These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
mfocc_neutral.pdf (2.19 MB)

Towards a Rational Design of Laser-Coolable Molecules: Insights from Equation-of-Motion Coupled-Cluster Calculations

submitted on 12.07.2019 and posted on 15.07.2019 by Maxim Ivanov, Felix Bangerter, Anna I. Krylov

Access to cold molecules is critical for quantum information science, design of new sensors, ultracold chemistry, and search of new phenomena. These applications depend on the ability to laser-cool molecules. Theory and qualitative models can play a central role in narrowing down the vast pool of potential candidates amenable to laser cooling. We report a systematic study of structural and optical proper- ties of alkaline earth metal derivatives in the context of their applicability in laser cooling using equation-of-motion coupled-cluster methods. To rationalize and gen- eralize the results from high-level electronic structure calculations, we develop an effective Hamiltonian model. The model explains the observed trends and suggests new principles for the design of laser-coolable molecules.


Email Address of Submitting Author


University of Southern California



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest


Logo branding