These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
8 files

Toward a Comprehensive Treatment of Tautomerism in Chemoinformatics Including in InChI V2

submitted on 22.11.2019, 17:29 and posted on 29.11.2019, 18:13 by Devendra K. Dhaked, Wolf Ihlenfeldt, Hitesh Patel, Marc Nicklaus

We have collected 86 different transforms of tautomeric interconversions. Out of those, 54 are for prototropic (non-ring-chain) tautomerism; 21 for ring-chain tautomerism; and 11 for valence tautomerism. The majority of these rules have been extracted from experimental literature. Twenty rules – covering the most well-known types of tautomerism such as keto-enol tautomerism – were taken from the default handling of tautomerism by the chemoinformatics toolkit CACTVS. The rules were analyzed against nine differerent databases totaling over 400 million (non-unique) structures as to their occurrence rates, mutual overlap in coverage, and recapitulation of the rules’ enumerated tautomer sets by InChI V.1.05, both in InChI’s Standard and a Non-Standard version with the increased tautomer-handling options 15T and KET turned on. These results and the background of this study are discussed in the context of the IUPAC InChI Project tasked with the redesign of handling of tautomerism for an InChI version 2. Applying the rules presented in this paper would approximately triple the number of compounds in typical small-molecule databases that would be affected by tautomeric interconversion by InChI V2. A web tool has been created to test these rules at


National Institutes of Health


Email Address of Submitting Author


National Cancer Institute, NIH


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare no conflict of interest.

Usage metrics

Read the published paper

in Journal of Chemical Information and Modeling