These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
4 files

Toughening Hydrogels Through Force-triggered Chemical Reactions that Lengthen Polymer Strands

submitted on 02.01.2021, 19:02 and posted on 04.01.2021, 13:20 by Zi Wang, Xu Jun Zheng, Tetsu Ouchi, Tatiana Kouznetsova, Haley Beech, Sarah Av-Ron, Brandon Bowser, Shu Wang, Jeremiah Johnson, Julia Kalow, Bradley Olsen, Jian Ping Gong, Michael Rubinstein, Stephen Craig

The utility and lifetime of materials made from polymer networks, including hydrogels, depend on their capacity to stretch and resist tearing. In gels and elastomers, those mechanical properties are often limited by the covalent chemical structure of the polymer strands between cross-links, which is typically fixed during the material synthesis. Here, we report polymer networks in which the constituent strands lengthen through force-coupled reactions that are triggered as the strands reach their nominal breaking point. Reactive strand extensions of up to 40% lead to hydrogels that stretch 40-50% further than, and exhibit tear energies twice that of, networks made from analogous control strands. The enhancements are synergistic with those provided by double network architectures, and complement other existing toughening strategies.




Email Address of Submitting Author


duke university


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest