Ultra-Rapid Uptake and Highly Stable Storage of Methane as Combustible Ice

29 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ever-increasing natural gas (NG) consumption trends due to its cleanest tag and abundant availability point towards an inevitable transition into an NG dominated economy. Solidified Natural Gas (SNG) storage via combustible ice or clathrate hydrates presents an economically sound prospect, promising high volume density, and long-term storage. Here we establish 1,3-dioxolane (DIOX), as a highly efficient dual-action (thermodynamic and kinetic promoter) additive for clathrate (methane sII) hydrate formation. By synergistically combining a small concentration (300 ppm) of kinetic promoter L-tryptophan with DIOX, we further demonstrate ultra-rapid hydrate formation with a methane uptake of 83.81 (±0.77) volume of gas/volume of hydrate (v/v) within 15 minutes. To the best of our knowledge, this is the fastest reaction time ever reported for sII hydrates related to SNG technology and represents a 147% increase in the hydrate formation rate compared to the standard water-DIOX system. Mixed methane-DIOX hydrates in pelletized form also exhibit incredible stability when stored at atmospheric pressure and moderate temperature of 268.15 K, thereby showcasing potential to be industrially adoptable for the development of a large-scale NG storage system.

Keywords

Gas Hydrates
Methane Storage
Ultra-rapid
Kinetics
Stability
Dual-action promoter
1,3-dioxolane
L-tryptophan

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.