Vibrational Ultra Strong Coupling of Water and Ice

13 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Water is of vital importance for life and human activities on Earth—it exhibits unique properties due to its interlinked and multipoint hydrogen bonding network. Here, we experimentally show that water can undergo vibrational ultra strong coupling (V-USC) in both the liquid and solid forms when the OH stretching mode of water or ice is resonantly coupled with an optical mode of an infrared Fabry−Pérot cavity. The light-coupled H2O under V-USC reveals the largest Rabi splitting ever reported, reaching 22% and 26% of the vibrational energy for water and ice, respectively. We confirm that the extraordinarily large Rabi splitting stems from the densely packed minuscule molecular structures, large vibrational energies, and broad and intense absorptions due to intermolecular hydrogen bonding. These new findings offer a brand-new platform in polaritonic chemistry for controlling the properties of water with an ultra strong light-matter interaction.

Keywords

Vibrational Ultra Strong Coupling
Light-Matter Interaction
Water
Ice
H2O
D2O
Rabi Splitting Energy
Coupling Ratio
Infrared Spectroscopy

Supplementary materials

Title
Description
Actions
Title
TOC V-USC Water-Ice HIURA NEC
Description
Actions
Title
SI V-USC Water-Ice HIURA NEC v1
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.