These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
heavy metals_ms_v01.pdf (10.5 MB)

Trace Analysis of Heavy Metals (Cd, Pb, Hg) Using 3D Printed graphene/PLA Composite Electrodes

submitted on 05.11.2019, 18:04 and posted on 13.11.2019, 00:11 by John Walters, Shakir Ahmed, Irina Terrero Rodriguez, Glen O'Neil
Here we investigate the use of 3D printed graphene/PLA electrodes for quantifying trace amounts of Hg, Pb, and Cd. We prepared cylindrical electrodes by sealing a 600 µm diameter graphene/PLA filament in a pipette tip filled with epoxy. We characterized the electrodes using scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry in ferrocene methanol. The physical characterization showed a significant amount of disorder in the carbon structure and the electrochemical characterization showed quasi-reversible behavior without any electrode pretreatment. We then used unmodified graphene/PLA electrode to quantify Hg, and Pb and Cd in 0.01 M HCl and 0.1 M acetate buffer using square wave anodic stripping voltammetry. We were able to quantify Hg with a limit of detection (LOD) of 6.1 nM (1.2 ppb), but Pb and Cd did not present measurable peaks at concentrations below ~400 nM. We improved the LODs for Pb and Cd by depositing Bi microparticles on the graphene/PLA and, after optimization, achieved clear stripping peaks at the 20 nM level for both ions (4.1 and 2.2 ppb for Pb2+ and Cd2+, respectively). The results obtained for all three metals allowed quantification below the EPA action limits in drinking water.


Email Address of Submitting Author


Montclair State University


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest.