 

Park, Y.S. Chang, B.S. Choi, Age-Associated Changes in the Vascular Renin-

Angiotensin System in Mice, Oxid. Med. Cell. Longev. 2016 (2016). 

https://doi.org/10.1155/2016/6731093.

[9] A.M. Garrido, K.K. Griendling, NADPH oxidases and angiotensin II receptor 

signaling, Mol. Cell. Endocrinol. 302 (2009) 148–158. 

https://doi.org/10.1016/j.mce.2008.11.003.

[10] F. Turnbull, B. Neal, C. Algert, J. Chalmers, M. Woodward, S. MacMahon, C. 

Baigent, J. Cutler, R. Fagard, P. Whelton, S. Yusuf, N. Chapman, L. Agodoa, H. 

Black, J.P. Boissel, B. Brenner, M. Brown, C. Bulpitt, R. Byington, R. Collins, B. 

Dahlof, B. Davis, J. Dens, R. Estacio, K. Fox, L. Hansson, R. Holman, L. Hunsicker, J.

Kostis, K. Kuramoto, E. Lewis, L. Lindholm, J. Lubsen, E. Malacco, G. Mancia, C. 

Pepine, M. Pfeffer, B. Pitt, P. Poole-Wilson, G. Remuzzi, A. Rodgers, P. Ruggenenti, 

R. Schrier, P. Sever, P. Sleight, J. Staessen, K. Teo, R. Turner, L. Wing, Y. Yui, A. 

Zanchetti, Effects of different blood-pressure-lowering regimens on major 

cardiovascular events: Results of prospectively-designed overviews of randomised 

trials, Lancet. 362 (2003) 1527–1535. https://doi.org/10.1016/S0140-6736(03)14739-

3.

[11] A. Stanton, C. Jensen, J. Nussberger, E. OBrien, Blood Pressure Lowering in Essential

24



Hypertension with an Oral Renin Inhibitor, Aliskiren, Hypertension. 42 (2003) 1137–

1143. https://doi.org/10.1161/01.HYP.0000101688.17370.87.

[12] A. Stanton, C. Jensen, J. Nussberger, E. O’Brien, Blood pressure lowering in essential 

hypertension with an oral renin inhibitor, aliskiren., Hypertens. (Dallas, Tex.  1979). 

42 (2003) 1137–43. https://doi.org/10.1161/01.HYP.0000101688.17370.87.

[13] A. Unni P, S.L. Sudhakaran, G.G. Pillai, Review on druggable targets of key age‐

associated properties regulated by therapeutic agents, Chem. Biol. Drug Des. (2020) 

cbdd.13759. https://doi.org/10.1111/cbdd.13759.

[14] E.G. Da Mota, M.H. Duarte, E.F.F. Da Cunha, M.P. Freitas, Theoretical design of new

indole-3-carboxamide derivatives as renin inhibitors, Med. Chem. Res. 24 (2015) 

3097–3106. https://doi.org/10.1007/s00044-015-1362-4.

[15] V. Palyulin, E. Radchenko, A. Melnikov, N. Zefirov, Molecular field topology 

analysis and structure generation, Chem. Cent. J. 2 (2008) 2007. 

https://doi.org/10.1186/1752-153x-2-s1-p8.

[16] R.S. Vařeková, Z. Jiroušková, J. Vaněk, Š. Suchomel, J. Koča, Electronegativity 

Equalization Method: Parameterization and Validation for Large Sets of Organic, 

Organohalogene and Organometal Molecule, Int. J. Mol. Sci. 8 (2007) 572.

[17] E. V. Radchenko, V.A. Palyulin, N.S. Zefirov, Molecular field topology analysis 

(MFTA) in the design of neuroprotective compounds, in: Neuromethods, Humana 

Press Inc., 2018: pp. 139–159. https://doi.org/10.1007/978-1-4939-7404-7_5.

[18] H. Abdi, Partial least squares regression and projection on latent structure regression 

(PLS Regression), Wiley Interdiscip. Rev. Comput. Stat. 2 (2010) 97–106. 

https://doi.org/10.1002/wics.51.

25



[19] R. Kiralj, M.M.C. Ferreira, Basic validation procedures for regression models in 

QSAR and QSPR studies: Theory and application, J. Braz. Chem. Soc. 20 (2009) 770–

787. https://doi.org/10.1590/S0103-50532009000400021.

