ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Versatile and Selective Fluorination of the Surface of Polymeric Materials After Stereolithography 3D Printing

preprint
submitted on 05.03.2021, 14:12 and posted on 08.03.2021, 06:25 by Megan Catterton, Alyssa N. Montalbine, Rebecca Pompano
With the microfluidics community embracing 3D resin printing as a rapid fabrication method, controlling surface chemistry has emerged as a new challenge. Fluorination of 3D printed surfaces is highly desirable in many applications due to chemical inertness, low friction coefficients, anti-fouling properties and the potential for selective hydrophobic patterning. Despite sporadic reports, silanization methods have not been optimized for covalent bonding with polymeric resins. As a case study, we tested the silanization of a commercially available (meth)acrylate-based resin (BV-007A) with a fluoroalkyl trichlorosilane. Interestingly, plasma oxidation was unnecessary for silanization of this resin, and indeed was ineffective. Solvent-based deposition in a fluorinated oil (FC-40) generated significantly higher contact angles than deposition in ethanol or gas-phase deposition, yielding hydrophobic surfaces with contact angle > 110˚ under optimized conditions. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy indicated that the increase in contact angle correlated with consumption of a carbonyl moiety, suggesting covalent bonding of the silane without plasma oxidation. Consistent with a covalent bond, the silanization was resistant to mechanical damage and hydrolysis in methanol, and was stable over long-term storage. When tested on a suite of photocrosslinkable resins, this silanization protocol generated highly hydrophobic surfaces (contact angle > 110˚) on three resins and moderate hydrophobicity (90 – 100˚) on the remainder. Selective patterning of hydrophobic regions in an open 3D-printed microchannel was possible in combination with simple masking techniques. Thus, this facile fluorination strategy is expected to be applicable for resin-printed materials in a variety of contexts including micropatterning and multiphase microfluidics.

Funding

Modeling immunity with a hybrid lymph node tissue-chip

National Institute of Allergy and Infectious Diseases

Find out more...

A user-friendly microchip for rapid optimization of protein conjugation reactions

National Institute of Biomedical Imaging and Bioengineering

Find out more...

History

Email Address of Submitting Author

mac6fa@virginia.edu

Institution

University of Virginia

Country

United States

ORCID For Submitting Author

0000-0002-9312-2482

Declaration of Conflict of Interest

No conflict of interest.

Exports