“Anti-Electrostatic” Halogen Bonding

02 March 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Halogen bonding (XB) is often described as being driven predominantly by electrostatics, and thus adducts between anionic XB donors (halogen-based Lewis acids) and anions seem counter­intuitive. Such “anti-electrostatic” XBs have been predicted theoretically, but there are currently no experimental examples based on organic XB donors. Herein, we report the synthesis of two negatively charged organoiodine derivatives, which were subsequently investigated towards their ability to form “anti-electrostatic” XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self-association of the anionic XB donors was observed in solid-state structures, resulting in dimers, trimers and infinite chains. In addition, co-crystals with halides were obtained which featured XB adducts between two or even three anions. The bond-lengths of all observed interactions are 14-21% shorter than sum of the van-der-Waals radii.

Keywords

halogen bonding

Supplementary materials

Title
Description
Actions
Title
Supporting-Information ChemRXiv
Description
Actions
Title
Coordinates
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.