[20] M.R. Andrea Volkamer, Daniel Kuhn, Friedrich Rippmann, DoGSiteScorer: a web 

server for automatic binding site prediction, analysis and druggability assessment | 

Bioinformatics | Oxford Academic, Https://Doi.Org/10.1093/Bioinformatics/Bts310. 

(2012) 2074–2075. 

https://academic.oup.com/bioinformatics/article/28/15/2074/236684 (accessed 4 June 

2020).

[21] E. de Castro, C.J.A. Sigrist, A. Gattiker, V. Bulliard, P.S. Langendijk-Genevaux, E. 

Gasteiger, A. Bairoch, N. Hulo, ScanProsite: detection of PROSITE signature matches 

and ProRule-associated functional and structural residues in proteins., Nucleic Acids 

Res. 34 (2006) W362-5. https://doi.org/10.1093/nar/gkl124.

[22] M. Rarey, B. Kramer, T. Lengauer, G. Klebe, A Fast Flexible Docking Method using 

an Incremental Construction Algorithm, J. Mol. Biol. 261 (1996) 470–489. 

https://doi.org/10.1006/jmbi.1996.0477.

[23] N. Schneider, G. Lange, S. Hindle, R. Klein, M. Rarey, A consistent description of 

HYdrogen bond and DEhydration energies in protein-ligand complexes: methods 

behind the HYDE scoring function., J. Comput. Aided. Mol. Des. 27 (2013) 15–29. 

https://doi.org/10.1007/s10822-012-9626-2.

[24] P. Schyman, R. Liu, V. Desai, A. Wallqvist, vNN Web Server for ADMET 

Predictions, Front. Pharmacol. 8 (2017) 889. https://doi.org/10.3389/fphar.2017.00889.

[25] T. Hoffmann, M. Gastreich, The next level in chemical space navigation: going far 

beyond enumerable compound libraries, Drug Discov. Today. 24 (2019) 1148–1156. 

26



https://doi.org/10.1016/j.drudis.2019.02.013.

[26] X. Du, Y. Li, Y.L. Xia, S.M. Ai, J. Liang, P. Sang, X.L. Ji, S.Q. Liu, Insights into 

protein–ligand interactions: Mechanisms, models, and methods, Int. J. Mol. Sci. 17 

(2016). https://doi.org/10.3390/ijms17020144.

[27] G. Bitencourt-Ferreira, M. Veit-Acosta, W.F. de Azevedo, Electrostatic energy in 

protein–ligand complexes, in: Methods Mol. Biol., Humana Press Inc., 2019: pp. 67–

77. https://doi.org/10.1007/978-1-4939-9752-7_5.

[28] P. Kuki, J.E. Nielsen, Electrostatics in proteins and protein-ligand complexes, Future 

Med. Chem. 2 (2010) 647–666. https://doi.org/10.4155/fmc.10.6.

[29] H.X. Zhou, X. Pang, Electrostatic Interactions in Protein Structure, Folding, Binding, 

and Condensation, Chem. Rev. 118 (2018) 1691–1741. 

https://doi.org/10.1021/acs.chemrev.7b00305.
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Figure captions

Figure 1: Scatter plot depicting correlation between experimental and predicted values.

Figure  2:  (2a) Depicts  the  molecular  supergraph  of  S8000024.  (2b).  Represents  the

distribution  of  local  descriptor  charge  Q  on  S8000024.  The  regions  marked  with  blue

coloured  circles  in  activity  maps  illustrates  that  an  increase  in  descriptor  value  tend  to

decrease the activity, while positions marked with red coloured circles indicate that increase

in descriptor value tend to increase the activity.  (2c) : Represents the distribution of local

descriptor VdW.Re on S8000024. The positions marked with red coloured circles indicate

that increase in descriptor value (VdW.Re) tend to increase the activity.

Figure 3: Binding interactions of S8000024 with renin.  The ligand (S8000024) is depicted in

stick model.
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Figure 4: Binding interactions of S8000005 with renin. Ligand (S8000005) is depicted in

stick model.

Figure  5:  Two  dimensional  (2D)  and  three  dimensional  (3D)  depiction  of  binding

interactions of the compound S8000022. Ligand S8000022 is depicted in stick model.

Figure 6: Binding interactions of the co-crystal ligand (depicted in stick model) with renin

protein.

