ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
10 files

Tunability of Interactions Between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy

preprint
submitted on 21.04.2021, 14:42 and posted on 22.04.2021, 10:56 by Tom Welling, Kanako Watanabe, Albert Grau-Carbonell, Joost de Graaf, Daisuke Nagao, Arnout Imhof, Marijn A. van Huis, Alfons Van Blaaderen
Yolk-shell or rattle-type particles consist of a core particle that is free to move inside a thin shell. A stable core with a fully accessible surface is of interest in fields such as catalysis and sensing. However, the stability of a charged nanoparticle core within the cavity of a charged thin shell remains largely unexplored. Liquid-cell (scanning) transmission electron microscopy (LC(S)TEM) is an ideal technique to probe the core-shell interactions at nanometer spatial resolution. Here we show by means of calculations and experiments that these interactions are highly tunable. We found that in dilute solutions adding a monovalent salt led to stronger confinement of the core to the middle of the geometry. In deionized water the Debye length becomes comparable to the shell radius Rshell, leading to a less steep electric potential gradient and a reduced core-shell interaction, which can be detrimental to the stability of nanorattles. For a salt concentration range of 0.5-250mM the repulsion was relatively long-ranged due to the concave geometry of the shell. At salt concentrations of 100 and 250mM the core was found to move almost exclusively near the shell wall, which can be due to hydrodynamics, a secondary minimum in the interaction potential or a combination of both. The possibility of imaging nanoparticles inside shells at high spatial resolution with liquid-cell electron microscopy makes rattle particles a powerful experimental model system to learn about nanoparticle interactions. Additionally, our results highlight the possibilities for manipulating the interactions between core and shell that could be used in future applications.

Funding

ERC Consolidator Grant NANO-INSITU (grant No. 683076)

inistry of Education, Culture, Sports, Science and Technology, Japan (Materials Processing Science project ("Materealize") of MEXT, Grant Number JPMXP0219192801)

NWO Start-Up Grant No. 740.018.013

EU-FET Project No. NANOPHLOW (766972) within Horizon 2020

History

Email Address of Submitting Author

t.a.j.welling@uu.nl

Institution

Utrecht University

Country

Netherlands

ORCID For Submitting Author

0000-0001-5958-4571

Declaration of Conflict of Interest

There are no conflicts to declare.

Version Notes

Manuscript draft for submission to ACS Nano.

Exports