These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Two-Dimensional Infrared Spectroscopy From the Gas to Liquid Phase: Density Dependent J-Scrambling, Vibrational Relaxation, and the Onset of Liquid Character

submitted on 21.08.2019, 16:22 and posted on 22.08.2019, 16:40 by Greg Ng Pack, Matthew Rotondaro, Parth Shah, Aritra Mandal, Shyamsunder Erramilli, Lawrence Ziegler
Ultrafast 2DIR spectra and pump-probe responses of the N2O n 3 asymmetric stretch in SF6 as a function of density from the gas to supercritical phase and liquid are reported. 2DIR spectra unequivocally reveal free rotor character at all densities studied in the gas and supercritical region. Analysis of the 2DIR spectra determines that J-scrambling or rotational relaxation in N2O is highly efficient, occurring in ~1.5 to ~2 collisions with SF6 at all non-liquid densities. In contrast, N2O n 3 vibrational energy relaxation requires ~15 collisions, and complete vibrational equilibrium occurs on the ~ns scale at all densities. An independent binary collision model is sufficient to describe these supercritical state point dynamics. The N2O n 3 in liquid SF6 2DIR spectrum shows no evidence of free rotor character or spectral diffusion. Using these 2DIR results, hindered rotor or liquid-like character is found in gas and all supercritical solutions for SF6 densities ³ r * = 0.3, and increases with SF6 density. 2DIR spectral analysis offers direct time domain evidence of critical slowing for SF6 solutions closest to the critical point density. Applications of 2DIR to other high density and supercritical solution dynamics and descriptions are discussed.


This material is based upon work supported by the National Science Foundation under CHE – 1609952


Email Address of Submitting Author


Boston University, Department of Chemistry


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest