These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
manuscript.pdf (2.28 MB)

Vacancy Engineered Polymeric Carbon Nitride Nanosheets for Enhanced Photoredox Catalytic Efficiency

submitted on 03.08.2020, 01:57 and posted on 04.08.2020, 06:29 by Qiong Liu, Wengang Xu, Hui Cao, Jing Li, Qi Zhou, Weijian Tao, Haiming Zhu, Xingzhong Cao, Linxin Zhong, Jiong Lu, Xinwen Peng, Jie Wu
Polymeric carbon nitrides (PCNs) have emerged as promising heterogeneous photocatalysts for organic transformations as they are metal-free, inexpensive, and possess suitable bandgaps, and excellent chemical- and photo-stability. However, current application of PCNs in organic synthesis is rather limited to several well-established materials, which limits the scope of reaction patterns and efficiency. We herein report the synthesis and fabrication of two new PCN nanosheets by incorporating nanostructure construction, element doping, and vacancy engineering into one hybrid platform. The heteroatom doped PCN nanosheets with vacancies feature highly porous structures with extremely large substrate-catalyst interface areas, enhanced charge separation, and improved lipophilicity. The generated heterogeneous catalysts demonstrate impressive photoredox catalytic performances in a variety of organic transformations (e.g., defluoroborylation, [2+2] cycloaddition, C-N, C-S, and C-O cross couplings), providing efficiencies comparable to reported optimized homogeneous catalysts and exceeding those with commonly utilized PCNs.



National University of Singapore (R-143-000-B60-114)

National Natural Science Foundation of China (Grant No. 31971614, 21871205)


Email Address of Submitting Author


National University of Singapore



ORCID For Submitting Author


Declaration of Conflict of Interest