These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
LTO_2_0__Copy_.pdf (849.45 kB)

Why Electrochromism in Li4ti5o12 Differs in the Visible and Infrared Spectrum

submitted on 07.02.2019, 01:33 and posted on 07.02.2019, 17:27 by MENG LI, Tim Gould, Zhong Su, Shanqing Zhang
Li4Ti5O12 (LTO) has been experimentally proven as a promising electrochromic material in applications of smart windows, thermal management and infrared camouflage. However, the fundamental mechanism on these phenomena is still lacking. For the first time, we fill this knowledge gap via quantitative matching the LTO's optical properties and electronic structure during charging/discharging using density functional theory. Our study suggests that the absorption of infrared is highly sensitive to intercalation of Li in the LTO lattice, in contrast with the adsorption of visible wavelengths. This unique property of LTO offers the practical ability in controlling infrared-induced heating with minimal effect on transmission of visible light. Furthermore, we also conclude that electrochemically controlled intercalation of Li causes donor states to appear, expand and move to deeper levels in the forbidden band, leading to better conductivity and lower transmittance, which is in line with the experimental results in the literature.


Email Address of Submitting Author


Griffith University



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest


Logo branding