Figure 7: Depicts atom-based free energy contributions of S8000024 interacting with renin

(target  protein). Positive values  of  free energy of  binding is  represented  by red coloured

corona (6.4 kJ/mol 2.00 kJ/mol and 1.2 kJ/mol).

Figure 8: Illustrates atom-based free energy contributions of S8000005 interacting with renin

(target  protein). Positive values  of  free energy of  binding is  represented  by red coloured

corona (10.9 kJ/mol 4.6 kJ/mol and 2.2 kJ/mol).

Figure 9: Illustrates atom-based free energy contributions of S8000022 interacting with renin

(target  protein). Positive values  of  free energy of  binding is  represented  by red coloured

corona (9.2, kJ/mol, 2.6 kJ/mol 4.2 kJ and 3.2 kJ/mol).

Figure 10: Represents the contribution of structural features for enhancing hERG liability.

Regions represented in red colour shows positive contribution and regions marked in blue

colour  indicate  least  contribution  for  eliciting  each  of  the  respective  physicochemical

property.

Figure 11: Represents binding interactions of D1 with renin. Compound D1 is shown in stick

model.
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Figure  12:  Portrays  atom-based  free  energy  contributions  of  derivative  compound  D1

interacting with renin (target protein). Positive values of free energy of binding is represented

by red coloured corona (6.6 kJ/mol, 1.3 kJ/mol,1.3 kJ/mol and 0.7 kJ/mol).

Figure 13: Portrays contribution of structural features of D1 for the bioavailability feature,

hERG liability. Regions represented in red colour shows positive contribution and regions

marked  in  blue  colour  indicate  least  contribution  for  eliciting  each  of  the  respective

physicochemical property.
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Tables

Table 1: Represents descriptor combinations for executing MFTA calculations.

Table 2: Represents significant statistical parameters related to the model.

Statistical parameters                   Values
r2 0.81
Q2 0.65

31

Sl.no Descriptor codes
1 Charge.Q, VdW.Re
2 Charge.Q, VdW.Re, HBond.Hd, HBond.Ha
3 Charge.Q, VdW.Re, Lipo.Lg

4 Charge.Q, VdW.Re, HBond.Hd, HBond.Ha, Lipo.Lg



Root Mean Square Error (RMSE) 0.17
No. of factors 3

Table 3. Visually scrutinized best poses from docking studies.

Sl.no Compound ID Score Energy (kJ/mol) Ligand efficiency Binding affinity

range
1 S8000024 -32.37 -34 0.22 nM
2 S8000005 -35.33 -31 0.22 mM-M
3 S8000022 -34.87 -29 0.23 mM-M

Table 4:  Illustrates structural parameters such as torsion, interclash and intraclash for top

ranked compounds S8000024, S8000005 and S8000022.

Compound Torsion Intra-clash Inter-clash
S8000024 Good Moderate Moderate
S8000005 Moderate Good Good
S8000022 Good Good Good

Table 5. Physicochemical properties to predict bioavailability for lead compounds.

Sl.n
o

ID logS logP 2C9
pKi

hER
G

pIC5

Human
Intestinal

Absorption
Cytotoxicit

y
Mutagenicit

y
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0 (HIA)
1 S800002

4

1.88 3.69 5.8 6.5 + No No

2 S800000

5

1.2 4.32 5.9 6.4 + No No

3 S800002

2

1.44 2.52 5.4 6 + No No

Table 6. Depicts dock scores, HYDE assessment scores for top binding compounds.

Sl.no Compound ID Dock score Binding 
energy (kJ/mol)

Binding 
affinity range

1 D1 -27.13 -35 nM
2 D2 -22.63 -6 mM-M
3 D3 -18.28 -10 mM-M
4 D4 -11.41 -10 mM-M
5 D5 -10.54 -6 mM-M
6 D6 -19.04 -6 mM-M

Table 7. Depicts bioavailability scores for top derivative compounds.

Sl.no ID logS logP 2C9

pKi

hERG

pIC50

HIA Cytotoxicity Mutagenicit

y

1 D1 2.586 3.369 5.565 4.9 + No No
2 D2 1.46 3.433 5.647 5.7 + No Yes
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3 D3 2.055 3.226 5.377 5.4 + No No

4 D4 2.454 2.88 5.535 5.4 + No Yes

5 D5 0.6352 4.957 6.088 6.1 + No No

6 D6 0.3239 4.474 5.774 6.1 + No No
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